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Abstract

This report investigates the behavior of a family of finite element error
estimators based on projected stresses, i.e., continuous stresses that are a
least 'squared error fit to the conventional Gauss point stresses. An error
estimate based on element force equilibrium appears to be quite effective.
Examples of adaptive mesh refinement for a one-dimensional problem are
presented. Plans for two-dimensional adaptivity are discussed.
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. FINITE ELEMENT ERROR ESTIMATION AND
ADAPTIVITY BASED ON PROJECTED STRESSES

1. INTRODUCTION

In recent years, considerable effort has been devoted to finite element error
estimation and control [see A. Noor and I. Babuska (1987) for a summary]. 1If
a reliable error estimate can be obtained, it follows that the error estimate
could be used to adaptively change the mesh in order to reduce the error to an
acceptable level. Obtaining the error estimate, though, can be a formidable
task since, in general, the only information available to the analyst is the
approximate solution itself,

Among the most'popular approaches 1s that developed by Babuska, et al., which
attempts to estimate the error in the strain energy of the solutlon, the so-
called energy norm. Thls estimator has the form of

m 2 : ‘
- 1 2 4n + Py 3% a1
2 24K r 74K )1,

with I3 being ‘the element 1nterface r is the residual of the governing
differential equation, J 1s the inter-element traction jump, m is the number
of elements, K is the bulk modulus, and hj is the characteristic length of the
element. Such estimators require explicit determination of the inter-element
traction jumps and integration along the element interfaces. Furthermore,
most of the error for this estimator is in the traction term,

Zienkiewicz and Zhu (1987), proposed a new approach based on a projected
stress field (a continuous stress field that is a least squared error fit to
the conventional finite element stresses). The appeal of using a projected
stress field was obvious--there was now more information that could be used to
form an error estimate. If the projected stresses were taken to be
approximately equal to the exact solution, one could write

e =g -
~0 ~ex ~fe

= g - 0
~ ~fe
where
' %o are the exact stresses
Oeo are the finite element stresses
and

A

o are the projected stresses

We now have a very simple and easy to use error estimator. The method for
obtaining projected stresses will be discussed in this report.
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The work in this report explores some new approaches for using projected
stresses that are different from that presented by Zienkiewicz. In
particular, attention is paid to possible error measures based on the residual
at .the equilibrium equations or the force residuals of element equilibrium,.
Both of these error measures are applicable to nonlinear as well as linear
problems since they involve residuals of basic equations that are not
1nf1uenced by whether the problem is linear or not.

Although this report focuses primarily on error estimation, some thought is
given to adaptivity. There are a number of approaches to adaptivity, which
are commonly called r, h, and p methods. The r method involves moving the
node point locations to minimize the error with a given number of nodes. This
approach is almost never used since it leads to a very complex set of
. nonlinear equations. The h method involves element subdivision to control the
-solution error, and the p method refers to increasing the order of
approximation within the elements. The h and p methods have often been
combined to obtain optimum convergence rates,

Tn this report, we will use some simple h type refinements for one-dimensional
oroblems and will discuss plans for future two-dimensional work,

-10-



2. PROJECTED STRESS

2.1 FORMULATION

The error estimation techniques used in this report are baSed on projected
stress fields (continuous stress fields over the domain of the problem). This
stress field can be developed from a number of different approaches. We could
'start from a weighted residual statement (Zienkiewicz, et al., 1985), a least
squared error statement (Hinton and Campbell, 1974), or the concept of
conjugate approximations (Oden and Brauchli 1971). - All three approaches
produce equivalent results.

The simplest derivation is probably the weighted residual approach. '~ Let us

first begin by defining a continuous stress field, &, based on element‘shape
functions, N (usually the same shape functions as those used for the
dlsplacement interpolation), and nodal stress values, o, such that,

A A % ' . ! .
o=Nog (1)

'We can now write a weighted re51dua1 statement in which the residual is the
difference between the conventionally computed finite element stresses, 9fe

and the projected stresses, o,

fo (2] e

which uﬁon substitution of Equation (1) into (2) yields
T| "% |
IQ N [ 9fe " N ¢ ] dg = 0

* T :
Mo = JQ N'og, d1 ‘ v(3)

or

in which
T
M = Jn N° N da . (4)

The nodal stresses are obtained by solving this linear set of equations, which
is symbolically written as

% -1 T ‘
g =M In N g daa . | (5)
This operation is repeated for each component of stress.

The equivalent least squared error formulation is derived from the functional

EM = ; -0, |? an - N ;* -0 2 40
6 = Zfe y b Zfe
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‘Minimizing this functional yields

8EM T “% T :
;:‘;ﬂJ‘ONNdﬂg-JJO‘N(JedO-O (6)

which is. identical to Equation (3).

An interesting point is that the projected stresses can be interpreted as a
least squared error fit to the conventional finite element stresses, which are
themselves a least squared error fit to the exact solution (Herrmann, 1972).
Thus, one would intuitively expect that the projected stresses would provide a
fairly good continuous approximation to the exact solution with the least

. accurate approximations occurring on the boundaries of the body where the.
computed finite element stresses are the poorest. Furthermore, nodal points
on the boundery are not completely surrounded by elements so that the natural
weighting of stresses that occurs in the interior of the mesh is not as great.
on the boundary.

It is also interestlng to notice that the matrix, M, consists of the products
of shape functions integrated over the volume of each element, which closely
resembles a typical finite element "mass" matrix. As with mass matrices, a
"consistent" form is obtained if the integrations are performed with an
integration scheme that evaluates the integrals exactly, while a simple
diagonal "lumped" form is obtained if the integrals are evaluated only at the
nodes.‘ Zienkiewicz, et al. (1985) points out that the consistent form, in
general, gives better results. The lumped form, however, leads to a system of
equations that is extremely easy to solve. This lumped form yields a simple
volume weighted nodal average of stresses. ‘

2.2 ONE-DIMENSIONAL BEHAVIOR OF PROJECTED STRESSES

To examine how the projected stresses behave, let us examine a series of
simple one-dimensional elasticity problems. We will consider the problem
shown in Figure 1, and compare the projected stresses, finite element
stresses, and the exact stresses.

'2.2.1 One-Dimensional Model Problem

As the one-dimensional model problem, consider a circular bar of cross-
sectional area, A, fixed at one end, and loaded along its length by the
function f(x), Figure 1. Assuming linear elasticity, the governing
"differential equation is

d2u
EA — + f(x) =0
dx

with the boundary conditions
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ulx_o =0

- du

-&; 0.

x=L

Let us consider a particular form for f£(x), i.e., let

E(x) = o P [ 2 ]“ i n=0,1,2, .

where P is fhe’berimeter of the bar.

The solution to ‘this differential equation (for a given n) is
" . . ') '
. aoP e ‘x(n+~) |
EA(n+l) Ln(n+2)
The stress is given by
‘ du

o=E3x

o P (n+l)
SN T S
" A(ntl) [ ‘ o ]

2.2.2 One-Dimensional Projected Stresgkkesults

‘For the first example problem, we let a bar of unit length and unit area be
loaded by a uniform stress along its perimeter, (oo = 1.), 1l.e.,

f(x) =P (n =0)
The exact stresses, projected stresses, and finite element stresses for two,
three, four, and five elements are shown in Figures 2 through 5. In general,
we see that the stress results at the interior nodes are quite good and the
maximum errors occur at the boundaries where there is only limited finite
element stress information, ‘
In the second example problem, the forcing function was taken to be

f(x) = P(x/L) (n=1)

Convergence of the projected stresses toward the exact solution is observed as
the number of elements is increased, Figures 6 through 9.

These examples were performed using a uniform mesh refinement.

2.3 LOUBIGNAC ITERATIONS TO IMPROVE STRESSES
Loubignac, et al. (1977) and Cantin (1978) -...wed that it is possible to

further improve the projected stress solution with an iteration process. This
process consists of repetitively solving the incremental problem
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with :
Upal 7 Yp Ay
until the right-hand side residual or 4 Ay, is acceptably small. These

iterations are called Loubignac or Loubignac-Cantin iterations. Zienkiewicz,
et al. (1985) recognized that this process is equivalent to solving a mixed
formulation to the problem in which both stresses and displacements are
problem unknowns.

The effectiveness of this procedure is shown in Figures 10 and 11 in which the
stresses, after four Loubignac iterations, are plotted for the one-dimensional
model problem with n = 0 and 1, each using four element meshes. A marked
improvement in the projected stress solution is observed. Because the error
measures examined in this report are based on the projected stresses, it is
important to recognize that these stresses can be improved through an
iterative process. Moreover, for nonlinear problems it may be possible to
include these iterations in the iteration procedure for the overall nonlinear
response at little extra cost [Zienkiewicz, et al, (1985)].

Figure 1. One-Dimensional Model Problem
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3. POSSIBLE‘ERROR ESTIMATES BASED ON PROJECTED STRESSES

The current work focused on four possible error estimators based on the
projected stresses, The simplest error estimator is probably the difference
 between the projected stress and the finite element stress, see Figure 12, as
suggested by Zienkiewicz and Zhu (1987). 1In their work, the projected stress,
o, was taken to be equal to the exact solution and, thus, the stress error
can be written as

¢ -g-g S %

where af is the finite element stress.

Although elegantly simple, this definition of error may indicate an
appreciable error even though the projected stress field approxlmates the
exact solutlon well, Figure 12.

Zienkiewicz suggests that an integral form of the stress error estimator given
in Equation (7) can be obtained by forming the so-called Ly norm stress error

for each element, i.e.
IISallL = | g?Tgodﬂ‘l/z
- 2 Ja

and then a new norm can be written as

Il e (1
ro = | ———= | | (8)

This new norm defines the root mean square stress error in absolute terms.

However, this norm is not rotationally invariant, i.e., if we used the same
mesh, but in a rotated coordinate system, we would not, in general, calculate
the same value for the Ly norm in both systems. A rotationally invariant
version of ' tbe Lo norm of a second order tensor, A, would be

1/2

Al = a,, a,, da | o (9)
L2 Jﬂ ij 13 | :

Of course, this norm could also be written in a nonintegrated form as

1/2
| A IL2 = [ aij aij ] (10)

Equation (10) is useful when we seek a discrete measure of Equatlon (7). Ve
will use the norm
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| |, . ]2 |

| e’ ‘L = max | e, eij : (11)
2 xefl J

as the measure of discrete stress errors in each element

In all of the calvulatlons reported in this work, Equation (9) is used In
this spirit, the norm used in Equatlon (8) is

\ S o a“ 172 : : -
"ea"Lz-[Jﬂeij eijdﬂ] | ‘ (12)

A third possible error measure could be based on evaluating the residual of
the governing equilibrium equations. This can be accomplished by taking the
appropriate derivatives of the projected stress fields and substituting these
- quantities into the equlllbrlum equations, e.g., in two dimensions,

- 8o
ar
% Tay " O
(13)
P do ‘
._I.+__Z=o

In general, the equilibrium equations will not be satisfied and hence, there
will be residuals that can be interpreted as an error measure. In terms of
the element shape functions and nodal stress values, the equations for the
residual would be (again in two dimensions)

T AN, sy T AN ey
o, + s 7, = R
_ ax X, dy i X
i=1 i=1
(14)
n n
Y‘“— 6N1 A 6N1 A* R
2_1 sx Ti Y/ _dy %y Ty
i= i=1

The residuals are a direct result of having continuous stress fields and are
intuitively appealing because in a standard displacement based finite element
formulation, the equilibrium equations are only satisfied in the limit as the
number of elements becomes very large.

A fourth error measure could be obtained by integrating the residuals in
Equatlon (14) over the volume of the element to obtain element force
residuals, i.e.,

JQ Ry @ = Fy
(15) .

R di = F

JO y y
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Alternatively, the divergence theorem could be applied to obtain a surface
integral, if desired. These force residuals may be easier to work with than
the residuals of Equation (14) because Equation (15) can be normalized by some
characteristic force quantity in the problem while it may be difficult to find
a characteristic stress derivative with which to normalize Equation (14).

An appropriate‘norm for Equation (15) is

‘ 2 2 )1/2 \
Il F || [ FX +‘Fy ] . (16)
- For "adaptive .purposes, it is most useful to pefform the indicated integrations
over each element in order to obtain local error quantities, If a global
estimate is desired, it is possible to sum these quantities as indicated in
Zienkiewicz and Zhu (1987).

/ projected stress

‘exact stress

/ fin‘i‘te element stress

STRESS

Figure 12. Plot of Various Stress Quantities
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4, NUMERICAL RESULTS

In this section, we will examine the behavior of the proposed error estimators
when applied to one-dimensional and two-dimensional elasticity problems., It
is informative to see how these error estimators behave in the simpler one-
dimensional setting before examining the two-dimensional problems,

4,1 ONE-DIMENSIONAL

" In one dimension, we will again use the model problem presented‘in Section .

2.2.1, Figure 1. The results for n = 0 and 1 (i.e., a uniform and linearly
varying load distribution) with the mesh uniformly refined from 2 to 5
elements are presented Figures 13 through 20.

‘Fifst, let us consider the case of n = 0, Figure 13 to 16. TFigure 13 shOWS

the element force residuals, Equation (15), normalized by the total reaction
force. The curves show a fajrly uniform decrease in the element force
residuals as the number of elements is increased. The highest residuals exist
at the ends of the rod. The results show that the force residuals in a given
region may actually increase as the mesh is refined if the starting mesh is
very coarse, |

Figure 14 shows the equilibrium residuals, Equation (14), evaluated at the
center of each element. Essentially the same trends as the force residuals
are obtained. ‘

The element stress errors, Equation (11), are shown in Figure 15. Although a
fairly uniform decrease in the element stress errors is noted as the number of
elements is increased, there is a notable boundary insensitivity. The lowest
errors are predicted to be at the boundaries, when in fact, the highest true
errors occur there (see Figures 2 through 5),

The Ac norm, Equation (8), normalized by the maximum stress in the body is
shown in Figure 16. This error estimate exhibits trends that are similar to
the stress error norm.

Turning now to the problem with a linearly varying load (n = 1), Figures 17 to
20 show very similar convergence characteristics to those of n = 0 for all
four error estimators. All of the error estimators detect that the finite
element solution at the fixed boundary is relatively good; but again, the
element stress error and Ac norms are insensitive to the error at the free end
of the bar. The element force residuals and equilibrium residuals are:
sensitive to the free end error, however,
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4,2 1TWO-DIMENSIONAL

A number of two-dimensional plane stress elasticity calculations were
performed to examine the pre¢posed error estimators. These problems consisted
of a plate with a hole, a simply supported beam, and a short cantilever beam,
As with the one-dimensional problems, a series of meshes for each problem was
used to study behavior of the error estimators. The performance of only three
of the four originally proposed error estimators will be presented. These
included the stress error norm, the element force residual, and the Ao norm,
The residual of the equilibrium equations yield such poor results for all

- cases that it was not included.

4.2.1 A Plate with a Hole

The problem of a uniformly loaded plate with a hole was analyzed using four
different meshes having 90, 238, 478, and 798 degrees of freedom, Figures 21
through 24. The L9 norm of the true errors in the projected stresses (based
on the solution of a hole in an infinite plate) are shown in Figures 25
through 28. This error norm shows that the location of highest error varies
with the mesh, but converges to a point on the hole boundary at about a 45
degree angle, There is a monotonic decrease of the maximum error in that norm
as the mesh is refined. The true A¢ error ls shown in Figures 29 through 32,
The location of the maximum error also moves as the mesh is refined, but
settles down at approximately the same location as the Ly norm of the stress

errors., A monotonic decrease in the maximum yalue of this norm 1s also
observed, ‘

The reason the location of maximum error, as measured by these norms, is at
the particular location indicated is because the shear stress error dominates
the total error at approximately 45 degrees up the hole boundary. Figure 33
shows the individual stress error components around the hole boundary for

Mesh 4. Figure 34 shows the associated Lo norm of the stress error on the
hole boundary. '
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Figure 22, Mesh 2 for the Hole Problem
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Now that we have considered the true errors, let us turn our attention to the
element force equilibrium residual (normalized to the net reaction forces),
Figures 35 through 38. This error measure behaves similarly to the Ly norm of
the exact stress errors and the exact Ac norms, Figures 25 to 31, The
location of the maximum error is approximately the same as that for the exact
error norms, and a mono;oniu decrease in the maximum values is observed.

The discrete version of the stress error norm, i.e., nonintegrated form of the
L2 norm of the maximum stress errors evaluated at the element nodes, is shown
in Figures 39 through 42. The maximum error locations are not consistent with
the exact error, Figures 25 to 28.

The Ao morm, Figures a3 to 46, also predicts maximum error locations that are
inconsistent with the exact €rror norms. V

Both the L2 norm of the maximum stress errors and the Ac norm do not decrease
monotonically as the mesh 1s refined. This is most likely due to the fact
that these norms substitute the projected stresses for the exact stresses when
calculating the error. The quality of the projected stresses is mesh
dependent so the mesh must be "reasonably" fine for consistent estimates of
the exact stresses to be obtained. Thus, these two norms would not be

expecgted to decrease monotonically until the mesh has reached a certain degree
of fineness.
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4.2.2 Uniforml caded § 1 ort ea

As a second example problem, consider the case of a uniformly loaded simply
supported beam, Figure 47, One-half of the beam was modeled in three finite
element analyses using 18, 210, and 854 degrees of freedom, see Figures 48
through 50, | ‘

The projected stress for each mesh at the beam midspan is compared to
elementary beam theory in Figure 51. Convergence to the beam theory solution
is clearly shown. Also, the maximum error occurs on the boundaries as noted
previously for the one-dimensional problem,

Contour plots of the element force residuals (again normalized by the net
reaction forces) are shown in Figures 52 through 54, It is quite clear that
the area around. the support point is the location of maximum error. This is
understandable since the point rupport (load) is a singular point. The error
at the support point dominates the error in the problem. The mesh 3 contours
at the center of the beam, where the highest bending stresses occur, are shown
in Figure 55. If we ignore the error at the support point, the errors at the
beam center are certainly sufficient to drive an adaptive scheme.

The stress error and Ac norms,‘Fngre 56 through 61, do not appear to be
particularly sensitive to the singular points, although they would be useful
for the remainder of the beam.

w=1 Ib./ in.

T T T R

1'0'1 G=1.15 e7 psi

Figure 47. A Simply Supported Uniformly Loaded Beam
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Figure 48. Mesh 1 of the Beam
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4,2.3 A Short Cantilever Beam

The third problem is that of a short cantilever beam, Figure 62. The threc
meshes used to analyze this problem are shown in Figures 63 through 65 and
have 18, 50, and 162 degrees of freedom, respectively. The element force
equilibrium residuals (normalized to the net reaction force), Figures 66
through 68, clearly pick out the two corner singularities on the support edge.
The stress error and Ac norms also detect the singularities, Figures 69
through 74, but do not appear to be as sensitive as the element force
equilibrium residual error measure.
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Figure 62. A Short Cantilever Beam Problem
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5. DISCUSSION OF ERROR RESULTS

The problems considered in this report appear to indicaie that the element

force équilibrium residual is the most sensitive of the error measures
investigated. Not only is this error measure more sensitive at singularities,
but it also exhibits a boundary sensitivity that the other measures do not.
This sensitivity is due to the fact that the error estimate is a measure of
the departure from fundamental equations, i.e., force equilibrium, while the

Zienkiewicz-Zhu family of error estimators are based on a departure from the

projected stresses, which are only approximations to the true stresses. As
will be demonstrated in the next section, which investigates some simple one-
dimensional adaptive schemes, it could be argued that the element force
equilibrium residual makes better use of the projected stresses than the
Zienkiewicz-Zhu measures. As mentioned in Section 3, the Zienkiewicz-Zhu
measures may indicate appreciable error even though the projected stress field
approximates the exact solution well (see Figure 12).

Ainsworth, et al. (1989), performed an analysis of the Zienkiewicz-Zhu error
estimator. . They showed that an element force equilibrium error measure is
closely enough related to the Zienkiewicz-Zhu estimator. Therefore, it may be
possible to follow Ainsworth, et al.’s, work to show that an element force
equilibrium error measure is also "asymptotically exact", i.e., the predicted
error goes to zero when the true error goes to zero, This analysis remains to
be performed, although, one could argue that as the finite element stresses
converge, so do the projected stresses and element equilibrium.

In this work, element moment equilibrium was not considered. From the onset,
it was intuitively believed that moment equilibrium would be a second order
effect when compared to element force equilibrium. Preliminary numerical
results showed this to be true. In fact, the moment residuallhad almost no
correlation to the true error. ‘

Although the application of any of these error measures to nonlinear problems:
has not been demonstrated, there is no fundamental reason why, say, the
element force equilibrium error measure could not be used.
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6. ADAPTIVITY

6.1 SIMPLE ONE-DIMENSIONAL H-TYPE ADAPTIVITY

The one-dimensional model problem (with n = 0 and 1) was’ used to explore how a
simple h-type mesh refinement strategy could be used in conjunction with an
element force error and Ac error measures. The refinement strategy was to
simply divide an element in half if its error is above a prescribed level.

. Figures 75 a-c show the computed results and mesh refinements required for the
‘case of n = 0 to obtain an element force error of no more than 5% of the

reaction force. Figure 76 shows the element force errors as the mesh is

refined. Figures 77 a-c and 78 glve the corresponding plots using the Ac norm |

with an error tolerance of 5%. A slightly more efficient solution (in terms
of the number of elements used) is obtained using the element force error
measure. This is due to the fact that the element force error measure makes
better use of the projected stress solution than the Ao error measure.
Similar statements can be made with n = 1, Figures 79 to 82.

6.2 PLANS FOR TWO-DIMENSIONAL ADAPTIVITY

Although most error measures are equally valid in one, two, or three
dimensions, adaptively generating new meshes in two and three dimensions is a
formidable problem. For this and other reasons, many researchers have
combined h and p type adaptivity. Zienkiewicz and his co-workers have used
triangular elements of linear and higher order to their advantage since it is
much easier to mesh an arbitrary body with triangles than with quadrilaterals.
Future efforts for this present work will focus on using Paving, a new
automatic quadrilateral meshing technique (Blacker and Stephenson, 1990).

This technique will allow for arbitrary selective refinements of the mesh,
i.e., we will not be restricted to simple element subdivision.

6.3 CLOSURE

This report presents an investigation into the behavior of a family of finite
element estimators based on projected stresses. Of those investigated, an
error estimator based on the force equilibrium of an element appears to be
very effective over a range of problems. This conclusion is based purely on
numerical results. A mathematical analysis of this estimator is necessary to
demonstrate that it is asymptotically exact. This estimator, though, is
applicable to nonlinear as well as linear problems. :
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