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ABSTRACT

The fluid equations are applied to cylindrical
pinches, and the role of resistivity, heat
conductivity, and viscosity is examined.
Analytical solutions for special cases are
reviewed. One-dimensional partial differential
equations suitable for numerical solution are
derived that describe: 1) the radial evolution of a
pinch and 2) theta-pinch end loss (for r*0).

I. INTRODUCTION

The fluid model offers the simplest means for a quantitative description

of plasma behavior. In this report the fluid model is applied to cylindrical

pinches (mostly to the theta pinch). The complete set of equations is too

complicated for a general analytical solution, but in a few special cases this

is possible, and the analytical solutions known to the author are collected

here. Analytical solutions are heuristically useful and are also useful as

check cases for numerical solutions.

The main object in this report has been to derive tractable

one-dimensional partial differential equations. Nowadays, with the use of

computers, If a problem can be so formulated, it can be regarded as solved.

The other object was to review the implications of the fluid picture, including

the role of transport coefficients. Viscosity, in particular, is rather
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complicated and this has led to a tendency to ignore It. In this report two

cases where classical viscosity is of importance but that do not seem widely

known are pointed out. These are: 1) for flow in the z direction with long

mean free path (end loss or m-0 oscillations) and 2) for long wavelength m > 2

flow. For the second case it is shown that classical viscosity gives

"finite-Larmor-radius" stabilization identical to that obtained from

Vlasov-fluid theory.

II. FLUID MODEL

Starting with the fluid equations for a simple Z «= 1 plasma as given, for

example, by Braglnskii, the quasi-neutral approximation n = nj » n is used,

and the electron inertia and viscosity terms are neglected. Because v -

v.-j/(en), where j •» V x B, there are then nine variables: n, v - v., s e, s.

(entropies per particle for electrons and ions), and B (magnetic field)• These

are governed by the following nine equations*

- - nV-v , (1)
o

Mn 1^1 - - Vp - div H + j x B , (2-4)
3t 'ro

JL m •* m J ^y H v | *•/ *£• •*-

d i v ( < i 7 T l ) + 2 n2
 n

eq

3sel 3 T i " T

-j'Vfl. + J'O-'j , (6)



a R JXB-Vp
n ~ (-) - B • Vv - Vx {a"1 j + -} . (7-9)

3t n ro

Equations (7-9) are obtained from the equation of motion of the electron

fluid by solving for the electric field E, taking the curl, and using

VxE«=-3B/3t.

The time derivatives are taken with the variable rQ fixed, where rQ is the

initial coordinate of a fluid element. The relation between rQ and r is as

follows:

r = rQ + /vdt,

JL\ = JLj + v • V . (10)
ro r

The reason for using r as a variable is that Eq. (1) is automatically

satisfied for n = no(dVQ/dV), where nn is the initial density and (dVn/dV) the

Jacobian of the trans;

mathematically as follows:

Jacobian of the transformation between rQ and r. This can be seen

= _dV_ E a(x,y,z)

" d Vo ~ ^ xo-yo' zo

3J| 3(vx,y,z) 3(x,vy,z) 3(x,y,vz)

3(x0,y0,z0) 3(xo,yo,zo)

3v 3v
)

3z J 3(xo,yo,zo)

Therefore,

i- & - - f° HI - - nV-v
3 l J 2 a l



The electron and ion pressure and temperature are obtained from the

entropy per particle using the perfect gas relation T - [n exp(s)] ' .

Bragin8kii's notation for the various transport coefficients is followed with

the exception that Teq=MTe/(2m). Also note that <^, <e, n, and o are tensor

quantities depending on the magnetic field direction. For simplicity, the

thermal force and additional terms in the electron and ion heat fluxes are

ignored.

The strict conditions for validity of these equations are t>Te'Tl' w n e r e '

is a characteristic time, and L>X ,X., where L is a characteristic length.

However, the fluid equations are used in practice (perhaps for good reason)

when these conditions are violated.

III. RADIAL EVOLUTION OF A PINCH

In this section configurations having a dependence only on r and t are

considered. These configurations are described by n(r), v (r), s.(r), s (r),

Bz(r), and Bg(r). The case with ve(r)*0 is taken up briefly at the end of this

section. The configuration is assumed basically to be in equilibrium (except

for slow changes of the applied fields and transport processes) and therefore

the acceleration terms in Eqs. (2-4) are dropped. The equations giving the

time evolution of the system are as follows."

3s< , l 3 c 3 Ti 1 , 3
 Te"Ti

1 3 r ^ W 3

2 B 2B z 2 B
e



2 3 f
 8Bz B6B2

r 3r e 9r B2

3t n r0 nr 3r 3r

3r B2

The equilibrium relation from Eqs. (2-4) is

ry ry

At any instant of time this equation and the continuity relation, 3r /9ro

nQ/n, are two equations that allow r(rQ)

known values of s^, s , Bz/n, and Bg/(nr)

For the low-pressure case, p <<

interesting analytic solution of Eqs. (13) and (14) given by

nQ/n, are two equations that allow r(rQ) and n(r) to be determined from the

wn values of s^, s , Bz/n, and Bg/(nr).
2

For the low-pressure case, p << B , with a^ « O| - const, there is an
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Bz - B o Jo(kr) exp (-k
2t/o)

B e - B Q JjCkr) exp (-k
2t/o) , (15)

with n(r) constant in time.

Only the case Bg « 0 (theta pinch) will be considered further. In this

case the equilibrium relation is

p 2

where B is the external magnetic field far from the plasma. Equation (16) by
2 2

itself determines n(r o), with r(rQ) then obtained using 3r /3rQ - n /n.

The simplest special care of Eqs.(11-14) is when all terms on the

right-hand sides are small (e.g., for high temperatures). In this case s., s ,

and Bz/n are constants on-axis, since vr=0 for r = 0. The conditions on-axis

during adiabatic compression or expansion are determined from Eq. (16),

C, a.) (

where 3 Q is the initial beta on-axis, n Q the initial density on-axis, and B Q

the initial applied magnetic field.

It is useful to make order-of-magnitude estimates for the various

transport processess described on the right-hand sides of Eqs.(11-14). The

electrons and ions cool by radial heat conduction in times t

= na2/* ~ B ^ a ^ ^ / C n m 1 ' 2 ) . * These times become infinite if the plasma is

surrounded by a vacuum region (n * 0 ) . Also, ion heat conduction is a factor

(M/m) ' more important then electron heat conduction. The electron and ion

temperatures approach a common value in a time t - T ~ T£ ' . Finite

*o)T » 1 is assumed throughout this report.



conductivity apparently causes field diffusion with a characteristic time t

To more carefully examine diffusion, a useful first approximation is to

assume that the conductivity is constant- This corresponds to a flat initial

T profile and short times so that resistive heating is small. The latter

requirement is not restrictive since the time for resistive heating is the same

as the time for the plasma to diffuse away. The time t for appreciable heating

is determined by j t/a=p, where jB=p/a so that t=aa B2/p, which is the

diffusion time (B is the external field), as will be seen later.

For constant temperature the diffusion process is described by the simple

equation,

3 Bf_E) fr
3t n r anr 3r 3r

o

L_ JL f
nr 3r

A further fairly good approximation, due to the fact that v = 0 at r = 0, is

to take 3/3t|rQ = 3/3t|r. There are two simple limiting cases: 1) high 6,

where n - const, which gives

3B , a 3B

3t or 3r 3r

2
and a characterist ic diffusion time era , where a is the plasma characterist ic

radius, and 2) low B, where B = const, which gives (using 3B/3r = - l/B3p/3r)

3n p 3 r 3n-|

9T = V 1 7 ^

and a characteristic diffusion time aaT5 /p. This time with B the external

field applies for both high and low beta since in the high-beta case B /p = 1.

Order-of-magnitude estimates can be given for the importance on the

diffusion time scale of the terms neglected in Eqs. (7-9). These terms are 1)

electron inertia =(m/e2n)/a2 (p/B2), 2) electron viscosity =(m/e2n)/a2(nT / B 2 ) ,



and 3) thermal force ~nTe/p. Although not clear from this rough estimate, the

thermal force is not of importance in theta pinches with Tg < T^ and moderate

temperature gradients.

Finally, if VQ*0 the r component of Eqs.(2-4) becomes

The centrifugal force term is only significant if Mhvg =p or Vg= thermal speed,

which means that the ion Larmor orbits are significantly displaced during one

period. Rotation-driven instabilities become important for smaller rotation
2

speeds so this term is usually dropped.

The 6-component of Eqs. (2-4), which describes the viscous damping of the

ion rotation, is

From Braginskii, the r,6 component of the viscous stress tensor is given by

3ve

The effect of the n^ viscosity component (gyro-viscosity) will be discussed

later on, and if this term is simply ignored there results an equation for Vg,

Mn T — — - — T-LnirJ —I—J

An order-of-magnitude estimate for the time for the ion velocity distribution

to decay to a rigid rotation is
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M B2 a2 rl/2 / ( n Ml/2 )

IV. LONGITUDINAL FLOW AND TRANSPORT

The main confinement limitation for the 9 pinch is flow out the ends due

to lack of equilbrium. Longitudinal heat conduction may also be of importance

(e.g., with end plugs). The situation is actually two-dimensional (z and r)

but useful one-dimensional equations can be obtained by neglecting radial

transport and considering only the axis of the system (r = 0 ) . These equations

are as follows:

(17)

(18)

9s . a 3T , T.-T

From the continuity equation

(20)



with

f 3 z )(• 8 l" 2

r 2 )o ̂

2 o
for r-0- The radial, equilibrium relation is needed to determine 3r /3r and
close the system,

no
5/3[exp(|B,

r 3z ̂ / 3

J + exp(

( ^ r 1
2

o

2r
'3

!1 )]
+

B o 2

? f
(

3r2 ,

,)

2

B e
2

2
(21)

where BQ is the initial value of the external field B e, and 3Q the initial beta

value on-axis.

Neglecting heat conduction, equilibration of electrons and ions, and ion

viscosity, and assuming small amptitude disturbances i.e., 3z/3zo=l+£, and

constant external field, Eq. (17) becomes

-2-A2 a2e
A 3 • (22)

3t2 ^ o 3z2 C 2 + U A 2 3 z 2

2 2 2 2 2
The small signal propogation velocity on-axis is thus v =c uA /(c +uA ), where

c >=5p /(3MnQ) and u^
 =(1~PO)BO /(Mno)• Another analytic result can be obtained

for a simple isentropic rarefaction in the low-3 limit. In this case

3r2/3rQ
2-l and n»no3zo/3z. The equation of motion, Eq. (17), is then

3t2'z
o
 tot° 3 Z°
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Taking derivatives with respect to z , this becomes

hr)

The solution* of this equation for plt-o-F(z)

P - F(zn ± c nW*
/ 5t) .

where c 2"5p /(3Mn ). For a situation with the pressure initially constant

from z-0 to z=L the pressure takes the value p at point zQ given by

therefore,

The complete solution is obtained using

• -i - •=•'+C..S'"° • z i + C

*A solution of the equation 32f/3x2 - aS2£X/dy2 is f - F C y t t o X ) 1 ^ ( X ~ 1 ) / 2 x ) ,

where F is an arbitrary function. As can be seen F(y) gives the value of

f(x,y) for x - 0.
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where = L - c t, which glveB

and thus

*c of

Po » 0 < z < zj

(23)

, z > z,

The propagation velocity of the rarefaction (cQ) agrees with the small signal

velocity (v»c for û -*-°°).

It is important to note that a quantitative treatment of the flow requires

a two-dimensional treatment. Figure 1 gives the radially integrated plasma

density histories at various points in a theta pinch of half-length L as

calculated by Brackbill for ideal two-dimensional flow. The rarefaction

propagation velocity is v=1.7 Vj^ from Fig. 1 (Te"
Ti» 6-0.7, v±=(ZT±/K)

1^2)

which is quite different from that given by Eq.(22), v=0.75 v±.

Order-of-magnitude estimates of the transport terms in Eqs. (17-19) can

be made in a straightforward way. One observation is that the times associated

with viscous damping and with ion heat conduction are of the same order and are

given by t = L /(v iA i), where X^ is the ion mean free path and v i the ion

thermal velocity. Thus these processes are of dominating importance in simple

end loss(t<L/vj) only for X^L, which violates the original assumption on which

the fluid description is based. Also, with X.>L, the heat and momentum fluxes

exceed their kinetic limits nTv^ and nMvj^ • The fluid equations are commonly

used to describe situations with long mean free path, and in these cases the

ion heat flux and momentum flux (perhaps with flux limits applied) are of

importance.
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There are several analytical solutions for longitudinal heat conduction.

The first (DeSilva, Chu, and Johnson) covers the interesting situation 3p/3z«O

and Tg-Tj. Neglecting ion heat conductivity, Eqs.(18) and (19) become in the

case

2nT |£ - f (<e |I) , (24)
dt dz e dz

where s « log(T ' /n), and K » aT ' with a - const. A solution Is

T - T0[l-(z/L)
2]2/7f(t) (25)

with

10 a T J /* ,-2/5*
f(t) - [l + 1.24 =-— t]

21 no L
2

The density profile Is constant in time,

^ [l-(z/L)2]"2/7

and satisfies

n d z = n o L

*If the electron-ion equilibration time is long, these formulas with t+2t
describe the decay of the electron temperature.
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Another solution (Dreicer, Chu, and Johnson) covers the care n « const and

is interesting as an illustration of the small effect of the density profile.

For this case Eq.(24) becomes

3» % - -h (TV2 £) •

which is satisfied by

5 aT 5 / 2
5 aT

T - T f(2)2/7 (1 + 2.13 ° t ) ~ 2 / 5

21 nL2

where

d2f _ 2.13 f2/7

dz2 L 2

and f(O)=l, f(L)-O. Since f2/7=l, f=l-(z/L)2.

There is a non-separable solution of the electron heat conduction problem

which describes the establishment of a temperature profile when a column with

initial temperature T Q is connected to a cold heat sink at one end. This is

given by

where f(x) is determined from the equation
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V^+3xdf
d x2 4 dx

with the boundary conditions f(0) - 0, f(°°) = 1. The function f is plotted in

Fig. 2. The temperature profile for x in the range 0 to 2 closely matches the

shape [l-(L-z)2/L2]2'7 for z =xL/2; therefore,the time to set up a steady
2 5 /2

profile in a column of half-length L is approximately t«L n/(4aTo ' ). Chu and

Johnson obtain a similar estimate with the 4 in the denominator replaced by

3.7. When thermal losses are important (e.g., T large) this time tends to be

shorter than the time for mechanical motion or electron-ion equilibration to

take place, thus the assumptions of constant density and no equilibration are

valid.

It is possible to reduce Eqs.(18-19) to zero dimensions by assuming the

temperature profiles are given by Eq. (25). By symmetry, vz=0 at z=0,

3/3t|zQ=3/9t|z and therefore,Eqs.(18-19) become ordinary differential equations

describing the point r = 0, z - 0.

V. GYRO-VISCOSITY

In this section the effect of gyro-viscosity (13*0) on long wavelength

small oscillations of a theta pinch is examined. This type of viscosity does

not dissipate energy, yet it results in "finite-Larmor-radius" stabilization of

m>2 modes in a theta pinch as will be seen. Since the energy of motion does

not die away with this type of viscosity, the stabilized modes must be purely

oscillatory.

First, it will be shown that gyro-viscosity drops out of the equation of

motion for small oscillations of a constant-pressure plasma (sharp-boundary

model). Therefore, the viscosity enters in only through the boundary

conditions at the plasma surface. For long wavelength motion the z-dependence

is small and the x and y components of the equations of motion, Eqs. (2-4),

contain additional terms owing to viscosity, e.g.,

(div II)
, 3IIxy

3x 3y

*The electron-ion equilibration time is here assumed to be long. If it is
short, f(x)->-f(21/2x). 15



Z 0.6 -

t

Fig. 1.
Line density histories at various points in a theta
pinch of half-length L, from a two-dimensional
computation by Brackbill assuming adiabatic flow.

0.5

F i g * 2 < •>

A plot of the function f (x), where x«(zV(Dt)
with D the thermal diffusion coefficient, which
describes the propagation of a "cooling wave".
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Because long wavelength motion is approximately divergenceless potential flow

in the sharp-boundary model, i.e., v*=Vi}>, V^-O, the additional viscosity terms

are zero,

92vy 92v
(div II)x = n3( + ij = 0

3x 3y

The boundary condition with viscosity is

2 r r in 2 out

where

"rr - - - 3 ( ^ - T + 1T> • <28)

To apply the boundary condition it is convenient to use a complex formalism,

where

(-) m Co exP[-i(m6+<ot)]}

-i(-) m" Co exP[-i(m6+wt)]} , (29)
3

with £ a complex number. This can be seen to represent divergenceless

potential flow. The components of the boundary condition, Eq. (27), are as

follows. ( Re{£oexp[-i(m6+u>t) ]} is factored out in each case):
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)
In

) " 0 , (30)
out

while using Eqs.(28) and (29) and ri3 - nT1/(2u)1),

(m-l)nT,
nrr - ,., „ " ' <31>

where w± = eBo(l-0)
1/2/M.

The boundary condition, Eq.(2 7), leads to the dispersion relation

9 m(m-l)T,
<oz + — — to - 0 , (32)

which is identical to that obtained by Turner . The viscosity term is roughly

equal to wft*, where ft* is the diamagnetic rotation frequency.

To appreciate the importance of viscosity one must imagine a situation

that is otherwise unstable (because of additional magnetic fields or rotation).

The dispersion relation is then of the form

(i) + nto + Y *= 0

which has stable (purely oscillatory) roots for ti>2y«
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