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I I . The O r b i t E q u a t i o n

Beciiu.se thi t o p o l o ^ i c a l f e a t u r e s of t h e v , Fjy 'J'n s p a c e a r c m o s t e a s i l y
s e e n a t hif.h e n ^ ' r ^ i e s , , v;e w i l l t r e a t t h e gu id in j ' , c e n t e r o r b i t s r e l a t i v i : ; t i -
c a l ] y . To be s p e c i f i c , we w i l l t r e a t i o n o r b i t s . A l t h o u g h p . ; i s e x a c t l y
c o n s e r v e d f o r t h e p a r t i c l e o r b i t i t i s o n l y c o n s e r v e d t h r o u g h ' f i r s t o r d e r f o r
t h e g u i d i n g c e n t e r [ 1 J :

- Zeiji = constant. (1)

2 —1/2
Here Z is the charge number of Lhc ion, Y - (l-(v/c.) )*" , R is the distance
Vo the summctry (Z) axis, and ^ is defined so that i t is zero at the. magnetic
axis and increases nomotonically to a value ' | at the wall or limiter.
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For ideal MHD equilibria, RB^ is only a function of \\>:

RB^ = FOJi). (2)

From conservation of u and e, we may write v.i at any point along the orbit as

= ±v A-(l-? 2)|- . (3)
m

The subscript m represents values at vp = <j>m.
Using Eqs. (2) and (3) in Eq. (1) and evaluating Eq. (1) at ij>m and at a

general point along the orbit, we can solve for B(I|I) along the orbit:

B = - . . . , . (4)

The dimensionless parameter Gm is given by

ZeB \\>
r - m m
Gm mcF *

m

and all quantities with a circumflex are normalized to their values at ty = ij>
along the orbit.

Equation (4) is remarkable in that the right-hand side is only a function
of ip and the COM (v, £, and ^ m ) . Because the orbit may be regarded as a
competition between motion along a field line and the gradient and curvature
drifts, ty will vary monotonically from i|/m to i)in (the minimum value of ty along
the orbit) on both the top half or bottom half of the orbit provided there is
up-down symmetry with respect to the (single) magnetic axis. In this paper we
only consider the top half of the orbit so that ty may be used as a running
variable along the orbit, and for any such i|>, Eq. (4) will give the value of B.
Thus, knowledge of the i|> = constant and B = constant contours is all we need
to know to describe an orbit in the poloidal plane. Indeed, the t|> = constant
and B = constant surfaces make a very natural coordinate system for orbit
considerations, and this explains why they occur in many neoclassical theory
formulas.

Furthermore, we note that the only information about the equilibria that
is used to describe the orbits is the values of B and F as functions of ty in
the equatorial plane. In this paper, these quantities have been obtained from
the Oak Ridge Equilibrium Code [2] for a D-shaped plasma the size of TNS, a
prototype ignition device. Figure 1 shows typical a-particle orbits for 1? =
1.3% and 7.7% and typical |B| contours. In the high-3 case, as will be shown
later, an important change in the topology occurs because B has a local maximum
on the equatorial plane outside the magnetic axis. This allows the existence
of orbits which are different from those of the low-B case.

III. Orbit Topology

Equations for the topological surfaces in the COM space can be derived
from Eq. (4) and in most cases can be solved explicitly for v as a function of
C and ij> . However, due to space considerations, in this paper we only discuss
the results and their physics content. The details of this will be presented
elsewhere [3].
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# Orbits in B-ip space along
with the corresponding B
and ip contours in real space.
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Figure 2 shows all of the relevant topological surfaces for low B and
high B. For clarity, we have separated them into their component parts.
Figure 2a shows the boundary of the trapped particle region. This is deter-
mined by the locus of particles which have VII = 0 in the equatorial plane.
These orbits are a limit of the usual banana orbits and are D-shaped.
Particles lying below this surface are trapped. Because of the uniqueness
properties of our space, trapped particles are defined only once for positive
values of £,. Note that in the low-3 case, if the particle energy is high
enough, there can be no trapped particles because the particle drifts
will always dominate the motion along the field line {y v). Also, contrary to
usual belief, those particles with pitch angles of 90° on the equator are
barely trapped, not deeply trapped. In the high-3 case, the two disconnected
parts of the trapping boundary are due to the local maximum in B. Particles
lying between the two regions are still trapped, but the boundary of the region
is determined by one of the surfaces to be described later.

The remaining surfaces are all determined by "stagnation point" orbits,
which have the property that the particle may remain forever at one location
in tha poloidal plasma cross section. These "singularities" occur in the
equatorial plasma are caused by a cancellation of the B x VB and curvature
drifts with the vertical component of VH . This is most easily done by setting
dp<t>/dR = 0 on the equator [1]. The particle .can then move only toroidally.

Stagnation points may be either stable (0-type) or unstable (x-type) with
respect to small displacements away from the stagnation point. The locus of
the stagnation points is important because it determines the maximum velocity
boundary of v-Z-tym space. Since x-type stagnation points have an infinite
bounce time, such particles are dominated by collisional effects.

Figure 2b shows the locus of stagnation orbits which have ip on the inside
of the magnetic axis. An important • feature of this surface is tne line which
marks the transition from 0-type to x-type stagnation orbits. The x-type
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orbits may scatter into fat banana (pinch) orbits (Fig. 3; to be discussed
below) which hit the wall, and so part of the x-type locus constitutes a "logs
region" (denoted by bold lines). No particles are allowed immediately above
this surface because it would correspond to defining Z, at i|>n instead of i|)m or
to a ij>m outside of the plasma boundary. Thus, the st.i2l1at:i-on orbit locus in
the COM space serves to preserve the uniqueness of our orbit representation.

In Fig. 2c we see the locus of stagnation orbits with <|>m on the outside
of the magnetic axis. In this case, all of the X-type orbits may scatter onto
orbits which intersect the wall; hence the entire -type orbit region is also
the boundary of the loss region. Because this region occurs at high energy,
it may be important for runaway electrons which may be accelerated through
this boundary.

For the high-3 case, the topology is drastically changed in the region
where dB/dip > 0. In this case, the stagnation point surface goes up to
v/c = 1, and. a new class of countergoing untrapped orbits appears above the
surface in the Z, < 0 half of space.

We point out the fact that so far, there is no way for a low energy
particle to scatter from the £ > 0 half of space to the Z, < 0 half of space,
since there is a forbidden region between them which goes down to v/c = 0.

The resolution of this dilemma is provided by a trapped orbit which we
call the "pinch orbit" due to the fact that the two banana tips bend down to
the equatorial plane and meet in an x-type stagnation point. Once on this
orbit, a particle may scatter onto any of three adjacent orbits, as shown in
Fig. 3.

CBXL/OWC/FEO76-286

THE PINCH ORBIT AND ITS THREE
NEIGHBORING ORBITS.

The innermost of these orbits is an x-type counterstagnation orbit whose locus
was shown in Fig. 2b. Thus, by scattering through the pinch orbitj, a particle
may go from a point with £ > 0 to a point with C < 0 but at a smaller value
of V .

The locus of the pinch orbits is shown in the last part of Fig. 2. This
locus lies just inside the trapping.region and maps onto the confined orbit
part of the x-type stagnation orbit surface of Fig. 2c.

Conclusions

We have developed a systematic picture of the orbit topology based on the
COM space to display the loss regions. This is expected to enable us to do
beam deposition calculations and to solve the general beam slowing down problem
with the Fokker-Planck equation in noncircular two-dimensional MHD equilibria.
Since the fast ions are collisionless, the Fokker-Planck equation can be
bounce-averaged and still retain the nonlocal, finite banana wictthjarbitrary $,
information that is inherent in the problem. Numerically this is an advantage-
ous procedure since we only need to solve a three-dimensional diffusion problem
on a time scale much longer than a bounce time. This is in contrast to solving



a four-dimensional diffusion problem on a time scale much shorter than a
bounce time, or to a Monte Carlo treatment.
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