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Abstract

This report investigates the behavior of a family of finite element error

estimators based on projected stresses, i.e., continuous stresses that are a

leastsquared error fit to the conventional Gauss point stresses. An error

estimate based on element force equilibrium appears to be quite effective.

Examples of adaptive mesh refinement for a one-dimensional problem are

presented. Plans for two-dimensional adaptivity are discussed.
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FINITE ELEMENT ERROR ESTIMATION AND

ADAPTIVITY BASED ON PROJECTED STRESSES

i. INTRODUCTION

, In recent years, considerable effort has been devoted to finite element error

estimation and control [see 6. Noor and I. Babuska (1987) for a summary]. If

a reliable error estimate can be obtained, it follows that the error estimate

could be used to adaptively change the mesh in order to reduce the error to an

acceptable level. Obtaining the error estimate, though, can be a formidable

task since, in general, tile only information available to the analyst is the
approximate solution itself.

Among the most popular approaches is that developed by Babuskal et al., which

attempts to estimate the error in the strain energy of the solution_ the so-

called energy norm. This estimator has the form of

2 r--- 2 hi 2

__ r d43 J di= 2-_ xi 1
i=l

with I i being the element interface, r is the residual of the governing

differential equation, J is the inter'element traction jump, m is the number

of elements, K is the bulk modulus, and h i is the characteristic length of the

element. Such estimators require explicit determination of the inter-element

traction jumps and integration along the element interfaces. Furthermore,

most of the error for this estimator is in the traction term.

Zienkiewicz and Zhu (1987), proposed a new approach based on a projected

stress field (a continuous stress field that is a least squared error fit to

the conventional finite element stresses). The appeal of using a projected
stress field was obvious--there was now more information that could be used to

form an error estimate. If theprojected stresses were taken to be

approximately equal to the exact solution, one could write

e -
~a rex ffe

A

=[ " _fe

. where

a are the exact stresses
-ex

- ffe are the finite element stresses

and

A

a are the projected stresses

We now have a very simple and easy to use error estimator. The method for

obtaining projected stresses will be discussed in this report.
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The work in this report explore s some new approaches for using projected ,

stresses that are different from that presented by Zienkiewicz, In

particular, attention is paid to possible e_ror measures based on the residual

at,the equilibrium equations or the force residuals of element equilibrium,

Both of these error measures are applicable to nonlinear as well as linear

problems since they involve residuals of basic equationsthat are not

influenced by whether the problem is linear or not.

Although this report focuses primarily on error estimation, some thought is

given to adaptivitY. There are a number of approaches to adaptivity, which

are commonly called r, h, and p methods. The r method involves moving the

node point locations to minimize the error with a given number of nodes. This

approach is almost never used since it leads to a very complex set of

nonlinear equations. The h method involves element subdivision to control the

solution error, and the p method refers to increasing the order of

approximation within the elements. The h and p methods have often been

combined to obtain optimum convergence rates.

7n this report, we will use some simple h type refinements for one-dimensional

roblems and will discuss plans for future two-dimensional work.

-I0-



ii 2,_ PROJECTED STRESS

2,i FORMULATION

The error estimation techniques used in this report are based on projected

stress fields (continuous stress fields over the domain of the problem). This

, stress field can be developed from a number of different approaches. We could,

start from a weighted residual statement (Zienkiewicz, et al., 1985), a least

squared error statement (Hinton and Campbell, 1974), or the concept of

conjugate approximations (Oden and'Brauchli, 1971). All three approaches

produce equivalent results.

The simplest derivation is probably the weighted residual approach. Let us

first begin by defining a continuous stress field, _, based on element shape

functions, N (usually the same shape functions as those.used for the

displacement interpolation), and nodal stress values, a, such that,

o .= N o (i)

We can now write a weighted residual statement in which the residual is the

difference between the conventionally^ computed finite element stresses, Ofe ,

and the projected stresses, o ,

a [fe " a d_- 0 (2)

which upon substitution of Equation (I) into (2) yields

I [ 1NT ^*
, n afe - N a d_ - 0

/, ,

or

^* I NTM o = _ Ofe d_ (3)

in which

NTNdD (4)M- _

The nodal stresses are obtained by solving this linear set of equations, which
is symbolically written as

^* -i [ NTa - M n afe ¢hq . (5)

This operation is repeated for each component of stress. _

The equivalent least squared error formulation is derived frown the functional

' 2 Na - d_
EM = CJ _ " ffe d_ = _ _ ofe
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Minimizing this functional yields

8EM NT N d_ o -

a-_ " _ - _fe d_ = 0 (6)

which is identical to Equation (3).

An interesting point is that the projected stresses can be interpreted as a

least squared error fit to the conventional finite element stresses, which are

themselves a least squared error fit to the exact solution (Herrmann, 1972).

Thus, one would intuitively expect that the projected stresses would provide a

fairly good continuous approximation to the exact solution with the least

accurate approximations occurring on the boundaries of the body where the

computed finite element stresses are the poorest. Furthermore, nodal points

on the boundary are not completely surrounded by elements so that the natural

weighting of stresses that occurs in the interior of the mesh is not as great,, ,,

on the boundary.

lt is also interesting to notice that the matrix, M, consists of the products
of shape functions integrate d over the volume of each element, which closely

resembles a typical finite element "mass" matrix. As with mass matrices, a

"consistent" form is obtained if the integrations are performed with an

integration scheme that evaluates the integrals exactly, while a simple

diagonal "lumped" form is obtained if the integrals are evaluated only at the
nodes. Zienkiewicz, et al. (1985) points out that the consistent form, in

general, gives better results. The lumped form, however, leads to a system of

equations that is extremely easy to solve. This lumped form yields a simple

volume weighted nodal average of stresses.

2.2 ONE-DIMENSIONAL BEHAVIOR OF PROJECTED STRESSES

To examine how the projected stresses behave, let us examine a series of

simple one-dimensional elasticity problems. We will consider the problem

shown in Figure I, and compare the projected stresses, finite element
stresses, and £he exact stresses.

2.2.1 One_Dimensipnal Model_Problem

As the one-dimensional model problem, consider a circular bar of cross-i

sectional area, A, fixed at one end, and loaded along its length by the

function f(x), Figure i. Assuming linear elasticity, the governing
differential equation is

EA --d2u + f(x) - 0
dx 2

with the boundary conditions
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t,

Ulx=O- 0

x-L "°

Let us consider a particular form for f(x), i.e., let

o _ ', n- 0, 1, 2, . . .

where P is the 'perimeter of the bar.

The solution to 'this differential equation (for a given n) is

a P [ (n+2)

o [ xu " EA(n+I) Lx - Ln(n+2) .

The stress is given by

a- E d_uu
dx

a P [ (n+l)

o [ xa - A(n+l) L Ln .

2,2.2 0De-Dimenslonal Pro_ected Stress Results

For the first example problem, we let a bar of unit length and unit area be

loaded by a uniform stress along its perimeterl (0o - i.), i.e.,

f(x) - P (n - O) .

The exact stresses, projected stresses, and finite element stresses for two,

three, four, and five elements are shown in Figures 2 through 5. In general,

we see that the stress results at the interior nodes are quite good and the

maximum errors occur at the boundaries where there is only limited finite
element stress information.

In the second example problem, the forcing function was taken to be

f(x) - P(x/L) (n - I) .

. Convergence of the projected stresses toward the exact solution is observed as
the number of elements is increased, Figures 6 through 9.

, These examples were performed using a uniform mesh refinement.

2.3 LOUBIGNAC ITERATIONS TO IMPROVE STRESSES

Loubignac, et al. (1977) and Cantin (1978) -l.owed that it is possible to

further improve the projected stress solution with an iteration process. This

process consists of repetitively solving the incremental problem

-13-



, K _Ui - f - BT ai dn
with

ui,+l--u i + _ui .,

until the rlght-hand side residual or Au i is acceptably small. These
f

iterations are •called Loubignac or Loubignac-Cantln iterations. Zienkiewicz,

et al, (1985) recognized that this process is equivalent to solving a mixed

formulation tO the problem in which both stresses and displacements are

problem unknownS.

The effectiveness of this procedure is shown in Figures I0 and Ii in which the

stresses, after four Loubignac iterations, are plotted for the one-dimensional

model problem with n - 0 and I, each using four element meshes. A marked

improvement in the projected stress solution is observed. Because the error

measures examined in this report are based on the projected stresses, it is

important to recognize that these stresses can be improved t_rough an

iterative process. Moreover, for nonlinear problems it may be possible to
include these iterations in the iteration procedure for the overall nonlinear

response at little extra cost [Zle_kiewicz, et al. (1985)].

f(x)
,, _

0
,- , _ -- _ i ,,,

L

Figure I. One-Dimenslonal Model Problem
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3. POSSIBLE ERROR ESTIMATES BASED ON PROJECTED STRESSES

The current work focused on four possible error estimators based on the

projected stresses. The simplest error estimator is probably the difference

between the projected stress and the finite element stress, see Figure 12, as

suggested by Zienkiewicz and Zhu (1987). In their work, the projected stress,
_, was taken to be equal to the exact solution and, thus, the stress error
can be written as

A

G

e - a - afe (7)

where afe is the finite element stress.

Although elegantly simple, this definition of error may indicate an

appreciable error even though the projected stress field approximates the

exact solution weil, Figure 12

Zienkiewicz suggests that an integral form of the stress error estimator given

in Equation (7) can be obtained by forming the so-called L2 norm stress error
for each element, i.e.,

II e° liE2 a

and then a new norm can be written as

2 1/2

II e.?.° IlL2
z_a= _ (8)

This new norm defines the root mean square stress error in absolute terms.

However, this norm is not rotationally invariant, i.e., if we used the same

mesh, but in a rotated coordinate system, we would not, in general, calculate
the same value for the L2 norm in both systems. A rotationally invariant

version of the L2 norm of a second order tensor, A, would be

IJ ]
' 1/2

aij aij di] , (9)II A IlL2

Of course, this norm could also be written in a nonintegrated form as

I A IL 2 aij aij (10)

Equation (10) is useful when we seek a discrete measure of Equation (7). We
will use the norm

-20-



1,12
O a

I e° IL2 = max eij eij (II)

as the measure of discrete stress errors in each element.

In ali of the calculations reported in this work, Equation (9) is used. In

this spirit, the norm used in Equation (8) is

o n eij eij di] (12)

A third possible error measure could be based on evaluating the residual of

the governing equilibrium equations. This can be accomplished by taking the

appropriate derivatives of the projected stress fields and substituting these

quantities into the equilibrium equations, e.g., irl two dimensions ....

Oa
x aT

+ = 0
ax By

(13)

ao

af + .,v = o
ax By

In general, the equilibrium equations will not be satisfied and hence, there

will be residuals that can be interpreted as an error measure. In terms of

the element shape functions and nodal stress values, the equations for the

residual would be (again in two dimensions)

n n

a-_-o + r. - Rx. ay _ xI
i=l i=l

(14)

n aN i

anl ^* 7 ^*3X r. + a - R ._ 1 3-7 Yi Y
i=l irl

,

The residuals are a direct result of having continuous stress fields and are

intuitively appealing because in a standard displacement based finite element

formulation, the equilibrium equations are only satisfied in the limit as the

number of elements becomes very large.

A fourth error measure could be obtained by integrating the residuals in

Equation (14) over the volume of the element to obtain element force

, residuals, i.e.,

(15)

In R = F
dr2

Y Y

-21-



Alternatively, the divergence theorem could be applied to obtain a surface

integral, if desired, These force residuals may be easier to work with than

the residuals of Equation (14) because Equation (15) can be normalized by some

characteristic force quantity in the problem while it may be difficult to find

a characteristic stress derivative with which to normalize Equation (14).

An appropriate norm for Equation (15) is

[ )II F II" F2 + F2 1/2 (16)
x y '

For adaptive purposes, it is most useful to perform the indicated integrations

over each element in order to obtain local error quantities. If a global
estimate is desired, it is possible to sum these quantities as indicated in
Zienkiewicz and Zhu (i987).

, ' projected stress

// ,exact stress

oo // finite element stress
09
W

i iu ii i

Figure 12, Plot of Various Stress Quantities
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4. NUMERICAL RESULTS

In this section, we will examine the behavior of the proposed error estimators

. when applied to one-dimensional and two-dimensional elasticity problems, lt

is informative tosee how these error estimators behave in the simpler one-

dimensional setting before examining the two-dlmensional problems.

4,1 ONE-DIMENSIONAL

In one dimension, we will again use the model problem presented in Section

2,2.1, Figure I. The results for n = 0 and 1 (i.e., a uniform and linearly

varying load distribution) with the mesh uniformly refined from 2 to 5

elements are presented Figures 13 through 20.

First, let us consider the case of n = O, Figure 13 to 16. Figure 13 shows

the element force residuals, Equation (15), normalized by the total reaction

force. The curves show a fairly uniform decrease in the element force

residuals as the number of elements is increased. The highest residuals exist

at the ends of the rod. The results show that the force residuals in a given

region may actually increase as the mesh is refined, if the starting mesh is

_'ery coarse.

Figure 14 shows the equilibrium residuals, Equation (14), evaluated at the

center of each element. Essentially the same trends as the force residuals
are obtained.

The element stress errors, Equation (II), are shown in Figure 15. Although a

fairly uniform decrease in the element stress errors is noted as the number of
elements is increased, there is a notable boundary insensitivity. The lowest

errors are predicted to be at the boundaries, when in fact, the highest true

errors occur there (see Figures 2 through 5).

The Aa norm, Equation (8), normalized by the maximum stress in the body is

shown in Figure 16. This error estimate exhibits trends that are similar to
the stress error norm.

Turning now to the problem with a linearly varying load (n - I), Figures 17 to

20 show very similar convergence characteristics to those of n - 0 for all
four error estimators. Ali of the error estimators detect that the finite

element solution at the fixed boundary is relatively good; but again, the
element stress error and Aa norms are insensitive to the error at the free end

of the bar. The element force residuals and equilibrium residuals are
, sensitive to the free end error, however.
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4,2 TWO-DIMENSIONAL

A number of two-dimensional plane stress elastic{ty calculations were

performed to examine the prtposed error estimators, These problems consisted

of a plate with a hole, a simply supported beam, and a short cantilever beam,

As with the one-dlmenslonal problems, a series of meshes for each problem was

used to study behavior of the error estimators, The performance of only three

of the four originally proposed error estimators will be presented, These

included the stress error norm, 'the element force residual, and the Ao norm,

The residual of the equilibrium equations yield such poor results for all
cases that it was not included.

,

4,2,1 A Plate With a Hole

The problem of a uniformly loaded plate with a hole was analyzed using four

different meshes having 90, 238, 478, and 798 degrees of freedom, Figures 21

through 24, The L2 norm of the true errors in the projected stresses (based

on the solution of a hole in an infinite plate) are shown in Figures 25

through 28. This error norm shows that the location of highest error varies

with the mesh, but converges to a point on the hole boundary at about a 45

degree a_gle, There is a monotonic decrease of the maximum error in that norm

as the mesh is refined, The true Ao error is shown in Figures 29 through 32,

The location of the maximum error also moves as the mesh is refined, but

settles down at approximately the same location as the L2 norm of the stress
errors, A monotonic decrease in the maximum value of this norm is also

observed,

The reason the location of maximum error, as measured by these norms, is at

the particular location indicated is because the shear stress error dominates

the total error at approximately 45 degrees up the hole boundary. Figure 33

shows the individual stress error components around the hole boundary for

Mesh 4. Figure 34 shows the associated L2 norm of the stress error on the

hole boundary.
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Figure 24. Mesh 4 for the Hole Problem
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Figure 25. L2 Norm of True Stress Error, Mesh I
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Figure 26. L2 Norm of True Stress Error, Mesh 2
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Figure 27. L2 Norm of True Stress Error, Mesh 3

FiBure 28. L2 Norm of True Stress Error, Mesh 4

-32-



0.0

0.0 1.5 3.0 4.5 6,0 7,5 9.0
X

Figure 29. True De] Sigma Error Norm, Mesh 1
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Figure 30. True Del.Sigma Error Norm, Mesh 2
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Figure 31. True Del Sigma Error Norm, Mesh 3
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Now that we have considered the trueerrors, let us turn our attention to the

element force equilibrium residual (normalized to the net reaction forces),

Figures 35 through 38. This error measure behaves similarly to the L2 norm of

the exact stress errors and the exact Aa norms, Figures 25 to 31, The

location of the maximum error is approximately the same as that for the exact
error norms, and a monotonic decrease in the maximum values is observed.

The discrete version of the stress error norm, i.e., nonintegrated form of the
L2 norm of the maximum stress errors evaluated at the element nodes, is shown

in Figures 39 through 42. The maximum error locations are not consistent with
the exact error, Figures 25 to 28.

The Ao norm, Figures 43 to 46, also predicts maximum error locations that are
inconsistent with the exact error norms.

,

Both the L2 norm 0f the maximum stress errors and the &a norm do not decrease

monotonically as the mesh is refined. This is most likely due to the fact

that these norms substitute the projected stresses for the exact stresses when

calculating the error_ The quality Of the projected stresses is mesh

dependent SO the mesh must be "reasonabl_!'.fine for consisten't estimates of
the exact stresses to be obtained. Thus, these two norms would not be

; expected to decrease monotonically until the mesh has reached a certain degree
of fineness.
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Figure 35. Element Force Error, Mesh I
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Figure 37, Element Force Error, Mesh 3
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Figure 38. Element Force Error, Mesh 4
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Figure 40, Stress Error Norm, Mesh 2
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Figure 43, Del Sigma Norm, Mesh I

0,0 1,5 3.0 4,5 6,0 7,5 9,0
X

i

Figure 44, Del Sigma Norm, Mesh 2
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Figure 45, Del Sigma Norm, Mesh 3

Figure 46, Del Sigma Norm, Mesh 4
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4,2,2 A Uniformly Loaded Simply Supported Beam

As a second example problem, consider the case of a uniformly loaded simply
supported beam, Figure 47, One-half of the beam was modeled in three finite

' element analyses using 18, 210, and 854 degrees of freedom, see Flgures 48

through 50,

' The projected stress for each mesh'at the beam midspan is compared to
elementary beam theory in Figure 51, Convergence to the beam theory solution

is clearly shown, Also, the maximum error occurs on the boundaries as noted

previously for the one-dlmenslonal prob].em,

Contour plots of the element force residuals (again normalized by the net
reaction forces) are shown in Figures 52 through 54, lt isquite clear that

the area around.the support point is the location of maximum error, This is

understandable since the point -'Ipport (load) is a singular point, The error

at the support point dominates the error in the problem, The mesh 3 contours
at the center of the beam, where the highest bending stresses occur, are sho%_

in Figure 55. If we .ignore the error at the support point, the errors at the

beam center are certainly sufficient to drive an adaptive scheme.

The stress error and Aa norms, Figure 56 through 61, do not appear to be

particularly sensitive to the singular points, although they.would be useful
for the remainder of the beam.

w=l Ib/ in

1 0'I E=3 0e7 psi' G=1,,15 e7' psi

4

..... 20" .... - _-

Figure 47. A Simply Supported Uniformly Loaded Beam
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Figure 48. Mesh 1 of the Beam
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Figure 49. Mesh 2 of the Beam
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Figure 50. Mesh 3 of the Beam
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Figure 54. Element Force Residual Norm for Mesh 3
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Figure 55. Element Force Residual Norm for Mesh 3

at the Midspan of the Beam
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Figure 57. Stress Error Norm for Mesh 2
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Figure 60. Del Sigma Norm for Mesh 2
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Figure 61, Del Sisma Norm for Mesh 3
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4,2,3 A Short Canti!ever.Beam

The third problem is that of a short cantilever beam, Figure 62, The three

meshes used to analyze this problem are shown in Figures 63 through 65 and
, have 18,. 50, and 162 degrees of freedom, respectively. The element force

equilibrltun residuals (normallzed to the net reaction force), Figures 66

through 68, clearly pick out the two corner singularities on the support edge,

' The stress error and Aa norms also detect th'e singularities, Figures 69

through' 74, but donot appear to be as sensitive as the element force

equilibrium residual error measure,

_ 1,0 psi

N
\ 1,0 "

%% "

%

'_ E= 3,0, e7 psiq
% G= 1 15 e7 psi\

1.0 "

Figure 62, A Short Cantilever Beam Problem
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Figure 64, Mesh 2 for the Short Cantilever Problem
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Figure 70, Stress Error Norm for Mesh 2

-55-
=

=



_. 0,00

° FI!!fill
-0°30

"0,45 -0,30 -0,15 0,00 O,lS 0,30 0,45
X

Figure 71, Stress Error Nor,n for Mesh 3

-0,4S

[
-0,4_ -0,30 -0,15 0,00 O,IS 0,_0 O,_S

X
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5. DISCUSSION OF ERRORRESULTS

The problems considered in this report appear to indicate that the element

force equilibrium residual is the most sensitive of the error measures

investigated. Not only is this error measure more sensitive at singulacities,
but it also exhibits a boundary sensitivity that the Other measures do not.

This sensitivity is due to the fact that the error estimate is a measure of '

the departure from fundamental equations, i.e., force equilibrium, while the

Zienkiewicz-Zhu family of error estimators are based on a departure from the

projected stresses, which are only approximations to the true stresses. As

will be demonstrated in the next section, which investigates some simple one-

dimensional adaptive schemes, it could be argued that the element force

equilibrium residual makes better use of the projected stresses than the
Zienkiewicz-Zhu measures. As mentioned in Section 3, the Zienkiewicz-Zhu

measures may indicate appreciable error even 'though theprojected stress field

approximates the exact solution well (see Figure 12).

Ainsworth, et al. (1989), performed an analysis of the Zienkiewicz-Zhu error

estimator. They showed that an element force equilibrium error measure is

closely enough related to the Zienkiewicz-Zhu estimator. Therefore, it may be

possible to fo].low Ainsworth, et al.'s, work to show that an element force

equilibrium error measure is also "asymptotically exact", i.e., the predicted

error goes to zero when the true error goes to zero. This analysis remains to
be performed, although, one could argue that as the finite element stresses

converge, so do the projected stresses and element equilibrium.

In this work, element moment equilibrium was not considered. From the onset,

it was intuitively believed that moment equilibrium would be a second order

effect when compared to element force equilibrium. Preliminary numerical

results showed this to be true. In fact, the moment residua!had almost no
correlation to the true error.

Although theapplication of any of these error measures to nonlinear problems

has not been demonstrated, there is no fundamental reason why, say, the
element force equilibrium error measure could not be used.
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6. ADAPTIVITY

6.1 SIMPLE ONE-DIMENSIONAL H-TYPE ADAPTIVITY

The one-dimensional model problem (with n - 0 and I) was used to explore how a
simple h-type mesh refinement strategy could be used in conjunction with an

element force error and Aa error measures. The refinement strategy was to
simply divide an element in half if its error is above a prescribed level.

Figures 75 a-c show the computed results and mesh refinements required for the
case of n - 0 to obtain an element force error of no more than 5% of the

reaction force. Figure 76 shows the element force errors as the mesh is

refined. Figures 77 a-c and 78 give the corresponding plots using the Ao norm

with an error tolerance of 5%. A slightly more efficient solution (in terms

of the number of elements used) is obtained using the element force error
measure. This is due to the fact that the element force error measure makes

better use of the projected stress solution than the Ao error measure.

Similar statements can be made with n - I, Figures 79 to 82.

6.2 PLANS FOR TWO-DIMENSIONAL ADAPTIVITY

Although most error measures are equally valid in one, two, or three

dimensions, adaptively generating new meshes in two and three dimensions is a

formidable problem. For this and other reasons, many researchers have

combined h and p type adaptivity. Zienkiewicz and his co-workers have used

triangular elements of linear and higher order to their advantage since it is

much easier to mesh an arbitrary body with triangles than with quadrilaterals.

Future efforts for this present work will focus on using Paving, a new

automatic quadrilateral meshing technique (Blacker and Stephenson, 1990).

This technique will allow for arbitrary selective refinements of the mesh,
i.e., we will not be restricted to simple element subdivision.

6,3 CLOSURE

This report presents an investigation into the behavior of a family of finite

element estimators based on projected stresses. Of those investigated, an

error estimator based on the force equilibrium of an element appears to be

very effective over a range of problems. This conclusion is based purely on

numerical results. A mathematical analysis of this estimator is necessary to

demonstrate that it is asymptotically exact. This estimator, though, is
applicable to nonlinear as well as linear problems.

l •
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