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ABSTRACT
We construct and solve a local field theory which describes in terms of dual
variables a system having an A, propagalor behaving like %’; in the infrared and
discuss how this theory can be used as a starting point for describing long-distance

QUD.
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I. Motivation for Dual QCD

Dual QCD is QCD expressed in terms of dual potentials ¢, . In the first
part of this talk 1 will present the motivation lor dual QCD. In the sccond part, |
will construct £, the quadratic part of the dual QCD Lagrangian, and solve the
rcbult,ing Abelian gauge theory to obtain the particle .ﬁ.]nf.(,/xum. This Lagrangian
L£©) is the starting point for dual QCD. :

The goal of dual QCD is to study long-distance Yang- Mx] theory. In this
talk 1 will not discuss the inclusion of quarks. The Yang-Mills Lagrangian is

. L ‘ , o
L=~Emﬁmmmﬂz+qmﬁpmy. (1
We have denoted the Yang-Mills (‘oupling3 constant by e;ie., a, = "—2—
- am

Long-distance Yang-Mills theory is a strongly coupled gauge theory. 'The
coupling constant increases and the matrix elements of A% (@) become large at long
range. At the same time, in a theory with conflinement, physical quantitics exhibit
a smooth and non singular long-distance hehavior. There is, however, the alternate
possibility of using dual potentials ¢4, to describe gauge theories[1]. The coupling
constatit. ¢ f01 the dual potential is the inverse of the Yang-Mills coupling constant
¢, ie. g = ==, The dual potentials are weakly coupled at long range and hence
should be llu' appropriate variables for deseribing long-distance physices.

Let us first recall how dual variables are used to desceribe the electrodynamics
ol arelativistic dielectric medium characterized by a momentum dependent diclectric
constant. ¢(¢) and magnetic permeability p(q), where :

(q)plg) = 1. : (2

The equations of motion are the source free Maxwell’s equations:

t

2 = OD

V-D=0 , VxH="", (3)
N
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and the constitutive cquations arce
D=l . 3= uH, (5)

which refate the electric displacement veetor D and the magnetic H veetor to 15 and
13 We introduce dual potentials ¢!, to solve 1. (3) by writing
— - — . ()(‘

= -Vt He s ~ V. (6)

s, (2), (5) and (6) yield

T . .
N O ] (
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Inserting Eiq. (7) into Eq. (4) then gives the equations of motion for ¢, , T'hese
are generated by the Lagrangian,

1 L 1 ' 2
L= ~XG‘ "u(g)G o, | (8)
where |
Gl = 0,0, = 0,0, (9)
In the Landau gauge the C), propagator A¢,, =< €., > generated from L is
1 Quq |
Ao = = w 2 10
(g \MM (o)

The propagator A¢, Eq. (10), describes exactly the same physics ((Eqgs. (3), (1) and
(5)) as the ordinary A, propagator Ay, where :
! qudv

A w = T w T . 11
S () T T U

In Yang-Mills theory Mandelstam [1] showed how to define dual polentials
C'% . However, the transformation A} — C'% is not explicitly known. Consequently,
in contrast with electrodynamics, the Yang-Mills Lagrangian as a function of the
dual potentials C, cannot be explicitly written down. We only know [1] that it is
invariant under a non Abelian gauge transformation of the potentials ', which in’
matrix notation is given by

(o= Q70+ S0719,0, (12)
4

where  is a SU(3) matrix.

We are interested, however, in solving Yang-Mills theory only at long distances.
Ior this purpose we must find only the Lagrangian £(C') describing the long-distance
regime of Yang-Mills theory. Since we expect that the €', fields interact weakly at
long distances, £(C') should be a minimal gauge invariant extension of a quadratic
Lagrangian £©(C); non minimal additions to £(C') should uot be relevant at long
distances. Thus although the full dual QCD Lagrangian is not explicitly known, its
long-distance part £(C') necessary to describe long-distance QCD can be determined.

The first step is' to construct the quadratic Lagrangian LOC) T deseribes
an Abelian gauge theory and hence must be of the form of 1. (8). Inorder to spec-
ify p(q) we must have some information about long-distance Yang- Mills dynamics.
During the past 10 years a number of authors [2] have calculated the glion propaga-
tor Ay in the simplest self-consistent truncation of the Schwinger Dyson equations
of Yang-Mills theory compatible with the requirements of gauge invariance. These
calculations have been carried out in different gauges and differ in technical details;
nevertheless they all yield a solution for A4(¢) which has the behavior

M*

Aalq) ~ R

¢t — 0, (13)
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where M? is an undetermined parameter. [rom liq. (11) we see that the solution
(13), describes a dielectric medium for which ¢(¢) — —¢*/M?, as ¢* — 0. The

corresponding magnetic permeability p(q) is then given by

M?
((q) = —— + | (1)

G

at small ¢*. The choice of the constant 1 for the non-leading low momentum contri-
bution to u(q) in Eq. (14) represents a choice of normalization of the fields. Inserting
Eq. (14) for u(q) into Bq. (8) then gives LO(C).

Using Ligs. (10) and (14) we see that the ¢, propagator A¢ corvesponding to
the A, propagator (Iiq. (13)) is ‘ :

' ! o ;
Acyulq) = (;T:—/\F (.(];u/ - 'i“l;L) - (15)

(Eq. (15)) indicates that £((") contains a massive vector meson.  Calculation
of the long-distance corrections to the singular A, propagator (Iiq. (13)) via the
Schwinger Dyson equations is essentially impossible. On the other hand, the long-
distance corrections to the physically equivalent A (Fq. (15)) shonld be caleulable,
This is the goal of dual QCD.

In the coordinate representation s, (8) and (14) give

I M? | ,
L(U)((..’) = == | e | G- =GN (16)
1 ()? q
We now introduce an auxiliary antisymmetric tensor 7, = —/14,, in order Lo write

LOC) in local Torm. (We omit color indices since £ s just a sum ol terms
corresponding to cach of the colors). We integrate the identity

( g 1 1 A/IZ Sy [ R o1 M a2 o M i
exp {z [";1“(.7”1/"55"(1} }}oxp{z [—1 (I‘,,,, + t,,,,,,,,?)-;é-) J <l" + ?)7(" )H =

V- [
CXP {l [*/7)— ["“,, M - 1“ /",,,,f)z l““l,]} (IT)

over I, and evaluate the integral over the left-hand side of 15q. (17) by translating
variables -

. - M. o
l"/“; —F l"“,/ ‘+‘ ”T)",T(_I'l“, . (]b)
( &

However, since (7, satisfics the kinematic identity

. Sik)

D" g (1 = 0, (19)
we need only integrate over ficlds [, satislying the same identity:

"oy 17 =00 (20)



Using Eqs. (16), (17) and (20), we can then replace £ by the local Lagrangian

R M - l - - 1 . 1. .
C(O)(L', F, ]{) = —E—ﬁuuG‘w + Z.F;wa2F“u — ZG/“‘C'WU — ‘2‘[1“()11(7;1,uaﬁ ["”ﬂ ) (21)
where H* is a Lagrange multiplier field. The last term in Eq. (21) accounts for the
constraint, Eq. (20).

II. Solution of Zero Order Dual QCD

Varying H* in the Lagrangian (Iiq. (21)) then gives Iiq. (20). Varying o
gives

MG = =0 — €000 H | (22)

while varying C' gives . |
OGP = MO I (23)

Irom Eq. (23) we see that MO, '™ has the interpretation of a monopole current and
hence the auxiliary fields —M [ are the components of the magnetization tensor,
These appear as fundamental dynamical variables since the dielectric constant is a
differential operator, and as a consequence the “constitutive equations” (1%q. (22))
(analogous to Eq. (7)) are equations of motion.

In order to clarify the physical meaning of the equations of motion (20), (22)
and (23), it is convenient to introduce the following three dimensional notation for
the components of .13‘,L‘,:

M

Bi=—Mive  li= =l (24)

We have used the notation B and £ for the components of the maguetization since
they represent contributions to the magnetic and electric fields which depend upon
the state of the dielectric medium. Using Eq. (24) we can write ISq. (20) as

V-hE =0,
L OF
A Oy (25)
at

Eq. (25) makes evident the physical meaning of the constraint ((Iiq. (20)); namely,
there is no electric current in the medium. Next define ‘
v | 0 e 9
7Y = W /0 i (26)
we then have
0,2" =0.

" Ko ' n [ NHUI'U n " . " o ' "



From Egs. (23) and (

26) we see that M2ZY is the monopole current. Using 15gs. (24)
we can write Eq. (26) as

VB o= MY,

vuﬂ%’-f

l

M7 (27)

The mionopole current then determines i and 73 via 19¢s. (26) and (27).
To solve Eqs. (20), (22) and (23) it is convenient to climinate the potentials
C' . Taking the divergence of Eq. (22) cmcl using q. (23) we obtain

(0 + M*)Z" =0, (28)

Hence Z* is a free massive vector field of mass M. s, (20) and (26) are just
the Maxwell equations for I, in terms ol its monopole sources 7. The general
solution to these equations can then be written as

[, = — (O = D) (Dihy — Dotpy) ' (29)
’ M M ’
where 1, satisfies
O, =0 , Ve =0, (30)

Eq. (29) then gives 17',,1, as a sum ol a massive vector licld contribution (a particular
solution to inhomogeneous cquations (20) and (26)), and a massless vector field
contribution (the general solution of the corresponding homogencous equalions),
The constraint (Eq. (20)) climinates additional redundant degrees of freedom in
A;w .

To determine the field /1" we perfornmy the operation (“”i"“‘,:’“f‘;f"T on 15q. (22).
Using Iiq. (20) and the identity

afipy - ¢ oy (4 cx 13
g = 20000 = 676N ),

we obtain ‘
O Hy — Opda 1 =0, (3

Thus H" is a free massless field. The invariance of 15, (31) under a gauge trans-
formation of the Lagrange multiplicr field, 11, |

/I“ - ”Il -} ()/,/\][(.I‘) N (32)

‘cllects the (cnwspon(lmg invariance of L0 1. ((21)).

The Lagrangian £ then describes a massive vector field 2% and two massless

vector fields ¥ and H* corresponding to seven physical degrees of freedom, Insert-
ing B, (29) into (22) and using gs. (28) and (30) we obtain the following explicit
expression for (4,

("u.u - ‘“((');LZU "" (r»)u,//’u) - ('-mm\n(‘)'\ ”(T . ('{3)

!
M



We see that (7, depends only upon Z, and H,, and does not involve the massless
i, degree of freedom. Eq. (33) then delermines C), up to a gauge transformation,

lel a4 O“ —i' 6“/\(‘,‘((13) s (:;'l)

which reflects the invariance of £ under the transformation (34).
We now proceed with the canonical quantization of the theory, Defining canon-
ical momenta

L L0y 7
ToE —— =0+ V0l - 13,
oC

oseo f

Ty = : I —

s M
scO [
RS o = e 15
i 5 /:;‘ M M? ( )
we cau then write £9 in Hamiltonian form,
LO=fe Cyig Bty I -H, (36)
where
H (Fe+ B B (e b o (T ()
= - gl o e = o — > — w A ‘4
3 e S YRR M)
BviB  EVE L V< B o, = =
- + 1 - OV 7ot —(=V - I). 37
T ERR Ny TR MR VA ) W)
Varying 7, #g and 5 in L gives Kgs. (35), while varying i yiclds
gofe_ YxB (38)

MM

which can be used Lo eliminate H . Varying Cy and £y in £ gives the equations
of constraint

- —

=V fe=0 , (h=V =0, (39)

The quantities Gy and (i are the generators of the gauge transformations lqgs. (32)
and (34) and hence the constraints of . (39) are preserved by the equations of
motion. The fields Hy and Cy are not determined by the dynamics. We can then
impose two more conditions

Vell=0, V.(=0, (10)

-1



which fix the gauge. Eqs. (39) and (40) then reduce the number pairs of canonical
variables from 9 to 7 which is just whal is necessary to describe a massive vector
particle and two massless vector particles, This gauge ¢ 11()1( e (1. (10)) gives Hy =0,
and hence H, satisfies

94, = 0. (41)

Next we insert the solution of the equations of motion (s, (29) and (33)) into
. (37) for the Hamiltonian density H. Using Fiqs. (28), (30) and (10) we obtain
the following expression for the Hamiltonian in the momentum representation:

— = - =

/ dFH(T) = / dk {w [—z;‘(f)/ﬂ( O] kR GR) = g RY R )

where

w= R M2, (13)

and B

Hx
H(F) = () - —A(—li—) (1)
From 15gs. (30), (40), (411) and (44) we see that

D=0 . V.d=0, | (15)
(f) is also a mdssl("ﬂs transverse vector lield, et g (/\ , A) and (/)(i:, Ay N = L2

-

lw the two independent transverse (mnpon(nls 0[ /'(/\') and f(A) Then using l.lw

canonical commutation relations for the fields (7 B, and & and their conjugate
momenta we obtain

— -4

[0 Ayt ] = [, A) L gl (R ) = (16)

Thus ¢t (k, \) creates “massless particles™ of positive norm and AN ere
ates “massless p(nti(l(‘s” of negalive norm. We thus conclude that the dual field
theory determined by L), (I5q. (21)), describing a system having an s, prop-

agator, Aa(q) ~ ({:%)—2 is a theory of nou-interacting particles having the following

characteristics: a positive norm veetor meson 7 of mass Al a positive norim massless
vector meson ¢, and a negalive norm massless vector meson 4.
Next note that the differences

f_’_(f\_"l*_.;\l:(/,(",)__ PN, N 1, (17)
salisly )
H(k, NVHYE Ny = R N H (e, A (18)
&




and hence H' creates zero norm states. Now let us impose the following subsidiary
condition on physical states [W):

-

(F, Mw) =0. (19)

Then the massless ¢ and ¢ excitations give no contribution to the energy of physical
states just as scalar and longitudinal photons give no contribution to the encrgy of
physical states in covariantly quantized clectrodynamics. The matrix clements of
the Hamiltonian between states W) satislying lig. (49) are then given by

(W] [ Azt wy = (] [ diw [~ 20020 (0)] 1) (50)

Thus in the space of states satislying I5q. (49) the Hamiltonian is positive definite
and describes a system ol non- int('m(‘ting vector mesons of mass M. This space
inciudes the €' sector of the theory, since it follows from s, (33) and (48) that
. (49) is valid for any steve [W) of the structure ‘

Y = ()™ 0).

As an allernate to canonical quantization we can caleulate the propagator
for the 'y, %y and H,, fields by inverting the matrix delined by the quadratic
Lagrangian £(C) (g, (21)), suppletented by the gauge fixing term

grang | Pl A gaug )
| - | T :
I ST AV IS I T AT f
2(.1-(()“( ) 2/3(()“” )<, (hl)
In the Landan gauge o — 0, the ¢ propagator is given by 1iq. (15), while the mixed
gaug propag B [
Cf propagator, &, . = (C “[,‘,,)‘ and the F' propagator, A,y e = (l A L) are
given by

2eM ([,\'q,\“ ReYAl

A Y == f P 5 - W
() (g = M%) ? (72)
and ‘ I 's' o
‘ ‘ N No g YN DO N e =8 o
Aﬂ, slg) = —-— = p SR s »')a;)
U\"l\(/) ((/"'-«/\/“) (I" (
where

A(,/(v‘,f//ﬂ* - ,(/nﬁ.qﬂ“l
9 ‘

<

ol
‘%l\'/l“,‘ﬁ. -~

The poles at ¢% = M? in Lqs. (52) and (53) represent the contribution of 2 inter-
mediate states, while the poles at ¢* = 0 are the conbributions of 4 intermediate
states. The additional Tactors of momenta in the numerator are a consequence o
the derivatives appearing in Fq. (29).

ITI. Discussion

The final step is the construction of £(C), the extension of £7(C), which is
invariant under non-Abelian gauge transformations (15, (12)) of the dual potentials
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(% We have shown [3] that such a theory possesses many of the propertios of a
dual superconductor and could form the basis for deseribing long-distance QCD,
However, in [3] we did not impose the cssential constraint (. (20)) and the ves
sulting quadratic Lagrangian L‘[(.},)(),((.l') contained redundant degrees of freedom. As a
consequence, the long-distance Lagrangian Lo (1) (oblained essentially by making
the replacement d,f — df = ig[C') . f] in W) did ot lead to o unitary S
matrix. This problem should be eliminated, it £(¢!) is generated from the quadratic
Lagrangian L") ((1q. (21)), which takes the constraint (1. (20)) into account.,
However, the modifications of Lu0(C!) necessitated by the constraint are nol straight.-
forward, They require further symmetry (non-Abelian versions of both (Fgs. (32)
and (34))) and they have not yet been found. I these modifications can be found,
then the unitarity contributions from the massless o and ¢ degrees of freedom should
cancel and the resulting Lagrangian £(C) would deseribe a consistent unitary theory
of long-distance QCD.
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