ANL/DIS/TM-47

Identification of Functional Components .

in Combinational Circuits
]

i s T TOTECEE) ﬁ
l@‘;,;; CASE e A W 1T 4 WOTELD 3
L

000 2050866}

Decision and Information
Sciences Division O

Argonne National Laboratory

Operated by The University of Chicago,
under Contract W-31-109-Eng-38, for the

United States Department of Energy

Argonne National Laboratory

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States Government, and operated by the University
of Chicago under the provisions of a contract with the Depariment of Energy.

This technical memo is a product of Argonne's Decision and Information
Sciences (D!IS) Division. For information on the division's scientific and
engineering activities, contact:

Director, Decision and Information
Sciences Division

Argonne National Laboratory

Argonne, llinois 60439-4832

Telephone (630) 252-5464

http://www.dis.anl.gov

Presented in this technical memo are preliminary results of ongoing work or
work that is more limited in scope and depth than that described in formal
reports issued by the DIS Division.

Publishing support services were provided by Argonne’s Information
and Publishing Division (for more information, see IPD’s home page:
http://www.ipd.anl.gov/).

Disclaimer

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any’
agency thereof.

Reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office
of Scientific and Technical Information, P.O. Box 62,
Oak Ridge, TN 37831, prices available from

(423) 576-8401.

Available to the public from the National Technical
Information Service, U.S. Department of Commerce,
5285 Port Royal Road, Springfield, VA 22161.

ANL/DIS/TM-47

Identification of Functional Components
in Combinational Circuits

by T.E. Doom,* J.L. White,” G.H. Chisholm, and A.S. Wojcik*

Decision and Information Sciences Division,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, lllinois 60439

MASTER

DISTRIBUTION OF THIS DOCUMENT 1S UNLMTED Y

January 1998

Work sponsored by the United States Department of Defense

*Doom, White, and Wojcik are affiliated with the Department of Computer Science,
Michigan State University, East Lansing, Michigan.

<9 This report is printed on recycled paper.

i

CONTENTS

ACKNOWLEDGMENTSoootioteereeeresteenets st eestessstesiesas et esess e s essesssssassssassessessssssssesases vi
ABSTRACT ..o eviteeteeteerteteieesesresate et seeesesaenessesbssbesbasbesasars s s e s s s b e sesssrsesassstebessesssebesate e sutons 1
1 INTRODUCTION.....ooooecietrtetetesereseseeesessissessesssssesanessesasssssssassssnssssssssssssssesssestensossssonsens 1
1.1 Statement Of PrODIEMc..ccveceruerirreeeinciiiieiciiteeeste et sess st 2

1.2 ASSUINPHONS ...covneveeeciiniititeneisieterese ettt sttt bbb 3

2 BACKGROUND AND PREVIOUS WORK ..ottt 4
2.1 Structural MatChing......c.cccoeeviiiiiiiiiie e 4
2.2 Subgraph Enumeration........ccccoevveiimininininiincec i 4

2.3 The Equivalence Problem ..ot 5
2.4 Binary Decision DIagramsccoceeveririiinirniennerecsisesetscsnniseee s 6

2.5 Factorial PermULationcccececeeeerriersiesieririntisiissnneeserressescsesssssessssssaesesonessssseessens 7
2.6 Logic Verificationcccueviminiereieiiinintcectc s 7

2.7 LOZIC SYNLNESIS ...eeveuviiiiriiitiiiietit ettt e 10
2.7.1 Technology Mapping.......cccooerieririieniesiinniniiesiines et 10

2.7.2 Boolean Signatures and FilterS........ccouiiminiimiieninniineeccccnee 10

2.8 OptimizZed CiICUILSc.cocvivuiiiriiiiiiitec st 13
2.8.1 High-Level Design and Synthesiscoevemiiiiniineneieenniiiicienn 12

2.8.2 DOt Care SLS ...uveviiueereireeeiietenereniic sttt 13

3 CANDIDATE SUBCIRCUIT ENUMERATIONccccoiiiiiiiiintenenenisnieesieie e 14
3.1 Preliminary Definitionsccccoeveiirieniriniineieeee e 15
3.2 Subcircuit ENUMETation......cccoeceeiiiiiiiinieriricitiiiieieir et ssis et st sssat e 16
3.2.1 Algorithm 1: Naive GENneration........cccceeerieeirieniinieninnsenenincnenessnnaiens 17

3.2.2 Algorithm 2: Generation of Valid Subgraphsccecveeomnnecniicnniinnencns 18

3.2.3 Algorithm 3: Ordered Generation of Valid Subgraphsccoceoevnenniicne. 19

3.3 General IMPIOVEIMNENLScoccovriiruiriimiiniirrerierisrestesie et a bt es s esess st e seseestestenes 21

4 CLUSTER IDENTIFICATION.coosseseeereeeveeesssissssssssssssessssssssseessssssssssssssssssssssssssssssssnns 23
4.1 Input Signatures and SUSPECE SELS......oorivueierieneiiiiiiie s 23
4.2 VECtOr SIZNALULE.....eruierereeeeeeetereniieitis ettt b bt ss s et enn s 24
4.2.1 Additional Vector Input Signatures.........coceevuemiiiiinrenenenienenineseseeencssens 24

4.2.2 Other Considerations........cocceeeeeriererireirreriiesiiiseirieneesessesssesiessssssesssesssssnsenss 26

4.3 Semantic Matching AlOrithm ..o 26
4.3.1 DESCIIPHON .euvereerreriieiereeeetetiiesiis bttt b e st et er bt s 26

4.3.2 COMPLEXILY c.veerreererreiiienieiieritesesi et s bbb et eais 27

iii

CONTENTS (Cont.)

RESULTS ...t eeeeetteeteettesesssessnaesesssessasesessabesas e aassn s s b e e ra s bs e ss g s e s e st s bt s b st s b s et e b s et e e

5.1 Subcircuit Enumeration ReSUltScccoriiviiiiiiiiiiinieiiiececictiinncs e
5.2 Equivalence Checking RESUILScccvuememmiiiriiiiiiie
5.3 Identification of Functional COMPONENLS........coiruireriiennsieriinireninniiiiiiisnesesenens

FUTURE WORKoooviiteitieeeieiteriesteresststessssesbe s sse s st st ne st sonesat st st st s s s s aatons

6.1 Subcircuit ENUmMeEration ISSUESc.ceeriiruimviiiiiininininneenisssee sttt
6.1.1 AZEIEZALION ...vumiriviniiieteiete ettt
6.1.2 USETr INLEIACON .ovveveeerectrereenieeeseeererieecesiastiest s e sa s sse s esse st et sne st bsaes
6.1.3 Parallel IMplementationoooeeeeeirieinierneneeiscitne s
6.1.4 Preliminary Partitioningcccceeeiemeenceeiennnnciniiiieise
6.1.5 Primitive MOQUIES.....cccveeuieeieerieiitiiiiniicrt sttt
6.1.6 Order LIMiting......coceeveeuremeriiiiiniinicieeeie et
6.2 Semantic Matching ISSUEScovveieiininiieiniionictncii e e
6.2.1 Effectiveness of Additional Filters.......ccoovvmimnnimmiiniiiniiiiiiene
6.2.2 Don’t Care Optimizationsccceurevcueueiernreereesensns et senae
6.2.3 Canonical Variable OTdering.......c.ccceeeeererereririsrerrurrerereseissesesssensscsesencans
6.2.4 Intractable FUNCHONSccueevvrrereiiereiiiiiiire ettt
6.2.5 Sequential CITCUILSoveeeieeiieeeneete s
6.3 JOINE ISSUES v.evvevereiiriiesreeneesseeeseasseesseesseesteestssssssesss e baass s baessesanessteutsstsasssansaressass
6.3.1 Optimized CITCUILSoovvirremeieteirieieieietsieieei et
6.3.2 Structural MatChing.......coceeurivuiiriniiiiieteniesteststee sttt

CONCLUSIONS ...ttt eteetes s e este et e st settesansas s s e s e e s s s e sbs s s s e s s e sane bt s b ser e e bt e b b a s s assnans

REFERENCESoooteoteeetieestieteeeteeestsssate st sar e ssbe s ssa s e assoae st e s et s st s ae s et s s e s e st s sssaas

FIGURES
Multirooted Binary Decision Diagram That Represents the Function
Performed by @ TWO-Bit Adder.......covvimimiiiiiiiic i
ONE-Bit AQQET c..cvviveieeereereeteeeer ettt tee et sb et e bbb e s s e b s bbb bbb bt n e b et
Subgraph with M1 and M3........coiiicet s

Subgraph with Cin, M1, and M3 ...t

v

FIGURES (Cont.)

Subgraph with M1, M2, X, and Y ...cooveiiiiieee et 20
Subgraph with M1, X, and Y ...ttt 20
Subgraph with M2, X, and Ycccovrriimiiniieetets it 20
Original Circuit with Node Orderingcocvveveereiriniiieieninincinieinesccnecnnnes 20
TABLES
Description of Specification LEVELSc.oeeieieiiniieic 2
Vector Input Signature for the TI 54181 Four-Bit Arithmetic Logic Unit.........c.cccoeeeunnnee 25
AdditioNal VECLOTSeeviveererieeriereessentesitessistesaes b sssesaesb s s e s e ss e s s nasbesseasbesnesnasnnens 25
CITCUIL STALISTICS ..vvevreeiiiireiiresreeeete s et ee e et s st et e b s r s e b e e e e e sna s s s e s nsassasossesasnons 30
Results of Candidate Subgraph Generation..........ccccvvvevueeieeieeniinneieeiecies e 30
Experimental RESULILSccceoivuiiiiiiiiiiiiiee et 31
Results of Module Identification.cocveieeiieiniieee 32
\

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of Steve Eckmann and Ken Dritz.
Their comments and insight have been invaluable in this research.

vi

IDENTIFICATION OF FUNCTIONAL COMPONENTS
IN COMBINATIONAL CIRCUITS

by

T.E. Doom, J.L. White, G.H. Chisholm, and A.S. Wojcik

ABSTRACT

Identifying the subcircuits in a detailed circuit description is a
fundamental operation in both circuit validation and design recovery. Existing
identification techniques rely on finding an exact match for a subcircuit
structure within the description. These techniques fail to identify subcircuits
that are functionally equivalent but have been obfuscated because a different
technology is being used or because the design has been optimized. This report
presents a mechanism for identifying subcircuits that are functionally
equivalent, irrespective of obfuscating details. It also describes the initial
progress made in transforming detailed circuit descriptions into corresponding
descriptions based on subcircuits. Such progress depends on enumerating all of
the candidate subcircuits within the original detailed description and
functionally matching each candidate. The report presents unique solutions for
reducing the amount of computation needed for this enumeration.

1 INTRODUCTION

This report is concerned with the reverse engineering (RE) of digital circuits (i.e.,
developing a functional understanding of existing digital circuits). The goal of RE is to
completely transform the description of a digital circuit system from a low level (such as a flat
netlist) to a level high enough to be easily understood by a redesign engineer. The first step in
such an approach is to extract functional information from the digital circuit descriptions.

Reverse engineering may be viewed as the antithesis of design automation (DA). The
goal of DA is to transform the description of a digital circuit from a higher level to a lower level.
The DA literature focuses on the computer tools used to do this. Synthesis and layout tools are
notable examples.

The DA literature does not currently contain a significant body of work that addresses the
RE goal. Preliminary work on extracting functional information from a combinational circuit to
verify layout design and supply feedback during the transformation from layout design to logic
design is addressed in Ohmura et al. (1990), but, as indicated in that paper, such methods require
“additional knowledge” that is not necessarily available in a flat netlist.

In our initial attempts in RE, we started with a detailed description of a digital circuit and
transformed that to a specification of its logical function — a transformation from the silicon
level to the flat netlist level (see Table 1). The current goal is to develop techniques for
determining the modular specification from such a netlist. The first step is to identify common
high-level logical functional components within the netlist, such as arithmetic logic units
(ALUs), adders, and multiplexers. By identifying such functions within a circuit, we can reduce
the complexity of producing functional descriptions and provide tags, identifying data lines,
control lines, and additional information that might be useful in specifying the design at higher

levels.

1.1 STATEMENT OF PROBLEM

The transformation of a gate-level netlist describing a circuit into a modular-level
representation describing the circuit in terms of functional components (such as ALUs and
multiplexers) and glue logic is the focus of this phase of the RE Project (Eckmann and Chisholm
1997). This report refers to this problem as the module identification (MI) problem.

o Definition 1: Module identification (MI) problem. Given a netlist, identify
all“ subcircuits (clusters) that perform the function of a standard library

TABLE 1 Description of Specification Levels

Specification Level Description of Function?
Design intent Natural language

Behavioral Full (VHDL behavioral)
Functional Mathematical

Modular Library level (VHDL structural)
Flat netlist Gate level

Silicon Transistor level

a VHDL = very-high-speed integrated circuit (VHSIC)
hardware description language. VHDL is a large, high-
level VLSI design language with Ada-like syntax that
meets the U.S. Department of Defense standard for
hardware description (IEEE 1076).

module. The preliminary approach taken to solve the MI problem consists of solving
two subproblems:

— Candidate subcircuit enumeration (MI-Enum) problem. Identify
clusters of gates within the netlist that may compose a functional
component.

— Subcircuit identification (MI-ID) problem. Identify a functional com-
ponent equivalent to the cluster by proving semantic equivalence between
the cluster function and some pattern function representing a functional
component.

1.2 ASSUMPTIONS

Our preliminary research is directed toward solving basic problems in a tractable
(i.e., doable) amount of time. Therefore, for purposes of our initial work, the circuit being reverse
engineered is assumed to be an unoptimized implementation. Thus, our approach relies on the

following assumptions:

1. The cluster function is assumed to have the same number of inputs and
outputs as the pattern function. Inputs that are bridged or “stuck at” (i.e., never
change; see Section 2.8) must be represented as such and not optimized or
reduced. No output can be ignored; every output of any library entity must
either be a primary output or used as the input at some other point in the
circuit.

2. The cluster function and pattern function must match exactly; “don’t care” sets
are not considered. Future extensions that handle don’t care conditions are
considered in Sections 3.2 and 6.2.2.

The results presented in this report are further restricted to identifying synchronous

combinational components with no loops or other timing issues.

2 BACKGROUND AND PREVIOUS WORK

This section of the report covers some common terms, major issues, and published
techniques related to the identification of logical functions as required for RE. This overview is
not comprehensive; it is the result of preliminary research in this area. The references cited
contain additional details.

2.1 STRUCTURAL MATCHING

Previous approaches to this problem relied on the discovery of subgraph isomorphisms to
identify subcircuits (Bochner 1988, Luellau et al. 1984, Ohlrich et al. 1993). Although they are
useful in such applications as conlverting a transistor netlist into a gate netlist, techniques that rely
on exact structural matching (syntactic algorithms) have limited usefulness when applied to
higher levels of design, since high-level components have many valid implementations.

Syntactic techniques have been successfully used to identify isomorphisms between
the structures in a circuit description and those in a particular implementation (or set of
implementations) of a high-level library entity. The advantage of structural matching is that it is
exceptionally efficient, much more so than any more “complete” solution to the MI problem.
However, it also has significant drawbacks that cause it to fail as a complete solution to the
general MI problem.

A syntactic algorithm can identify only the implementations of a functional component
that are contained in its library; thus, nonstandard or intentionally obfuscated implementations
are never recognized. Furthermore, any optimization that modifies the implementation of the
entity (such as optimizations for don’t care conditions) makes the entity unfit for recognition by
structural techniques. Structural matching cannot reliably recognize all functional components
that exist in a circuit.

Nevertheless, any solution to the general MI problem should include the use of structural
matching to recognize standard implementations of functional components within the circuit.
When such exceptionally efficient syntactic techniques are applied first, the effective complexity
of a circuit can be significantly reduced before more complex approaches are applied.

2.2 SUBGRAPH ENUMERATION

For ease of representation and manipulation, the circuit being reengineered can be
represented as a directed graph. Many graph partitioning algorithms have been specifically
modified to operate upon such circuit nets. The goal of these algorithms is generally “to divide a

system specification into clusters such that the number of intercluster connections is minimized”
for use in circuit board layouts (Alpert and Kahng 1995).

Although the problems appear to be similar, several factors distinguish the MI-Enum
problem from the traditional partitioning problem. Partitioning implies that the clusters are
disjoint, but that assumption cannot be made for the MI-Enum problem. Several modules may
share functionality, so they may overlap and share gates. Relying on a strict partitioning
algorithm could result in unidentified modules.

Further, because the problem of determining the perfect partition for given constraints is
NP-complete,! partitioning techniques are generally approximation algorithms. In solving the
semantic equivalence problem, all subcircuits whose semantics exactly match those of the high-
level module must be identified. An approximate subcircuit will not suffice.

Another important difference between standard partitioning approaches and the approach
to the MI-Enum problem is that standard approaches generally use heuristics that gradually
improve the partition. Because no method is currently available for judging whether a given
subcircuit is semantically close to the high-level module that is being sought, it is not possible to
select likely subcircuits and build from them.

2.3 THE EQUIVALENCE PROBLEM

Consider some subcircuit (or subgraph) of a combinational circuit. Such a subcircuit has
|71 inputs such that i = (i, ..., ili), 161 outputs such that 6 = {0y, ..., 0|5|), and a vector of
Boolean functions or partial functions (the cluster function) that determines the relationships
among them:

() =(A1(7) £ (7)) - (1)

1 NP-complete = nondeterministic polynomial time complete: A set or property of computational decision problems
that is a subset of NP (i.e., can be solved by a nondeterministic Turing Machine in polynomial time), with the
additional property that it is also NP-hard. Thus, a solution for one NP-complete problem would solve all
problems in NP. Many (but not all) naturally arising problems in class NP are in fact NP-complete. There is
always a polynomial-time algorithm for transforming an instance of any NP-complete problem into an instance of
any other NP-complete problem. Therefore, if you could solve one, you could solve any other by transforming it to
the solved one. The first problem ever shown to be NP-complete was the satisfiability problem. Another example
is Hamilton’s problem.

Likewise, for any high-level component with inputs ¥ and outputs y, there exists a vector of
Boolean functions (the pattern function) that describes its behavior:

G(2)={g1(%), - g1 (%)) - @

The following two bijections — Ty, the input permutation function, and Tp, the output
permutation function — are defined as follows:

1= o))

g {ll,,l

To -'{fl""’fa|}—>{81»“':g|y|}-)

* Definition 2: PP-equivalent. Two vectors of Boolean functions F and G are
input-permutation, output-permutation equivalent (PP-equivalent) if bijections
exist such that:

Vi, 1<k <16l i (F) = 7ol i) (= (7).)

Single-output functions (often dealt with in technology mapping problems) are
simply referred to as being permutation equivalent (P-equivalent). We can
now define semantic equivalence for combinational designs.

o Definition 3: Semantic matching. Two combinational designs D; and D;
with corresponding vectors of Boolean functions F and G are semantically
equivalent if F and G are PP-equivalent. The input bijection m; and the
output bijection 7y under which F and G are PP-equivalent describe the
semantic matching between Dj and D;.

2.4 BINARY DECISION DIAGRAMS

+ Definition 4: Binary decision diagram (BDD). A BDD (Bryant 1985) is a
directed acyclic graph consisting of two types of nodes. A nonterminal node v
is represented by a 3-tuple:2 (index(v), childy(v), child,{ v)), where index(v) €

2 3-tuple = a data object containing three components; a 2-tuple contains two.

{0,1, ..., n— 1} and child)(v) and child(v) are themselves nodes of the BDD.
A terminal node v is represented by a 2-tuple (index(v), value(v)), where
index(v)=n and value(v)e {0.1}. A BDD is ordered if for
every nonterminal node v, index(v) < index(child(v)) and index(v) <
index(child(v)). A BDD is reduced if there is no nonterminal node v such that

child(v) = child{v) (redundant nodes) and there are no two nonterminal
nodes u and v such that child)(u) = child)(v) and child{(u) = child{v)
(isomorphic nodes).

A BDD represents a Boolean function as a directed acyclic graphic. Figure 1 illustrates a
reduced, ordered BDD (ROBDD) for the function of a two-bit full adder. Terminal nodes (shown
as boxes) have no children and contain values corresponding to possible outputs of the function.
Nonterminal, or decision, nodes (shown as circles) are labeled by a variable identifier and
possess a labeled, outgoing arc for each value the Boolean variable may take: the “then” arc is
taken when the decision variable has the value 1, and the “else” arc is taken when the decision
variable has the value 0. A decision node with no incoming arc is called a root node. The
functional value for any variable assignment is determined by traversing the path from the root
node to a terminal node by following the appropriate branch at each decision node.

2.5 FACTORIAL PERMUTATION

Although testing the equivalence of two single-output functions represented as ROBDDs
can be achieved in constant time (Bryant 1985), such testing requires that the correspondences
between the input variables be clearly identified. Because input and output variable
correspondences are not generally available, the straightforward method for determining if two
multiple-output functions are PP-equivalent is to test for equivalence over the set of I7 1! - lo!!
possible pairs of bijection functions (i.e., over all input and output permutations). When inputs
number more than seven to nine, the straightforward permutation technique is computationally
intractable.

2.6 LOGIC VERIFICATION

In logic verification, a specification describing some functional behavior is compared
with a circuit implementation of that function to prove equivalence. Verification techniques that
can deal with problems involving large numbers of inputs, sequential behavior, and significant
numbers of intermediate gates do exist. However, such techniques require that correspondences
between the implementation and specification be known (Lai et al. 1992). Since we cannot
assume such correspondences are available for the MI problem, verification techniques are
generally not applicable.

c_out sum_hi sum_lo

x_lo

y_lo

x_hi

y_hi

Boxes indicate terminal nodes, circles indicate decision nodes,
and decision nodes with no incoming arcs indicate root nodes.
The label of each node is a unique random name; all nodes of
the same level correspond to the same variable, whose name is
shown at the left of the diagram. Solid lines indicate then arcs.
Dashed lines indicate else arcs. Dotted lines indicate
complemented else arcs and negate the value of the terminal.

FIGURE 1 Multirooted Binary Decision Diagram That
Represents the Function Performed by a Two-Bit Adder

2.7 LOGIC SYNTHESIS

2.7.1 Technology Mapping

Technology mapping (also known as cell-library binding) is part of the synthesis process
that must be used to transform logic representations into interconnections within a set of
implementation-dependent cells. Technology mapping is used to create cost-optimized
implementations for some logic function or Boolean network in a particular style in terms of
some library of building blocks (cells). The detection of the equivalence of these Boolean
functions to cells, referred to as Boolean matching, is well studied (Benini and Micheli 1997).

In many ways, the problem of determining the equivalence between a combinational
circuit and a library of high-level entities is similar to the problem of Boolean matching. Boolean
matching algorithms are designed to efficiently match small (fewer than six inputs) single-output
clusters with a component of their cell libraries that implements the function at the least cost.
However, although a general solution to the equivalence problem must be able to efficiently
match functions with any number of inputs and outputs, it also needs to be concerned with a
single (although possibly multiple-output) pattern function rather than an entire library of such
functions. The goal of semantic matching is not to find the “best” implementation of a function
from a set of possible implementations but to identify equivalence and variable correspondences
between a particular subcircuit and a particular high-level component. It appears that no suitable
solution to this problem has been reported on in the literature.

2.7.2 Boolean Signatures and Filters

A signature of a Boolean function is a unique and characteristic representation of some
property of the function. Although two otherwise unrelated functions can have the same
signature, having equal signatures is a necessary condition for equivalence matching. Functions
that share a signature are said to share a signature class.

A signature function is a function that takes a generic function as an input and returns a
characteristic signature for that input function. The value of a signature function must be
determined only by the behavior of the generic function; variable order, variable labels, and
random elements may not be used as part of the determination.

Boolean signatures have been used successfully to increase the efficiency of Boolean
matching algorithms (Mailhot and Micheli 1993). Since sharing a signature class is a necessary
condition for equivalence, the matching of signature functions can be used to eliminate functions
from equivalence consideration. Functions that do not have matching signature characteristics
can be filtered from the search space since they cannot be equivalent; thus, they do not need to be

10

considered further in the testing process. The primary limit to the effectiveness of such filtering is
the complexity cost of the signature function.

The use of filtering techniques in Boolean matching (Mailhot and Micheli 1993) has
resulted in the discovery of a wide variety of signature tests by various researchers. Using
signatures as filters to eliminate some permutations from consideration can appreciably reduce
the complexity of a P-equivalence check. There are two classes of signatures: those that provide
information on the behavior of input variables (input signatures), and those that provide
information on the behavior of output variables (output signatures). Some of these signatures are
discussed briefly here because they offer directions for future research. Lai et al. (1992) contains

additional details.

For any function f(x, ..., xp), represented by BDD G of size |G, the following signatures
are defined:

« Cardinality of dependence set: The dependence set of a function consists of
only those input variables that have an effect on its value. Thus,

Dep(f) = {xi lf(’ X5 0, X0) * f(’ X Lo xp)} . (6)

The output signature Fgep(f) = IDep(f)l can be computed in O(IGI) time by
using a BDD-based algorithm (Lai et al. 1992). This signature is particularly
useful when output-permutation equivalence is being determined. Outputs can
be permuted only with outputs of the same dependence set cardinality.
Functions that do not have the same number of outputs in each cardinality
class cannot be equivalent.

e Cardinality of on-set: The on-set of a function consists of all input
assignments that produce a true (on) output. The cardinality of the on-set is
one of the more effective Boolean signature functions.

Fon =[{Ff () =1} %

This signature can be computed in O(IGl) time by using the algorithm
presented in Lai et al. (1992). This signature can be used to reduce both the
number of output matches between multiple-output functions and the number
of input permutations.

11

Unateness of input variables: A binate variable is present in both its
complemented and uncomplemented forms in the minterm (i.e., minimum
term) expression for a function. A unate variable is present in either its
complemented or uncomplemented form, but not both. Thus the unateness of
each input variable can be used as a signature Fiuq..(f,x) = {binate, positive
unate, negative unate}. For two functions to be equivalent, corresponding
input variables must have similar unateness properties.

The unateness of input variables can also be used as an output signature. For
each output, count the number of binate, positive unate, and negative unate
input variables that occur in the function’s minterm expression. Its matching
function must share these same sums. Computing the unateness of each input
variable for each output function is an O(IGP2) operation, which may be too
expensive for the MI problem.

Symmetry class of input variables: Two variables are symmetric if they can be
interchanged without changing the value of the function. Thus xi and xj are
symmetric if and only if A..., xi, ..., xj, ...) = f..., ¥, ..., xi, ...). The input
variables can be partitioned into symmetry classes that act as a signature for
each output function. In addition, input variables can be matched only to input
variables that have equivalent symmetry classes over all output functions.
Symmetry computation requires an O(IGI2) operation for each pair of inputs
for each function and is probably too expensive for the MI problem. Although
they can be effective for small cells in Boolean matching problems, symmetry
classes are not always an effective signature on high-level entities, many of
which have few symmetries.

High-level entities, however, often posses group symmetries. When some
group of input variables can be interchanged with a disjoint group of input
variables without changing the value of the function, the groups of variables
are said to be group symmetric. Group symmetries are also signature functions
that might be particularly effective on high-level entities representing
arithmetic functions. Calculating group symmetries, however, is not a trivial
operation.

Sizes of hamming distance k: This signature is defined to be the set of
cardinalities to the n—1 sets of pairs of one-points of f whose Hamming
distance is k, 0 < k < n. This signature can be computed in O(r-|G|) by using
the algorithm presented in Lai et al. (1992). This signature is quite effective,
but the complexity of the computation significantly limits its usefulness.

12

2.8 OPTIMIZED CIRCUITS

2.8.1 High-Level Design and Synthesis

During both high-level design and the synthesis process, logic functions may be modeled
from available units that “almost” fit the necessary function. The actual cells used depend on the
specific cell library and the cost metrics associated with the binding processes.

Three common techniques used in high-level design that complicate the RE Project
include bridged inputs, stuck-at inputs, and ignored outputs (Mailhot and Micheli 1993). When
two (or more) inputs to a library cell are connected to the same input line, such cell inputs are
bridged. When a library input is tied to ground (power), the input is stuck at O or stuck at 1
(either logical O or logical 1). Furthermore, some outputs of the library entity may not be being
used. High-level designs that incorporate these features may be difficult to identify in netlists
because of local optimizations.

When a logical function with bridged or stuck-at inputs is mapped, its implementation
will take advantage of these facts to greatly simplify the details of the design. Furthermore, the
number of inputs and outputs of a cluster may not correspond to the number of inputs and
outputs of the pattern function that it represents in these three cases. Matching clusters to high-
level entities in which such techniques were used remains a complex operation.

Another point to remember is that circuit optimizations may cause the intermediate
functions that are traditionally performed by several distinct library units to occur in a single,
shared cluster. Therefore, care must be taken to note that not all outputs of a cluster are
necessarily outputs of its corresponding library entity, and that an identified cluster cannot always
be simply replaced by the high-level entity identified.

It is beyond the scope of our present work to find high-level entities corresponding to
clusters that have stuck-at inputs, bridged inputs, or unused outputs. The number of inputs and
number of outputs must be equivalent for detection to be successful (Section 1.2).

2.8.2 Don’t Care Sets

Consider a circuit with primary inputs X, primary outputs z, and the vector of functions
H(3)=7Z(as defined in Equation 1), which determines the relationship between them. Also
consider some cluster within this circuit with inputs i, outputs &, and vector of functions
F (17) = 0, which similarly determines the behavior of the cluster circuit.

13

In a completely specified circuit, it is possible to determine the vector of functions
P(X) =7 (which determines the cluster inputs for any given primary input set) and the function
O(%,6) = 7 (which determines the value of the primary outputs on the basis of the value of the
cluster outputs and the behavior of the rest of the circuit). These relationships fully describe the
environment around the multioutput cluster.

The input controllability don’t care set (CDC) for the cluster includes all input conditions
that are never produced by the environment (Benini and Micheli 1997). Thus the CDC is defined
as follows:

cDC ={ifis not in Range(B(3))} . ®)

The output observability don’t care set (ODC) for each output of the cluster denotes all
input patterns that produce situations in which the output of the cluster is not observed by the
environment (Benini and Micheli 1997). Effectively, the ODC set contains all cluster inputs for
which the values of the primary outputs do not depend upon the output(s) of the cluster. In
mathematical terms:

0DC ={i|v3 such that P(%) =1, V6 & Range(F), O(% 5) = A(3)} - ©)

These don’t care conditions produce degrees of freedom available within the cluster
function. Functions within these degrees of freedom will produce behaviors that the environment
cannot distinguish from each other. During the selection process, a function that is close to but
not identical to the logical function specified by the cluster may be chosen to implement that
logical function. That is, some vector function F’ may be chosen such that:

V7 e {Range(B) - cDC-0DC}, F(7) = (i) . (10)

The actual function implemented will be one of the functions that obeys these conditions
and has a low associated cost. These kinds of don’t care optimizations are common in
sophisticated synthesis algorithms as well as in hand-optimized designs. The RE Project requires
that one be able to determine the high-level function effectively performed by a cluster, even if
the actual function performed by the cluster does not behave as expected under the don’t care set.

In this initial work, we do not consider problems that contain don’t care optimizations.
We hypothesize, however, that by identifying the don’t care set for a particular cluster function,
we can “mask” both the cluster function and the pattern function before checking for
P-equivalence. Approaches to this problem are discussed in Section 6.

14

3 CANDIDATE SUBCIRCUIT ENUMERATION

Before all of the library entities within the circuit can be located, all of the potential
library entities within the circuit must be located. This is a very challenging task. A section of the
circuit that corresponds functionally to a library entity will not necessarily appear to be similar in
any structural way, including its size, order, connectivity, or positioning. This lack of similarity
impedes any attempt to guide the subgraph generation with meaningful heuristics. To ensure that
all potential library entities are located, all possible subgraphs of the initial circuit netlist must be

generated.

In a completely connected graph, the number of (not necessarily disjoint) subgraphs that
could exist is

n n
i=1C1

where n is the order of the graph. Digital circuits are never completely connected, so the number
of subgraphs will be significantly smaller. However, the above equation does give an upper
bound and succinctly imparts the enormity of this problem.

To guarantee that all library entities within the graph have been located, we must
generate all of the possible matches. As stated above, the order, size, and configuration of a
subgraph may differ from those of a functionally equivalent library module. Therefore, we must
focus on the attributes that can be assumed to be true about a subgraph and its equivalent library
module. Our initial method takes advantage of the following facts:

1. A subgraph representing a function must have a number of inputs and outputs
equal to those of the corresponding library module.

2. The inputs must fully define the outputs.
3. A subgraph must be a connected graph.

This section discusses a method used to enumerate all candidate subcircuits of the circuit.
The number of subgraphs within a directed graph is exponential, and generating all of these
subgraphs cannot be accomplished in polynomial time. However, because the algorithms
presented here take advantage of the information that we gain from knowing that the graph
represents a digital logic circuit, they can generate all candidate subcircuits quickly for small
circuits. Improvements that allow larger circuits to be handled within a reasonable amount of
time are discussed in Sections 3.3 and 6.1.

15

This method is guaranteed not to miss any potentially important subcircuits. It operates
efficiently enough that when a few heuristics are applied, it can handle moderately sized circuits
in a reasonable amount of time.

3.1 PRELIMINARY DEFINITIONS

In this report, the term “circuit’” refers to a digital circuit. When a graph representing a
circuit or subcircuit is being discussed, its gates are called nodes, and its connections are called
arcs (Christofides 1975). As a cluster of gates is formed, it is simply called a subgraph until all of
its constituent gates are fully specified. At this point, it is called a valid subgraph.

 Definition 5: Order. The order of a graph G is the number of nodes within G.

 Definition 6: Parent. The parent of a gate g is a gate whose output is an input
to gate g. The children of a gate g are those that have the output from g as an
input.

» Definition 7: Fully specified. A gate is fully specified if and only if either all
or none of its parents are contained within the subgraph within which it is
contained.

o Definition 8: Input. A gate is an input to the subgraph in which it is
contained if and only if none of its parents are also in that subgraph.

+ Definition 9: Valid subgraph. A subgraph H represents a valid subgraph if
and only if it is connected and each gate in H is fully specified.

+ Definition 10: Forward arc. A forward arc is an arc from a parent to a child.
A backward arc is an arc from a child to a parent.

» Definition 11: H = H + V. The notation H” = H + V indicates that a new
subgraph H’ is created by adding a neighboring node v onto an existing
subgraph H. The arc between v and H is also added, resulting in the induced
subgraph H’. '

3.2 SUBCIRCUIT ENUMERATION

Generating all of the subgraphs of a graph for enumeration is a lengthy process that can
result in an exponential number of subgraphs. Each of the following algorithms operates by
expanding subgraphs. When a subgraph H is expanded, a neighboring node is added to H such
that the resulting graph H’is also an induced subgraph of the original graph. We first present a
naive algorithm, Algorithm 1, that generates all of the subgraphs of the graph representing the
circuit. Algorithm 1 provides the basis for explaining two algorithms that are more efficient.

Algorithm 2 takes advantage of the fact that any subgraphs that need to be investigated
will also be valid subgraphs. A subgraph that does not represent a valid subgraph cannot possibly
be semantically equivalent to a known high-level module, so it is unnecessary to generate the
subgraph. Algorithm 2 creates only subgraphs that are valid subgraphs, thus remarkably reducing
the number of extraneous subgraphs. The remaining subgraphs that are generated are duplicates
of already existing subgraphs. Algorithm 3 enforces an ordering on the gates, which reduces the
number of duplicate subgraphs, although it cannot completely eradicate them.

All algorithms maintain two pools: P and S. P contains the subgraphs that are to be
expanded, and S contains those that have already been expanded. When the algorithms terminate,
S contains all of the subgraphs generated by the algorithm. Figure 2 represents a simple one-bit
adder circuit that illustrates the three algorithms.

(2
Ry
© (=)

FIGURE 2 One-Bit Adder

3.2.1 Algorithm 1: Naive Generation

Algorithm 1 begins by initializing a pool P of subgraphs, each consisting of a child-
parent pair from the graph representing the original circuit, the graph C. Each of these pairs
becomes an initial subgraph. The initial pool therefore consists of order two graphs, one created
from each arc (connection) in the circuit. For each subgraph in the pool P, the external arcs are
calculated. An external arc is an arc with one end point within the subgraph and one outside. The
subgraph is duplicated and extended along each of its external arcs. This algorithm will terminate
when every subgraph P in has been expanded and moved into S. For Figure 2, the initial pool of
subgraphs generated by the naive algorithm will contain 10 subgraphs, one for each arc in the
graph, each containing the end points of an arc in the subcircuit.

3.2.1.1 Description
» Step 0: Initialize. Create empty pools P and S.

+ Step 1: Generate initial subgraphs. For each node v € C, create subgraphs
such that each subgraph contains v and one of its children.

* Step 2: Expand pool. While P is not empty, examine subgraph H € P.

— Step 2.1: Expand subgraph. For each arc leaving from H to a node v,
create a new subgraph H'=H +v. Move Hto S.

— Step 2.2: Add new subgraphs to pool. For each new subgraph, verify that
it is not a duplicate subgraph and add H”to P.

3.2.1.2 Example '

The initial subgraph shown in Figure 3 was formed by
the arc connecting M1 and M3. The original graph, Figure 2,
has five external arcs. Two are forward: S and Cout. Three are @
backward: X, Y, and Cin. Five duplicates of the MI1-M3
subgraph are then created, and one of the external arcs is added
to each. Five new subgraphs of order three are thus formed. FIGURE 3 Subgraph
They are tested to ensure uniqueness, then added to P. The with M1 and M3
algorithm then proceeds to the next subgraph in P.

18

3.2.2 Algorithm 2: Generation of Valid Subgraphs

If we know that graph C represents a logic circuit and that the only subgraphs needed are
those that correspond to a valid subcircuit in the original circuit, we can make many
improvements to the algorithm. To locate the candidate subcircuits, we are interested in only the
valid subgraphs, because only they have the potential of matching a known module. Therefore,
we need to generate only the subgraphs that represent valid subgraphs of the original circuit.

We made several modifications to the naive algorithm to implement this change. The
pool P was initialized with valid subgraphs. This was accomplished by creating a subgraph for
each node that contains the node and its parents. The subgraphs were no longer extended along
both the forward and backward arcs. This algorithm first extends along the forward arcs, picking
up any backward arcs necessary to completely specify its internal nodes, thus ensuring that a
valid subgraph is created. It also extends backward from its inputs, but instead of adding the
parents individually, it simply adds all of the parents at once, because all are necessary to specify
the node and the subcircuit.

By expanding only the valid subgraphs, we reduced the number of duplicate subgraphs
created, but the new subgraphs generated are not necessarily valid subgraphs. To transform a
subgraph into a valid subcircuit, we must fully specify each of its constituent gates. The missing
parent or parents of any gate that is incompletely specified will be added to the gate until all the
gates are fully specified and the subgraph represents a valid subgraph.

3.2.2.1 Description
e Step O: Initialize. Create empty pools P and S.

+ Step 1: Generate initial subgraphs. For every node v € C that is not an input to
C, create a subgraph H containing H and its parents. Assign a label to H that
corresponds to the highest index of the nodes in H.

* Step 2: Expand pool. While P is not empty, examine subgraph H € P.

— Step 2.1: Expand subgraph forward. For each forward arc from H to a
node v, create a new subgraph H'=H +v.

— Step 2.2: Expand subgraph backward. For each input v of H, create a new
subgraph H’ which contains a copy of H and all of the parents of v. Move
Hto S.

19

— Step 2.3: Ensure subcircuit validity. For subgraph H’, ensure the validity
of the represented subcircuit by adding the nodes necessary to fully

specify each node v € H”.

— Step 2.4: Add new subgraphs to pool. For each new subgraph H’, verify
that it is not a duplicate subgraph and add H”to P.

3.2.2.2 Example

The order two subgraph of Figure 3 does not represent a valid subgraph because only one
of M3’s parents is in the subgraph and therefore M3 is not fully specified. To create a valid
subgraph from the M1-M3 subgraph, Cin must be included to fully specify M3, resulting in the
subgraph shown in Figure 4. This subgraph represents a valid subgraph of the original circuit.

¢

3.2.3 Algorithm 3: Ordered Generation of Valid Subgraphs

The algorithm to generate valid subgraphs generates a significant number of duplicate
subcircuits because even when only valid subcircuits are expanded there is more than one way to
grow a subgraph. For instance, the subgraph shown in Figure 5 can be grown by adding M2 to
the subgraph in Figure 6 or by adding M1 to the subgraph in Figure 7.

To reduce the number of duplicates that are created, the nodes are ordered such that each
node has a unique integer index that is higher than the indices of all of its parents. The node
ordering for the original circuit is displayed in Figure 8. Rules can then be enforced dictating
which nodes can be added to a subgraph when it is being expanded, thus preventing many
duplicates from being created.

3.2.3.1 Description
e Step O: Initialize.
— Step 0.1: Initialize pools. Create empty pools P and S.

— Step 0.2: Initialize circuit. Iterate through C in a breadth-first manner,
labeling each gate with a unique integer index, such that its index is higher
than the indices of its parents.

- FIGURE 5 Subgraph with

FIGURE 4 Subgraph with
M1,M2,X,and Y

Cin, M1, and M3

i«lf{)J(an?i ‘S{“bgmph with FIGURE 7 Subgraph with .
» X M2, X, and Y

FIGURE 8 Original Circuit
with Node Ordering

21

 Step 1: Generate initial subgraphs. For every node v € C that is not an input to
C, create a subgraph H containing H and its parents. Assign label to H that
corresponds to the highest index of the nodes in H.

» Step 2: Expand pool. While P is not empty, examine subgraph H € P.

— Step 2.1: Expand subgraph forward. For each node v adjacent to
subgraph H with an index greater than the label of H, create a new

subgraph H'=H +v.

— Step 2.2: Expand subgraph backward. For each input v of H, create a new

subgraph H’ that contains a copy of H and all of the inputs to v. Move H
to S.

— Step 2.3: Ensure subcircuit validity. For subgraph H’, ensure the validity
of the represented subcircuit by adding the nodes necessary to fully

specify each node v € H".

— Step 2.4: Add new subgraphs to pool. For each new subgraph H’, verify
that it is not a duplicate subgraph and add H to P.

3.2.3.2 Example

With the ordering now imposed on the creation of subgraphs, the subgraph in Figure 5
can be created only from the subgraph in Figure 6. The ordering displayed in Figure 8 indicates
that the index of the graph in Figure 7 is 4, because that is the highest index of its nodes.
Therefore, M1 may not be added because its index is not greater than the index of the graph.
However, M2, with an index of 4, may be added to the graph in Figure 6 because the index of the
graph is only 3, less than the index of M2.

3.3 GENERAL IMPROVEMENTS

As previously discussed, the number of subgraphs for reasonably sized circuits is
unreasonably large. Therefore, a method was devised to significantly reduce the number of
subcircuits generated by investigating slices of the circuit at a time.

» Definition 12: Distance. The distance between two gates within the circuit
describes the number of connections traversed in traveling from one gate to
the other.

22

o Definition 13: Window. A window refers to a collection of gates in which
each gate is no more than distance n from another gate, where n is the size of

the window.

The gates within the initial slice are constrained to be no more than n steps from the
inputs of the graph. After that slice has been fully investigated (all subcircuits have been
generated), the window is slid forward one step, so that the input gates are no longer under
consideration, and the gates one level deeper in the graph are now part of the current window.

This method does not generate all of the subcircuits of the circuit; it generates only those
circuits with a depth that is less than the size of the window. It is necessary to choose a depth that
is large enough to usually generate alternate implementations of the library modules, yet small
enough so that the number of subcircuits becomes manageable.

23

4 CLUSTER IDENTIFICATION

This section describes an algorithm for determining if a semantic match exists between a
subcircuit and a high-level component. A general solution to the MI-ID problem requires the
identification of high-level components that are more complex then those dealt with in Boolean
matching but that lack the input/output correspondences between the logic design and the library
components that verification techniques require. Since the function performed by a high-level
component may be represented in any number of structural forms, we must identify the subcircuit
by proving semantic equivalence (Eckmann and Chisholm 1997). Although semantic techniques
are not limited to any particular level of circuit description or application, this report considers
only the identification of high-level components from gate-level netlists.

4.1 INPUT SIGNATURES AND SUSPECT SETS

Our approach to the semantic matching problem uses signature information to reduce the
number of input correspondences that must be considered. This is accomplished through the use
of suspect sets.

As discussed in Section 2.7.2, a signature of a Boolean function is a unique, characteristic
representation of some property of the function. The signatures that provide information
regarding the behavior of a function’s input variables are referred to as input signatures.

« Definition 14: Signature class. The signature values for any input signature
function can be used to partition the function inputs into classes corresponding
to their signature. Such a list of inputs is a signature class.

The following theorem is clear: Input correspondences between the pattern and cluster
function can take place only between members of their respective signature classes that have
equal signature values.

« Definition 15: Suspect set. A cluster input variable i’s suspect set, Sj, is the
subset of pattern function G’s inputs, xq,---, | that share a signature class
with i under every input signature for which information is available.

Using suspect sets will allow us to significantly reduce the factorial search space
associated with determining function equivalence.

4.2 VECTOR SIGNATURE

We introduce a new signature function that has proven to be an adequate initial filter for
many problems. This signature takes advantage of the fact that the vector functions under
consideration consist of multiple functions, each corresponding to a single output.

Definition 16: Unit vector. A positive (negative) Boolean unit vector is a
vector in which exactly one element has the value 1 (0) and all other elements
have the value 0 (1).

Definition 17: Vector input signature. For any vector of Boolean functions
F(i)=0, ij’s positive unit vector input signature is the sum of the function
outputs (i.e., the cardinality of the on-set) when the positive unit vector with

input ij equal to 1 is applied.

i
F+vec(ij)= an(ﬁ)» (11)

n=1

where up =l ifand only if k = .
The negative unit vector input signature is defined similarly.

Definition 18: Vector signature. For any vector of Boolean functions
F(7) =5, the function’s vector signature is an ordered set of |7|(x, y) pairs, in
which each pair corresponds to an input i; of Fand x (y) represents the
positive (negative) unit vector input signature.

Table 2 shows the results of applying the vector signature to the vector function of a four-
bit ALU. The resulting vector signature is {2 X (1, 7), 1 X (2, 2), 1%x(2,5),6%x(2,7),3x(3,53),

1x(6,5)}.

4.2.1 Additional Vector Input Signatures

The signature classes determined by the vector input signature under the positive and
negative unit vectors partition the set of input variables into several signature classes. This
information can be used to create nonunit vector input signatures.

When any signature class contains a
single member (that is, no other input shares
its (x, y) signature value), a correspondence
is clearly identifiable. The vector signature
for the four-bit ALU shown in Table 2 has
two signature classes with only a single
member (the signature classes for sel3 and
m). Recognizing correspondences for such
variables is straightforward. A signature
class with multiple members, however, does
not differentiate among the inputs sharing
the signature class. Such differentiation may
be achieved through the use of additional
vector signatures.

For each signature class, we create a
set of vectors that must create a new set of
vectors, which allows additional vector input
signatures to be computed and may thus
differentiate the inputs within the initial
class. For each positive or negative unit
vector taken over the set of inputs in a
signature class under study,-there are 27
assignments of values to the distinguishable
inputs of the other p signature classes. Each
of these vectors may be applied to produce
an additional vector input signature. These
additional vectors can be applied to create
more signature classes, allowing more preci-
sion in suspect sets. This process can be
continued until all additional vectors have
been exploited.

Consider a function H with seven
inputs, a through g (Table 3). Let the inputs
be partitioned by vector signature into three
signature classes, as follows: (a, b) (c, d, e)
(f, g). Consider the additional vectors that
can be created for example function H that
may be useful in differentiating input a from
input b.

TABLE 2 Vector Input Signature
for the TI 54181 Four-Bit
Arithmetic Logic Unit2

Vector Input Signature

Input

Name Positive Negative
sel0 2 7
sell 1 7
sel2 2 7
sel3 2 2
b3 2 7
a3 3 5
b2 2 7
a2 3 5
al 3 5
bl 2 7
a0 2 5
b0 2 7
m 6 5
Cn’ 1 7

2 The positive and negative coordinate
vector input signatures are shown for
a four-bit ALU with selection inputs
sel0-3, mode input m, carry input
Cn’, and data inputs a0-3 and b0-3.
The vector signature partitions the
function inputs into five signature
classes: {1, 7) = {sell, Cn’}, (2, 2) =
{sel3}, (2, 5) = {a0}, (2, 7) = {selO,
sel2, b3, b2, b1, b0}, (3, 5) = {al, a2,
a3}, and (6, 5) = {m)}.

TABLE 3 Additional Vectors

Q
oS~
o
o

—_———_—_0 000
OO OO
—_— 00— —=0O0
—_—0 O == OO 8,
—_——_ 0 O - - OO
— O = OO = O [~

—_O O = O = O

4.2.2 Other Considerations

Vector signatures are an effective signature for multiple-output functions in which the
number of inputs is not significantly larger than the number of outputs. Their effectiveness is not
surprising when we consider that the number of outputs determines the size of the range of the

signature function. (The range of the function is |5|2)

An output vector signature can also be computed by considering the number of vectors
for which each output has the value one under the set of vectors, including the one vector, zero
vector, and positive and negative unit vectors. This use of the vector signature has not yet been

fully explored.

Vector input signatures may also be useful in filtering the number of library entities that
must be compared with the cluster. A nonunique key for each functional output can be created by
concatenating the 1-sum of the zero vector, 1-sum of the one vector, sorted set of positive vector
signatures, and sorted set of negative vector signatures. If the don’t care set for the cluster is
empty, these keys can be used as hashing keys to locate the set of library entities that must be
tested. In this way, all library entities that may be equivalent to the cluster can be identified in
time linear to the number of cluster outputs, regardless of the size of the entity library. If the
don’t care set for the cluster is not empty, a less efficient technique must be used.

When the don’t care set is not empty, the functions must be normalized to their care sets.
This can be accomplished by “masking” the outputs of the function to 0 under the don’t care set.
The key created by the vector signature for this normalized function can then be compared with
the normalized function signatures for each library entity.

4.3 SEMANTIC MATCHING ALGORITHM

Let F (Z) = 5 be the vector of Boolean functions for some subcircuit. Let G(¥) =7 be the
vector of Boolean functions for a high-level component. Semantic equivalence and input/output
correspondences between the subcircuit and the high-level component can be determined by the
semantic matching algorithm described below.

4.3.1 Description

« Step 1: Create binary decision diagrams. Create BDDs for the outputs of each
vector of Boolean functions.

27

+ Step 2: Determine signature classes. Determine the vector signatures for Fand

G and partition each function’s input variables into signature classes. If the
signature classes and partition sizes are not equivalent, the functions cannot be
equivalent.

» Step 3: Determine suspect sets. For each input i; of the cluster function F,
create a suspect set Sj. The suspect set S; is the subset of inputs of pattern
function G that have the same signature as the signature of input ij. Apply

additional input signatures (Sections 2.7.2 and 4.2.1) to reduce suspect set size
below threshold (Section 4.3.2) if possible.

» Step 4: Iterate though legal input correspondences. Eliminate all matchings
that include a correspondence between a cluster function input i; and any

pattern function input that is not in §;.

e Step 5: Determine legal output correspondences. Compare each pair of BDDs
representing a substituted cluster function output and a pattern function
output. If an unique output matching for each pair is determined, a legal
correspondence has been identified.

4.3.2 Complexity

The technique presented in Section 2.5 requires |i l!|5|! comparisons. Our algorithm
requires a lot fewer comparisons.

Let n represent the cardinality of the largest input suspect set determined in Step 3. An

upper bound on the number of legal input correspondences is n !li | As long as n is constrained to
a reasonably small size (less than nine), it can be treated as a constant value ¢, and the input

correspondence selection will be exponential in complexity: 0(c|7|). Reasonably small values of

n can be achieved through pruning suspect set sizes by applying multiple signature values until
all suspect set sizes fall below some threshold.

Such pruning is effective for most components except those having large numbers of
symmetric inputs (which are indistinguishable from Boolean signatures). In such cases, however,
any input matching will succeed for the symmetric inputs, which actually simplifies the process
of proving semantic equivalence, because a correspondence will be identified very early in the
execution of the algorithm.

28

Although BDDs are an efficient mechanism for representing the functionality of most
components, they may become intractably large for certain functions under some (or all) variable
orderings (Bryant 1985). Since we can indicate a “good” variable ordering for our pattern
function library, we can eliminate most BDD-based concerns. If the BDD for any cluster function
output exceeds the size of the largest BDD representing a pattern function output, we can
immediately discard that input matching and discontinne BDD generation, since no legal
correspondence can exist between functions that have BDDs of different sizes under the same
variable ordering. Pathological functions (such as multipliers) that have no efficient BDD

representation remain an open issue.

Since each cluster output BDD is tested against each pattern output BDD exactly one

time in Step 5, the complexity of determining legal output correspondence is only 0(|5|2).

Therefore, the overall complexity of this approach is 0(c|’7| |5I2) = 0(c|7 |) This exponential

algorithm is a significant improvement over factorial methods and makes semantic matching
feasible for most components of reasonable size.

29

5 RESULTS

The algorithms discussed previously were implemented in C. Experiments were
conducted on a Sun Ultra Enterprise 3000 running Solaris 2.5.1 with 256 MB of main memory
and 879 MB of virtual memory. Experimental circuits were taken from the LGSynth93
benchmark suite (McElvain 1993).

5.1 SUBCIRCUIT ENUMERATION RESULTS

The complexity of the enumeration problem can be clearly seen in Table 4. A 15-gate,
two-bit adder has 3,408 unique subgraphs (114 valid subgraphs). These subgraphs can be
enumerated in acceptable time (0.1 second of CPU time) by any of the three algorithms. Notice,
however, the abrupt increase in subgraphs that results from the addition of only seven gates. The
22-gate, three-bit adder generates 98,922 unique subgraphs (566 valid subgraphs).

The increase in subgraphs is not related solely to the number of gates, of course. It also
depends on the number of wires in the circuit and their configuration. However, the number of
gates does provide a good rough metric for predicting the number of unique subgraphs.

It is more difficult to predict the number of valid subgraphs. Every one of the valid
subgraphs must be enumerated. Each of these subgraphs represents a possibly interesting
subfunction of the circuit. For instance, in a three-bit adder, three subcircuits representing one-bit
adders and two subcircuits representing two-bit adders will be enumerated, as will subgraphs that
represent parts of two or more individual adders. Generating these subfunctions is important
because they may be expanded to represent the functions that we are seeking, namely the one-bit
adder or two-bit adder.

The three algorithms presented in Section 3.2 have been applied to several graphs to
demonstrate the improvement provided by the latter two algorithms. Table 4 lists the number of
gates, number of connections, and the connectivity ratio (I connections | /1 gates 1) of each of the
circuits to be explored. It also lists the number of unique subgraphs and number of valid
candidate subcircuits within the circuit.

Table 5 displays the results of applying the three algorithms to the circuits. Included are
the total number of subgraphs generated and the amount of processor time consumed. Each
algorithm will generate and identify all of the candidate subcircuits. The difference in the
performance of the algorithms is a result of the number of duplicate subgraphs that were created
during the generation.

TABLE 4 Circuit Statistics

Original Circuit No. of No. of Connectivity No. of Unique No. of

Circuit Function Gates Connections Ratio Subgraphs Subcircuits
addl 1-bit adder 8 10 1.25 - 114 18
add2 2-bit adder 15 20 1.333 3,408 108
add3 3-bit adder 22 30 1.363 98,922 462
bl Logic 25 36 1.44 95,707 901
z4ml 3-bit adder 30 42 14 NA?2 4,360
cml38a Logic 33 53 1.606 NA 29,362
x2 Logic 54 104 1.923 NA 38,364

a NA = not available; not computed because of complexity.

TABLE 5 Results of Candidate Subgraph Generation

1: Naive 2:Valid 3: Ordered
CPU CPU CPU
No. of Time No. of Time No. of Time Desired
Circuit Subgraphs (second) Subcircuits (second) Subcircuits (second) Result
addl 271 0.1 39 0.1 30 0.1 18
add2 11,807 0.1 347 0.1 229 0.1 114
add3 434,096 4.2 2,034 0.1 | 1,174 0.1 566
bl 559,115 2.0 103,78 0.1 2,062 0.1 901
z4ml NA?2 NA 47,221 0.1 23,993 0.1 4,360
cml38a NA NA 774,005 32 127,599 0.1 29,362
x2 NA NA 978,074 1.2 168,072 0.8 38,364

2 NA = not available; not computed because of complexity.

5.2 EQUIVALENCE CHECKING RESULTS

Our algorithm for semantic matching was implemented by using the University of
Colorado’s decision diagram library (Somenzi 1997). Table 6 compares our procedure with the
factorial approach. For each component, it shows the size of the subcircuit, size for the BDD
representation of the component’s pattern function (under some reasonable variable ordering),
number of input matchings, and total number of BDD equivalence checks made during the
program’s run time. The run time shown is the worst-case run time (a complete search of the

TABLE 6 Experimental Results?

Correspondences
Input Matchings Checked

Circuit No. of No. of BDD CPU Time

Name Inputs QOutputs Size Method 1 Method 2 Method 1 Method 2 (second)
C1908 33 25 127,349 8.7e+36 7.9e+12 1.3e+62 NAD NA
alu2 10 6 231 3.6e+06 2.0e+00 2.9e+10 32 0.2
alu4 14 8 1,452 8.7e+10 8.6e+03 3.5e+15 6.9e+04 232.4
cc 21 20 57 5.1e+19 1.4e+07 1.2e+38 1.5¢+09 37,675.5
fSIm 8 8 73 4.0e+04 4.8e+01 1.6e+09 4.3e+02 0.1
pml 16 13 42 2.1e+13 2.0e+05 1.3e+23 2.8e+06 2734
sct 19 15 102 1.2e+17 4.0e+07 1.6e+29 6.0e+08 75,647 .4
t481 16 1 202 2.1e+13 2.3e+07 2.1e+13 2.3e+07 88,354.5
z4ml 7 4 47 5.0e+03 5.0e+03 1.2e+05 2.0e+04 4.55

a The circuits included in this table are a subset of the LGSynth93 benchmark suite. The results listed for Method 1
are calculated for the factorial permutation approach (Section 2.5). The results presented for Method 2 are
experimental results for a single vector signature implementation of the algorithm presented in Section 4.

b NA = not applicable.

correspondence space). For nonsymmetric circuits, the time to determine a single correspondence
can be considered roughly 50% of the overall run time. For circuits containing symmetries, the
entire time is necessary to identify all legal correspondences but only a fraction of the time is
necessary to determine a single correspondence.

The z4ml circuit (a three-bit adder) shows a case in which the inputs are indistinguishable
from their vector signature, and thus the number of input matchings is 7!. Note that because the
algorithm automatically prunes (i.e., reduces) the output search space, the number of
comparisons is only 20,304, an order of magnitude less then the number of comparisons
necessary in a 120,160 (7!4!) nonpruned search.

The alu4 circuit (a four-bit ALU) is complex enough to have fairly well-distributed vector
signatures and thus is able to take advantage of vector signature information to recognize that
only 8,640 of the greater than 87 billion possible input matchings can possibly produce a legal
correspondence. The use of vector signatures has made this intractable comparison feasible.
Furthermore, note that of the 3.5 million billion total correspondences (14!8!) possible, only
69,411 comparisons are necessary.

Using the vector signature to prune the input permutation search space of the C1908
error-correcting circuit reduces the number of input matchings from 8.7 X 1036 to 7.9 x 1012,
While this practice certainly results in a significant reduction in search space, additional
signatures need to be applied to permit semantic matching within a reasonable execution time.

32

Table 7 summarizes the results from an experiment to identify the functional components
contained in a library netlist. Specifically, one- and two-bit adders were found in two- and
three-bit adder circuits.

5.3 IDENTIFICATION OF FUNCTIONAL COMPONENTS

By using the MI-Enum algorithm to identify candidate clusters and the MI-ID algorithm
to check equivalence, we have created a tool that can find arbitrary library entities in a
combinational circuit. The development of this tool is still in progress, but initial results prove
that the concept is sound.

As noted previously, the equivalence checking algorithm does not prune the number of
input correspondences when vector signatures are used on symmetric functions such as the adder,
although it does prune the number of output correspondences. It will be far more interesting to
attempt to find a larger function (such as the 181 ALU) in a large netlist.

’_I‘ABLE 7 Results of Module Identification

No. of No. of No. CPU Time
Circuit Gates Connections Module Found (second)
2-bit adder 15 20 1-bit adder 2 0.5
3-bit adder 22 30 1-bit adder 3 0.6

3-bit adder 22 30 2-bit adder 2 0.6

33

6 FUTURE WORK

This section briefly discusses some areas that could be logical next steps in solving the
general RE problem by using the module identification method. It concentrates on those
extensions that apply toward solving the initial combinational circuit problem introduced in
Section 1.

6.1 SUBCIRCUIT ENUMERATION ISSUES

The preliminary effort made to create and implement the graph enumeration algorithm
has raised many interesting issues and possible focus areas for future efforts. At this point, the
algorithm operates primarily as a “brute force” method. This problem demands that all possible
valid subgraphs be explored to ensure a complete modular matching. Many heuristics and
- pruning methods could be applied to the algorithm to allow it to operate in a reasonable amount
of time for reasonably sized problems.

6.1.1 Aggregation

When a match is found between a library entity and a subcircuit, that subcircuit could be
replaced with a single node that encapsulates the functionality of the module. This aggregation of
the subcircuit nodes into a single node would reduce the order of the graph and therefore the
growth of the pool of subcircuits. This approach would also gradually raise the level of
abstraction. The matched modules would eventually exist in the circuit connected only by glue
logic. Each of these modules would still have the same functionality as the original subcircuit but
would be only a single node with multiple unique outputs.

6.1.2 User Interaction

If a user can visually locate areas of the circuit that look as if they may be repeated
elements, the user can enter them into a meta-library. These elements can be located by structural
matching techniques such as Subgemini (Ohlrich et al. 1993). Any time the repeated element is
found, its nodes can be aggregated into a single node, thus reducing the order of the circuit. At
this point, MI-Enum could be run on the new circuit as usual.

6.1.3 Parallel Implementation

This algorithm is inherently parallelizable. Each pool of subgraphs could easily be
divided into any number of parts and parceled out to individual processors. The only effect would

34

be that some subgraphs might be checked more than once, but no more times than the number of
processors involved.

6.1.4 Preliminary Partitioning

A method of addressing the problem of the intractability of large circuits involves the
partitioning of the circuit before processing. Instead of attacking a problem of 10,000 gates, the
circuit could be split into 100 circuits of 100 gates each. The obvious difficulty with this method
is that a library module that exists in the circuit could be split across the cut boundary and never
matched. The sliding window method discussed in Section 3.3 provides a solution that works
well for reasonably sized circuits, but an extremely large circuit would benefit from initial

partitioning.

6.1.5 Primitive Modules

To reduce the order and thus the processing time of the graph, it might be useful to
investigate the use of primitive modules. These modules could consist of small common
functions that are generally implemented as 5 to 10 gates. By including them in the library, the
order of the graph could be greatly reduced by aggregation.

6.1.6 Order Limiting

To reduce the number of subgraphs generated, it helps to limit their order. For example, if
the largest module in the library had 20 gates, the candidate subcircuits could be restricted to a
maximum of 30 gates. Doing so would probably allow all of the likely implementations to be
identified yet significantly reduce the number of subcircuits that need to be generated.

6.2 SEMANTIC MATCHING ISSUES

6.2.1 Effectiveness of Additional Filters

The vector signature alone is not an effective filter for several of the circuits tested.
Additional function filters, such as those described in Section 2.7.2, are necessary if this
technique is to be used effectively. The effectiveness and the cost of each filter should be
explored, and the identification of intractable problems, if any, should be facilitated.

35

In particular, the discrete Fourier function transformation (FFT) may allow the efficient
determination of equivalence between output variables independent of input correspondences. If
outputs can be efficiently determined, vector input signatures can consider the particular values
of corresponding outputs rather than simple output 1-sums. This technique promises to
significantly speed up the computation times reported herein if the FFT calculation can be
determined efficiently.

6.2.2 Don’t Care Optimizations

The primary problem that must be addressed is the issue of don’t care optimizations.
Such optimizations are prevalent, and any approach that does not take don’t care conditions into
consideration cannot be completely successful. It is our intent to formally prove and
experimentally demonstrate that structural BDDs (Doom and Wojcik 1997, Doom et al. 1998)
can efficiently identify the don’t care set of any cluster. As a challenge, we might consider
proving the equivalence between two binary coded decimal (BCD) adders for which the output
functionality under non-BCD inputs is undefined. The equivalence between a BCD adder to
which non-BCD inputs are never supplied and a non-BCD adder should also be provable.

6.2.3 Canonical Variable Ordering

A technique for canonically ordering variables based on the recursive sorting of truth
tables by row and column sums is presented in (Wu et al. 1994). If this technique can be
implemented efficiently, it will be completely unnecessary to consider searching the factorial
matching space to determine P-equivalence. The canonical ordering for the cluster and the
canonical order for the entity must indicate an appropriate matching if any such matching exists.
A tool based on this mechanism should be developed and tested for efficiency as well as
maximum problem size. As a truth-table-based technique, this canonicalization requires 0(2|7 1)
memory and time, which may limit its utility, but this technique is quite promising.

This technique could be quite useful in performing (exact) equivalence matching, because
we would no longer need to test equivalence under all input correspondences. We would merely
need to determine the “unique” input order of the function before the test. This technique would
be more efficient than current techniques for many functions, particularly those with a large
number of inputs and a small number of outputs for which signature-based techniques may prove
intractable. If there are no don’t cares, this technique can be used to hash to the matching library
function, if any. If there are don’t cares, the canonicalization will have to be performed on each
library unit after the mask is applied. '

To the best of our knowledge, no technique for canonicalizing the variables in a BDD has
ever been proposed. Perhaps a metric (similar to the row and column sums) by which a BDD

36

could be recursively ordered could be determined. If so, this metric would be a significant
contribution to the BDD field as well as RE.

6.2.4 Intractable Functions

Some functions are inherently difficult to describe and match when this technique is used.
The multiplier and multiplexer are two such functions. The multiplier is quite sensitive to
filtering, and the number of comparisons necessary is relatively small. However, each
comparison takes a lot of time. Multipliers are well known to produce exponential graphs when
represented as a BDD. Creating the BDD that represents the function of the multiplier under
some variable ordering may be prohibitively time consuming.

The multiplexer function, on the other hand, is almost completely insensitive to the vector
filter function. A multiplexer consists of 7 control inputs, 27 data inputs, and a single output
whose value is equal to that of the input selected by the control inputs. Although the n control
inputs may be identified by the vector signature, all but two of the data inputs (the T and O lines)
fall into the same equivalence class (since their behavior is never selected by the control inputs).
If n is greater than four, there would be at least 14 (i.e., 24 — 2 = 16 — 2) input variables in the
same vector class, requiring at least 14! comparisons, which is intractable. The equivalence
algorithm can flag such clusters as being intractable comparisons, but some other method has to
be used later to consider these cases.

6.2.5 Sequential Circuits

The identification of latches in a sequential circuit seems to be a simple problem, whereas
the identification of larger sequential units (such as a shift register) seems to be very challenging.
Once the identification of high-level functional units in both combinational and sequential
netlists is accomplished, this information can be used by new tools to move understanding to the

next level.

We believe that once the problems regarding the identification of combinational circuits
are solved, the identification of sequential circuits will be an obvious extension. Sequential
eléments tend to be clustered more regularly. After the high-level combinational entities between
the sequential entities are partitioned out, the identification of the sequential entities should be

less complex.

6.3 JOINT ISSUES

6.3.1 Optimized Circuits

Matching entities whose corresponding clusters have fewer inputs or outputs because of
bridged inputs, stuck-at inputs, or neglected outputs is a difficult problem. No approach toward
solving this problem seems promising at this time. A solution would most likely involve
identifying the partial functions and directing the growth of the cluster. This issue remains
unexplored.

If the canonical form mentioned in Section 6.2.3 could be found, it might be useful in
attacking the enumeration problem. By creating canonical keys for any function, we could create
a library of “interesting” keys related to high-order digital devices.

For any one-output cone of logic being tested, if its function was interesting (i.e., if the
function’s canonical form matched one of the forms determined to be associated with one or
more of the high-order devices), it would seem wise to expand the search around that cluster to
attempt to find other interesting functions associated with the same device. If all of the functions
for some device were discovered, we could replace the cluster with the device.

This technique would not necessarily be better than any of the techniques that we are
exploring now, but it does have some possible advantages. Most importantly, it would allow us
to find a partial match for a high-order library device. For example, perhaps we could find three
functions that matched the outputs of three of the five outputs of some device. In this case, it is
quite likely that a detailed search of the area near the cluster would reveal the other two inputs
(possibly passed over because of don’t care optimizations). This ability to recognize partial
matches might make the basis for a good genetic algorithm (GA) evaluation function for a GA
approach to partitioning, etc.

6.3.2 Structural Matching

Structural matching techniques are not a suitable solution to the general MI problem.
Since there are an infinite number of ways in which any high-level entity might be implemented,
identification of such entities by purely structural means is not an adequate solution. Because
most circuits are developed by using cell libraries, however, structural techniques might be useful
in finding additional instances of a high-level entity (which has been discovered by using
functional techniques) elsewhere in the circuit. This approach would be most useful for a logical
function with an empty don’t care set.

38

7 CONCLUSION

As discussed in this report, we have met our goal of determining a general method for
identifying functional components in a combinational circuit through the use of semantic
techniques. This report presents an initial enumeration algorithm that is a working model on
which future enumeration algorithms may be based. In addition, it presents a technique that
allows a semantic match between a circuit cluster subcircuit and a high-level component to be
determined in a tractable number of comparisons. It presents the underlying equivalence problem
and provides an algorithm based on the concept of suspect sets capable of solving problems of a
reasonable size. Preliminary experiments demonstrate the effectiveness of the technique when a
single vector signature filter is used. Future goals include the introduction of additional filters to

decrease the run time and increase the capabilities of the program.

In the long term, we will use this technique as an RE tool. Semantic matching techniques
allow us to achieve a functional specification of many digital designs by identifying clusters of
logic that correspond to higher-level functional components. By identifying high-level
components such as ALUs, adders, multiplexers, and other common functional entities within the
circuit, we reduce the complexity required to produce functional descriptions and to identify data
lines, control lines, and other “additional knowledge” (Ohmura et al. 1990) that might be useful
in further specifying the design. Such an approach requires the implementation of efficient
enumeration techniques as well as the identification and incorporation of don’t care conditions
(Doom in progress) into the semantic matching algorithm.

39

8 REFERENCES

Alpert, C., and A. Kahng, 1995, “Recent Developments in Netlist Partitioning: A Survey,”
Integration: The VLSI Journal 19(1-2):1-81.

Benini, L., and G. De Micheli, 1997, “A Survey of Boolean Matching Techniques for Library
Binding,” in Transactions on Design Automation of Electronic Systems (TODAES) 2(3):193—
226, Association for Computing Machinery (ACM), July.

Bochner, M., 1988, “LOGEX — An Automatic Logic Extractor from Transistor to Gate Level
for CMOS Technology,” in Proceedings of the ACM/IEEE Design Automation Conference,
pp. 517-522.

Bryant, R.E., 1985, “Symbolic Manipulation of Boolean Functions Using a Graphical
Representation,” in Proceedings of the ACM/IEEE Design Automation Conference, Las Vegas,
Nev., pp. 688—694.

Christofides, N., 1975, Graph Theory: An Algorithmic Approach, Academic Press, Inc.

Doom, T.E., in progress, Design Recovery for Combinational Logic Exploiting Boolean
Relationships, Ph.D. thesis, Michigan State University, East Lansing, Mich.

Doom, T.E., and A.S. Wojcik, 1997, Reengineering from Partial Specifications though BDD
Representation of Functional Constraint, Technical Report MSUCPS:TR97-3, Department of
Computer Science, Michigan State University, East Lansing, Mich. [URL: http://web.cps.
msu.edo/TR/MSUCPS:TR97-3].

Doom, T.E., A.S. Wojcik, and M. Chung, 1998, “Design Recovery for Incomplete
Combinational Logic Exploiting Boolean Relationships,” submitted for publication in
Proceedings of the 1998 ACM/IEEE Design Automation Conference.

Eckmann, S., and G.H. Chisholm, 1997, Assigning Functional Meaning to Digital Circuits,
ANL/DIS/TM-43, Argonne National Laboratory, Argonne, Il1.

Lai, Y., S. Sastry, and M. Pedram, 1992, “Boolean Matching Using Binary Decision Diagrams
with Applications to Logic Synthesis and Verification,” in Proceedings of the IEEE International
Conference on Computer-Aided Design, pp. 452-458.

Luellau, F., T. Iloepken, and E. Barke, 1984, “A Technology Independent Block Extraction
Algorithm,” in Proceedings of the ACM/IEEE Design Automation Conference, pp. 610-615.

40

Mailhot, F., and G.D. Micheli, 1993, “Algorithms for Technology Mapping Based on
Binary Decision Diagrams and on Boolean Operations,” IEEE Transactions on CAD/ICAS

12(5):599-620.

McElvain, K., 1993, LGSynth93 Benchmark Set: Version 4.0 [URL: ftp://ftp.mcnc.org/pub/
benchmark/Benchmark_dirs/LGSynth93].

Ohlrich, M., C Ebeling, E. Ginting, and L. Sather, 1993, “Subgemini: Identifying Subcircuits
Using a Fast Subgraph Isomorphism Algorithm,” in Proceedings of the ACM/IEEE Design
Automation Conference, pp. 31-37.

Ohmura, M., H. Yasuura, and K. Tamaru, 1990, “Extraction of Functional Information from
Combinational Circuits,” in Proceedings of the IEEE International Conference on Computer-
Aided Design, pp. 176-179.

Somenzi, F., 1997, CUDD: CU Decision Diagram Package, Release 2.1.2 [URL: http //bessie.
colorado.edu/~fabio/CUDD/].

Wu, Q., C. Chen, and J. Acken, 1994, “Efficient Boolean Matching Algorithm for Cell
Libraries,” in Proceedings of the IEEE International Conference on Computer-Aided Design,

pp- 36-39.

M98004621
AN

/DT /T~ %7
Report Number (14) 4/1/6/9 T $//

Publ. Date (11) /77’50/ 7
Sponsor Code (18) __ D ? 4 paE/EA
UC Category (19) AC ~ 200 ,

DOE

