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Abstract

In this work the basic Finite Element Tearing and Interconnecting (FETI) linear system
solver and the PARPACK eigensolver are combined to compute the smallest modes of symmetric
generalized eigenvalue problems that arise from structures modeled ‘primarily’ by solid finite
elements. Problems with over one million unknowns are solved. A comprehensive and relatively
self-contained description of the FETI method is presented.

1 Introduction and Summary

We seek to compute the left-most modes of a symmetric generalized eigenvalue problem Az =
Bz with more than one million unknowns arising from structural dynamics using a distributed
memory platform with a limited amount of memory per processor. This generalized eigenvalue
problem is solved using PARPACK [9, 10] in shift-invert mode. The Finite Element Tearing
and Interconnecting (FETI hereafter) iterative linear system solver is used to invert [5]. Other
researchers have combined FETI with an eigensolver [1, 2]. Our approach is more comprehensive
and we solve much larger problems. The bulk of this work describes the basic FETI multilevel
method for solving linear systems whose coefficient matrix is a positive definite stiffness matrix
(which would be singular in the free boundary case) for solid structures (whose underlying
partial differential equation is second order elliptic). Section two describes the reformulation
of the linear system as a distributed interface linear system. Section three develops the FETI
iterative solution algorithm. In section four the combined FETI/PARPACK method is applied
to several model eigenvalue problems of order up to one million.

2 Formulation of the Interface Linear System

FETI is a dual Schur-complement domain decomposition method. The finite elements are
partitioned instead of the nodes in the finite element mesh. In other words, the dual of the
graph is partitioned (hence the name). This approach is natural for finite element modeling
because assembly of the subdomain stiffness matrix requires no interprocessor communication.
On subdomains on which no boundary conditions are imposed (the boundary conditions which
make A nonsingular) the subdomain stiffness matrix is singular.

Substructuring (i.e. domain decomposition) represents an unassembled structure stiffness
matrix in the form LT KL where K is a block diagonal matrix of substructure stiffness matrices
and L is called a Boolean assembly matrix [11]. The linear system

(LKL)u = f. (1)

is traditionally solved by (multi-frontal) Gaussian elimination applied to the product LT K L.
This note explains how FETI solvers exploits the parallelism inherent in the representation (1).

A more precise definition of L is required. L maps the unknowns to substructure unknowns.
Each row of L corresponds to a substructure unknown and each column of L corresponds to a
structure unknown. In each row of L there is precisely one nonzero entry. L;; = 1 if substructure
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node i corresponds to node j. For example A := LT L is a diagonal matrix whose (4, §) entry is
the number of substructures sharing the jth global unknown.
The FETI approach is to decompose (1) into the three linear systems

LTp =f p not unique
Kus =p us not unique

us exists < p € R(K)
Lu=u, uexists <= u, € R(L)

Here R(L) denotes the range of L. The constraints that u, and u exist determine p and wus.

Because K is singular, it is necessary to compute the action of the pseudo-inverse, K +,
on a vector. We digress to discuss this task in detail. A stable algorithm for computing K+
involves using the eigendecomposition of K which is too costly. An efficient method is to use
the factorization K = LDL7 to determine the null space A(K). In general pivoting during
the factorization for stability reasons. Using the properties of solid elements, we are able to
permute the subdomain unknowns so that on connected subdomains pivoting is unnecessary
until near the end of the factorization. At that point an eigendecomposition is used. The major
problem with this technique is that so far we have been unable to ensure that the subdomains
are connected.

Particular solutions to the first two equations are $:= LA~!f and 4, := K*p. The general
solutions can be written in the form p =  — Nz, us = its — Ny@r and u = A7 LTy, where the
columns of N are a basis for the null space of L7 (that is LT N = 0), and the columns of N,
are an orthonormal basis for the null space of K. Let N'(K) denote the null space of K. The
symbol ) is typicly used in place of = to remind the reader that this is a vector of Lagrange
multipliers.

It suffices for the columns of N, to be ortho-normal and span N (K). In other words the
FETI formulation applies if extra columns are added to N.. For example one could include a
few extraordinarily small nonzero eigenmodes of a subdomain stiffness matrix.

There exist unique vectors z and z, such that u, and u exist. Because N(KT) = N(K) is
the orthogonal complement of R(K),

0=N'p=NTp- NNz
implies that p € R(K). Do the same thing for u; € R(L) and there appears

NTKtN NTN, z | _[ NTK*p
NIN 0 z || NTp

Section three describes how to solve this equation. Given the solutions z and z., one can then
compute first p, next u, and finally the (global) solution u.

3 The FETI Method

In this section the basic FETI method for solving the reduced interface linear system is devel-
oped. The indefinite interface linear system is first reduced to a symmetric positive semi-definite
linear system. Dirichlet preconditioning is used. The resulting iterative method is an instance
of a preconditioned conjugate projected gradient method [5].

We introduce a constraint matrix B which replaces the matrix N7 discussed in section 2.
The rows of B are of the form [...1... —1...] where the location of the two nonzero entries
corresponds to two unknowns that correspond to the same global unknown. If an unknown on
a given processor corresponds to several unknowns on other processors, then one row is added
to B for each constraint. Constraining two unknowns to be equal is achieved using Cz = [1 —1].
Constraining three unknowns to be equal is achieved using

1 -1 0
Ci3=|1 0 -1
0 1 -1




Constraining n + 1 unknowns to be equal is achieved using

e -1
C"*“[o Cn]

where e is a vector of ones of appropriate length. A remarkable property of this choice of
redundant constraints is that CxCf has only one nonzero eigenvalue, k, with multiplicity k —1.
The null space of CxC? has dimension (k — 1)(k — 2)/2.

Solution of the symmetric indefinite linear system
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can be problematic for iterative solvers such as SYMMLQ. The preconditioned conjugate pro-
jected gradient method (PCPG) solves an equivalent constrained positive definite system.
The eponymous projector in PCPG annihilates G,

M=1I-GGTG) G .
Multiply row 1 of equation (2) by II to eliminate y from
IFz + NGy =MFz =1ld.
Note that once = has been computed, y is determined from
(GTG)y=GT(d - Fxz).

To compute ¢ approximate the correction ¢, z = ¢+ %o, to o = G(GTG) 'e. Now GTzp =e =
GTz implies that GT¢ = 0. Thus ¢ = Ilc solves

(IIFM)c = I1(d — Fxo)

It is possible to view FETI as a multilevel method with coarse space N(K) and coarse space
preconditioner (GTG)~*. G = BR where the rows of B, [...1...—1...], act like a gradient
operator. Thus GTG contains a product of gradients, like a Laplacian. And (GTG)™! acts
like an inverse Laplacian preconditioner, suitable for second order elliptic partial differential
equations.

A Dirichlet preconditioner F is an approximate inverse of F = BK +BT. To define F, more
notation will be needed. Let p denote the number of substructures and let K; and B; denote
the substructure stiffness and constraint matrices:

K = diag(K1,...,Kp)  B=[Bi,...,B,]

Then F = £;B; K} BT. Our goal is to define a kind of inverse of B;K;*BT. Each row of B
represents a constraint and is of the form [...1...~1...]. But the columns of B that correspond
to interior nodes vanish. We define B; to be the matrix obtained by deleting the zero columns
from B;. If a global unknown corresponds to an unknown on only one subdomain, then the
corresponding subdomain unknown is called an interior unknown. But if a global unknown
corresponds to unknowns on more than one subdomain, then the corresponding subdomain
unknowns are called boundary unknowns. Thus B; K Bf = B; X; BT where X; consists of the
elements of K that correspond to boundary nodes.

Next we show that X; is a Schur complement of K;. Since we will be discussing one sub-
domain only in this paragraph, the subscript 4 is dropped. K can be permuted so that interior
unknowns precede all boundary unknowns. In this case,

K= Ki K | _ I 0 K;; K;
| K Ko | | KuKz' I 0 S

where S = Ky — Kpi ¥ K;;' Kip. If S were nonsingular then

K-1= K;' —K;'KypS™? I o] _[#* =
-1 0 Ss! ~KuK;' 1| |+ S77




and X = S~

Dirichlet preconditioning approximates the inverse of the sums, F* = (; E;S,-'*' BT)* by the
sum of the inverses F' = 5;B;S; BT .

The effectiveness of the Dirichlet preconditioner is enhanced by including a diagonal scaling
matrix W=! and using W™FW ™! as an approximate inverse of F [6]. The scaling can be
derived in the special case in which each K; = I [16]. First observe that F =F = BBT.
The matrix BBT can be permuted into a direct sum of matrices of the form CrCOT and the
zero matrix. Recall that Cxk~'C7T is a projection. We define W = diag(Wh, ..., W) where the
(k, k) entry of W; is the number of unknowns in any subdomain that correspond to the same
(global) unknown as the k-th boundary unknown on the i-th subdomain. Then (in the special
case K; =1I) WI2pW—Y2 55 a projection and Ft=w-1pw-1,

In summary, the basic FETI method is implemented as follows.

Initialize: z9 = G(GTG) e and 1o =d — Fz
For k=1,2,..

1. wi—1 =Irg—1

2. Zx-1 = W=IEPW ™ wg_y

3. yr—1 = Iz

4. Ce-1 = Yi-12k-1/Yi22k—2  (C1 =0)
5. pk = Yk—1 + Ppe-18k-1  (p1 = 0)

6. pr:=(I —PQ'QT)px (k>0)

7. P(:,k) =px

8. Q(:,k) = Fps

9. Q(k,k) = P(:, k)T Q(:, k)
10. vp = Y71 2k-1/wk
11. ok = Tk-1 + Pk

12. 1 = 1r—1 — Q(, k)vk
Remark. In steps 6, 7 and 8 the search directions are stored and the current the search
direction is explicitly re-orthogonalized against all the previous search directions. This extra
work is observed to be worthwhile [12].
Remark. Iteration stops once ||wi|| < TOL}jwo|l. The reduction in |lw|| is observed to be
proportional to the reduction in |[|Au — f||.

4 Eigenvalue Problems

In this section the FETI method is applied to a few model generalized eigenvalue problems.
We first discuss the extension of the algorithm to eigenvalue problems and we conclude with a
summary of proposed future work.

A given structure is first decomposed or partitioned using the DOMDEC decomposition
package [4, 13, 7]. Using DOMDEC makes it possible to determine subdomains with low geo-
metric aspect ratio, which is critical for FETI [5].

To apply the FETI method, it is necessary to solve many linear systems which coefficient
matrix GTG. We use a full sweep of the conjugate gradient method with stable DKGS [3]
reorthogonalization to compute the decomposition (GTG)™! = PD™ !PT where D is diagonal
and save P and D. This algorithm is scalable, simple to implement and easy to adapt to more
complex applications (e.g. singular GTG). More efficient algorithms could be used here, such
as a parallel sparse direct solver. But for eigenvalue problems the cost of inverting GTG is
amortized over many solves, and the difference in cost of these approaches is insignificant.

The PARPACK package is used in shift-invert mode to compute the smallest eigenvalues of
(A, M). The tolerance used is 7 = 10ne where ¢ is the machine precision and n is the number
of global unknowns. The FETI method is used to compute u such that |[Au — f|| < 7{|f]l.




In our first set of model problems are steel cubes clamped at one face and discretized using
brick elements. The substructures are irregular. First we applied to FETI solver to various
problems, holding n/p the number of unknowns per processor fixed.

Grid | Procs | Iters
6° 8 20
12° 64 | 37
18° 216 41
243 512 | 43

We observed that the number of iterations required to solve the linear system to a fixed accuracy
grew modestly with the number of processors.

Next we applied the eigensolver to a 32 x 32 x 32 cube, in which case there are roughly 100K
unknowns, and computed the smallest mode using different numbers of processors.

Procs | Time
(Min)

64 24
125 11
256 6

We have also computed the smallest mode for a 64 x 64 x 64 cube with 800K unknowns. This
computation too 36 minutes using 512 processors. The time to compute additional modes
increases roughly linearly in the number of requested modes. '

We have also applied the FETI solver to a family of model structures with more complex
geometry. These structures are challenging to model because one of the materials is a rubber
whose stiffness is a factor of one million less than the stiffnesses of the other metal materials.
For a model with over one million unknowns, we have attempted to reduce the residual error
by a factor of approximately 10~°. For these applications a generalized scaling of the Dirichlet
preconditioner is used. If a global unknown corresponds to unknowns i on subdomains px,
then the entry of W that corresponds to 3; is

(SRK I ) /KT
instead of $;1 [8]. But after 600 iterations the residual had only been reduced by a factor of
10~5. If the rubber is removed from the structure, then FETI converges in 275 iterations. In
this case we are able to compute the 10 smallest modes of the system in approximately six
hours using 256 processors. And if all of the materials are replaced by a single material, then
200 iterations suffice to solve a typical linear system.

Future work on this approach starts with modifications to FETI necessary to solve highly
heterogeneous problems. We are experimenting with modifying the decomposition, the scaled
Dirichlet preconditioner and the coarse space. Next extensions to solve linear systems in which
the stiffness matrix is singular are needed. In this case it is possible to determine N'(4) from
N(GTG) [1, 2]. Experiments with an eigensolver based on inexact solves, such as a restarted
Jacobi-Davidson method are needed [14, 15]. Techniques to (usually) detect missed modes by
restarting will need to be included. A check for degeneracy, N'(4) N N(M) # 0, given N(4)
is needed. And enhancements of the graph partitioning software are needed to ensure that
each subdomain has one connected component, to ensure that all brick or wedge elements are
connected at at least three vertices to other elements in the same subdomain and to align
subdomains with certain material interfaces.
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