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Usually, the three (05 that one associates with an oorbit are e
eneryey (), the marnetic rorent (), and the toroidal canenical anecular
monentun (p ). However, for cour purpones, it is preferable to choose the
speed (v), the maznimun value of the poloidal flux function along the orbitl
(i), and the value of v, /v at this point (7)), v, being defined as parallel to
. 1§ . P . . ) .
B . Because the orbit s associated with the dircetion of the plasma current
and not the dircction of H., we ¢ive 7 the siyn of v« J.o. There
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A
reasouns for this selectiony the twoe velocitv~1ike variasles, v and . are
orthogenal; the space~like variable vy is casily intcerpreted and has the nice
property that if g > Veallo the particle is in the loss vegion; and, nost
importantly, ¢ach orbit maps onc-to-cnc onto the points in this COM ::.cc.

In the remainder of this paper, we derive a convenient form of (Lo orbit
equation and then describe the various topological features in the now (O
space.

1I1. The Orbit Eguation

Because tle topelogical features of the v, §, v, Space are most casily
secen at high enercices, we will treat the guiding center orbits relativisti-
cally. To be specific, we will treat ion erbits. Although p. is cxactly
conserved for the particle orbit it is only censerved through first order for
the guiding cceuter [1):

Py = YmRv¢ - Zel = constant. ¢H)
o s i . . i 2,-1/2 , .
Here Z is the charge number of the don, v = (1-(v/c)") , R is the distance
*o the summetry (Z) axis, and v is defined se that it is zero at the magnetic
axis and increases nomotonically to a value Ww at the wall or limfter. /s
A
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For ideal MHD chuilibria, RB¢ is only a function of Y:

"

RB, F(). (2)

From conservation of y and €, we may write i at any point along the orbit as

v = v /1—(1-;2>§— : (3)
m

The subscript m represents values at ¢ = wm.
Using Eqs. (2) and (3) in Eq. (1) and cvaluating Eq. (1) at Y, and at a
gencral point along the orbit, we can solve for B()) along the orbit:

0T 1-z* 142\ 1 ST “
==+ (————) + 5 TG (1-0) [ - 1]
2 2 A2 2
F v
The dimensionless parameter G, is given by
ZeB ¥
= nm
Gm T meF y ()
m

and all quantities with a circumflex are normalized to their values at § = wm
along the orbit. .

Equation (4) is remarkable in that the right-hand side is only a function
of P and the COM (v, C, and {;). Because the orbit may be regarded as a
competition between motion along a field line and the gradient and curvature
drifts, ¢ will vary monotonically from Y  to ¥, (the minimum value of Y along
the orbit) on both the top half or bottom half of the orbit provided there is
up-down symmetry with respect to the (single) magnetic axis. In this paper we
only consider the top half of the orbit so that i may be used as a running
variable along the orbit, and for any such Y, Eq. (4) will give the value of B.
Thus, knowledge of the Y = constant and B = constant contours is all we need
to know to describe an orbit in the poloidal plane. Indeed, the Yy = constant
and B = constant surfaces make a very natural coordinate system for orbit
considerations, and this explains why they occur in many neoclassical theery
formulas. '

Furthermore, we note that the only information about the equilibria that
is used to describe the orbits is the values of B and F as functions of § in
the equatorial plane. In this paper, these quantities have been obtained from
the Oak Ridge Equilibrium Code [2] for a D-shaped plasma the size of TNS, a
protoiype ignition device. Figure 1 shows typical a-particle crbits for § =
1.3% and 7.7% and typical |B| contours. In the high-B case, as will be shown
later, an important change in the topology occurs because B has a local maximum
on the equatorial plane outside the magnetic axis. This allows the existence
of orbits which are different from those of the low-~B case.

ITI. Orbit Topology

Eqﬁations for the topological surfaces in the COM space can be derived
from Eq. (4) and in most cases can be solved explicitlv for v as a function of
L and ¥ . However, due to space considerations, in this paper we only discuss

the results and their physics content. The details of this will be presented
elsewhere [3].
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Figure 2 shows all of the relevant topological surfaces for low B and
high B. For clarity, we have separated them into their component parts.
Figure 2a shows the boundary of the trapped particle region. This is deter-—
mined by the locus of particles which have vy = 0 in the equatorial plane.
These orbits are a limit of the usual banana orbits and are D-shaped.
Particles lying below this surface are trapped. Because of the uniqueness
properties of our space, trapped particles are defined only once for positive
values of . Note that in the low-f case, if the particle energy is high
enough, there can be no trapped particles because the particle drifts (v v?)
will always dominate the motion along the field line (Vv v). Alsb, contrary to
usual belief, those particles with pitch angles of 90° on the equator are
barely trapped, not deeply trapped. In the high-8 case, the two disconnected
parts of the trapping boundary are due to the local maximum in B, Particles
lying between the two regions are still trapped, but the boundary of the region
is determined by one of .the surfaces to be described later.

The remaining surfaces are all determined by "stagnation point" orbits,
which have the property that the particle may remain forever at ome location
in the poloidal plasma cross section. These "singularities" occur in the

_equatorial plasma are caused by a cancellation of the B x VB and curvature
drifts with the vertical component of vj. This is most easily done by setting
dp¢/dR = 0 on the equator [1]. The particle .can then move only &toroidally.

Stagnation points may be either stable (0-type) or unstable (x-type) with
respect to small displacements away from the stagnation point. The locus of
the stagnation points is important because it determines the maximum velocity
boundary of v-Z-Y;, space. Since x~type stagnation points have an infinite
bounce time, such particles are dominated by collisional effects.

Figure 2b shows the locus of stagnation orbits which have Y on the inside
of the magnetic axis, An important .feature of this surface is the 1ine which
marks the transiticn from O-type to x-type stagnation orbits. The x-type
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orbits may scatter into fat banana (pinch) crbits (Fig. 3; to be discussed
below) which hit the wall, and so part of the x-type locus constitutes a "logs
region" (denoted by bold lines). No particles are allowed immediately above
this surface because it would correspond to defining [ at Y, instead of Yy or
to a Y, outside of the plasma boundary. Thus, the stzenation orbit locus in
the COM space serves to preserve the uniqueness of our orbit representation.

In Fig. 2c we see the locus of stagnation orbits with {i; on the outside
of the magnetic axis. In this case, all of the X-type orbits may scatter onto
orbits which intersect the wall; hence the entire -~type orbit region is also
the boundary of the loss region. Because this region occurs at high energy,
it may be important for runaway electrons which may be accelerated through
this boundary.

For the high-B case, the topology is drastically changed in the region
where dB/dy > 0. In this case, the stagnation point surface goes up to

v/c = 1, and a new class of countergoing untrapped orbits appears above the = "~

surface in the § < 0 half of space.

We point out the fact that so far, there is no way for a low energy
particle to scatter from the § > 0 half of space to the [ < 0 half of space,
since there is a forbidden region between them which goes down to v/e = 0.

The resolution of this dilemma is provided by a trapped orbit which we
call the "pinch orbit" due to the fact that the two banana tips bend down to
the equatorial plane and meet in an x-type stagnation point. Once on this

orbit, a particle may scatter onto any of three adjacent orbits, as showm in
Fig. 3. .

ORML /DWG/FED 78-288

Figure 3

THE PINCH ORBIT AND ITS THREE
NEIGHBORING ORBITS.

The innermost of these orbits is an x~type counterstagnation orbit whose locus
was shown in Fig. 2b. Thus, by scattering through the pinch orbit, a particle
may go from a point with £ > 0 to a point with f < 0 but at a smaller value
of y_.

mThe locus of the pinch orbits is shown in the last part of Fig. 2. This
Jocus lies just inside the trapping.region and maps onto the confined orbit
part of the x-type stagnation orbit surface of Fig. 2c.

Conclusions

We have developed a systematic picture of the orbit topology based on the
COM space to display the loss regions. This is expected to enable us to do
beam deposition calculations and to solve the general beam slowing down problem
with the Fokker-Planck equation in noncircular two-dimensional MiD equilibria.
Since the fast ions are collisionless, the Fokker-Planck equaticn can be
bounce-averaged and still retain the nonlocal, finite banana width arbitrary B8,
information that is inhkerent in the problem. Numerically this is an advantage-
ous procedure since we only need to solve a thrvee-dimensional diffusion problem
on a time scale much longer than a bounce time. This is in contrast to solving
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a four-dimensional diffusion problem on a time scale much shorter tharn a
bounce time, or to a Monte Carlo treatment.
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