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MEASUREMENT OF MAGNETIC FLUCTUATIONS ON ZT-40(M) *

by
Guthrie Miller

Lo8 Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

The mathematical basis for experimental measurement of magnetic fluctuations in a
Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frrune-

work for emalysis of the five-fixed-probe technique. The exprapolation of edge-measured/),

fluctuations intc _he plasma is discussed. Correlations between magnetic and other fluctu-

ations expected from a quasi-static model are derived and transport-relevant correlations

are discussed. Data from ZT-40(M) axe presented.

I. INTRODUCTION

Magnetic fluctuations a_ld the associated field line stochasticity provide the key to un-"

derstanding maa_y of the special features of plasma behavior in the Reversed Field Pinch

and other magnetic confinement devices. It seems very importaalt, then, to begin a con-

certed wide-spread program of experimental measurement of magnetic fluctuations, 0aid

indeed, such a prograan is underway at several laboratories. Of particular interest are

fluctuation quaaxtities of direct relevaalce to transport. These are principally the magnetic

field diffusivity Dm(r) and the Chirikov (island overlap) parmneter S(r). Hutchinson ct.

al. 1 have discussed estimates of S in the edge region obtained from external edge mea-

surements of/_0 and/}¢. Measurements of D_(r) emd S(r) have been reported by Miller

ct. al. 2 using direct edge measurement of /},. These measurements used a simplified

five-probe technique to determine the mode spectrum, rather than mapping out the entire
spatial atttocorrelation function. This technique, based on the method of Beall ct. al. 3 will

be discussed in more detail in this paper. Magnetic fluctuation measurements are being

carried out also on the REPUTE a and MST s Reversed Field Pinch experiments.

The ZT-40(M) measurements utilized the five probes shown in Fig. 1., each measur-

ing three components of B. The probes were protected from plasma daanage by Boron

Nitride shields surrounding the ceramic vacuum jackets, allowing the centers of the coils

to be inserted 1 cm into the plasma for shortened-time 60kA discharges. Figure 2 shows

the withdrawn and fully inserted positions _,f the probes relative to the bellows vacuum
chamber.

Each probe had three pickup coils bifilar wound on a 11 mm long by 3 mm diameter coil

form, with center tap grounded to a 0.0005-in-thick stainless steel electrostatic shield. The

coils had an NA of about 10 cm _. Twisted pair cable and differential-input preamplifiers

were used. Signal differe,_.cing was used to minimize bit error, with 1024 level almlog-to-

digital conversion, at a sampling rate of 1 MHz.

* Work performed under the auspices of the U. S. Department of Energy
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II. MODE SPECTRUM AND RELATED QUANTITIES

In this section some mathematical background is presented. A nunlerical example, an

analytical fit to the mode spectrum measurenlents of Ref. 2, is also discussed. A toroidally-

curved, cylindrical coordinate system will be used, with coordinates r, 0, and ¢, where r is

the minor radius, 0 is the poloidal angle, and ¢ is the toroidal angle. The m_jor radius R

of the torus is assumed to be large compared to the minor radius r, so that the geometry

is approximately cylindrical. The fupdamental magnetic field fluctuation quantiti,:s will

be takenas the mode amplitudes br_(r,t) in tlm Fourier decomposition of B,(r, 8,¢, t),

B, = Z b,_,,_ exp[i(m_ -_-he)]. (1)
rrt, lt

Since Br is real, we have the relation

(2)

between amplitudes with positive and negative mode numbers.
From V. B -- 0, the surface integral of B, over a cylindrical surface is zero,

0 = / B,. 27rd_27rd¢_ b0,0, (3)

which implies that the Fourier amplitude b0,0 is zero.

Several different averages will be used subsequently: 1) time averages over some time

interval for a particular shot at fixed spatial position, 2) shot-to-shot averages at fixed

times and spatial positions, and 3) spatial averages over 0 and ¢ at fixed times and shot

numbers. Three simplifying assumptions allowing these different averages to be related to

one another will be made' 1) that the fluctuations axe stationary in time so that average

quantities are time translation invaxiant, 2) that shots axe statistically identical so that

averages are independent of shot number, and 3) that there is approximate cylindrical

symmetry, so that averages are cylindrically invariant. With these assumptions, all of the

different averages are equal. Experimentally, it is usually most convenient to use time and

shot-to-shot averaging. The time average Q is defined by

-- fo T dtQ- -_O(,,, o, ¢, t), (5)

and Q is assumed independent of 0 and ¢. This is a useful approximation but not. an

exact relation. In a real toroidal plasma there is not exact cylindrical symmetry and Q

does depend somewhat on _ and ¢.1 Theoretically, it is sometimes advantageous to use

cylindrical averaging over 0 and ¢. Thus we define the cylindrical average (Q) of Q(r, _, ¢,t)
a_

(O)= (4)

By assumption (Q) is independent of time. If Q is independent of 0 and ¢ and (Q) is

independent of time, then Q - (Q), since (Q) = (Q), and Q = (Q) = _ = (Q).

2



An importaa_t quantity is the spatial autocorrelation function, defined by

<B.(1)B.(2)> <B.(1)B_(2)>
c(zx0, zx¢) - = (6)

v/(B2(1))<B2(2)> <B_> '

where the axgmnents 1 and 2 refer to points with different O's and O's. In the surface
average, the separations AO = 01 - 0_ aald A c = ¢1 - ¢2 are kept constant. Substituting
Eq. (1)into Eq. (6), we obtain

C(A0, AC) - (B_) IB_,,_(r, t)2 exp[i(rnA0 + nAC)]. (7)

Equation (7) shows how the mode spectrum [bm,r_[2 determines the spatial autocorrelation
is function. Fourier traalsforming, the inverse relation is

f dzXOdzX¢b_,,,I_- <B_> C(AO, A¢)exp[-i(mAO + nA¢)] 2_ 2,r ' (8)
_,

Equation (8) is the basis of the primary experimental method for determining the mode
spectrum. For example, a cross array of probes spamfing 0 azld ¢ sepaxately, as shown in
Fig. 3, allows determination of C(AO, A¢) and hence Ibm,_12. Any AO, A c combination
can be obtMned from measured points on tlm cross array.

In the case where the magnetic field is stochastic, field lines execute a random walk.
The average radial displacement squared, in traveling a distazace I along the meazl field, is
given by

foo'1' drdr<(z_)_->= dz, dZ_<__>. (9)
But

dr Br
_ (lo)dl B

so that

/o'/o' 1((At) 2) = dll di2 _-_(B.(1)B.(2)>. (11)

The average in the integrand of Eq. (11) is just the spatial autocorrelation function C(81 -
02,¢_ -¢_) times (B2>, which is dependent only on the difference of the O's and ¢'s. Thus,
wewrite

<B_>lo' '-"<(At) 2> - B2 dt= f d(AI)C(AO, A¢), (12)d-12

where Al _=_l l - 12, Along an unperturbed field line,

Bo AlAO-

B r (13)
AC- B_ AzB R'
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Substituting Eq. (7) for C into Eq. (12), we obtain, for l ---*c¢,

l 21rR

((z-Xr)2)-B B B,l _ Ib._,,,25(n+ roq), (14)
Wt_rt '

where the safety factor q is given by q = rB¢/(RBo).

The magnetic field diffusivity Dm is defined by the relation

((Av)_> = 2D_l. (15)

The factor of 2 results form the primary definition of Dm as the constmlt in the Folker-

Plaalk equation (for simplicity in slab geometry)

afm o_fm
O1 -- D,,_Ox-----5-, (16)

where fm is the field line distribution function. i''s A solution of Eq. (15) is

f.,(_ - _,l) = 1 (_- _):
_2 exp[- 4Dml ]' (17)'"

where xi is the initial location of the field line. This gives

= d(Ax) = 2Ornl, (la)

where Ax -- a: - xi. Equation (18) has the factor of 2 as in Eq. (15).

Comparing Eqs. (14) and (15) we see that

7rR

D,,_ - BIB¢ I E Ib'_,'_125(n + roq). (19)

For m = 0, the only contribution comes when n + m/q = n = O. But b0,0 = 0 from Eq. (3)

so, using Eq. (2),
27rR

D._ - BIB¢ I E b..,,,_ 25(n +miq), (20)I'L

that is, Dm caal be written as a sum over positive m values.

The along-field autocorrelation length is defined by the relation

_ (B_)
D.__ B_ " l_. (21)

In terms of the spatial autocorrelation function,

//1 d(AI)C(AO, A¢). (22)
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Reference 2 used the following analytic form to fit the mode spectrum measured o11

ZT-40(M):

gr r_20 "2

]bm,=l 2 <(B,)2} _ {eS,_,0 exp( 2 )+(1-e)5,_,lexp[ -(n+N)2crs= -_ 2 ]}' (23)

with (r = 0.1, e = 0.1, emd N --- -15. The case m = n -- 0 is special as already discussed

aald bo,0 = 0. Equation (2) implies the symmetry operation m -_ -m, n _ -n, so the
vn = 1 term should actually be sepea'ated into two terlns, one with m -_ -m and n --. -n,
each term with a factor of 1/2.

The spatial autocorrelation function is obtained from the mode spectrmn using Eq. (7).

We will approximate the summation over discrete n values as un integral over continuous

values. Using Eq. (23) in Eq. (7) und doing the integral over n we obtain

(AC)si (24)
C(AO, A¢) = e{exp[- (&¢)2] -- _-_cr} +(1 - e) cos(A0 + NA¢)exp[ 2cr2 j.2(72

The temn multiplied by e is Eq. (24) results from the rn = 0term in Eq. (23). Note that

because b0,0 = 0, this term gives 0 when integrated over AC. Thus it does not contribute"

to Dm or le. Using Eqs. (22) m_d (24), We obtain for lc,

S .- 6r2

lc = R _-_ crv/2_:(1- e)exp [--_(N- 1/q)S]. (25)

At the reversal surface, where 1/q _ ox), lc vmlishes, counterintuitive to the motion that

m - 1 leads to lc _ ro. The transistion from magnetic surfaces to stochasticity is thought

to occur when the Chirikov paraaneter S exceeds 1_ where S is the ratio of virtual isla_ld

width to spacing between islands. Theoretical studies _ have mostly been of the case of two

islunds_ so the Reversed Field Pinch case with many islaalds is more uncertain_ nevertheless_

S >_ 1 throughout most of the plasma would seem to reasonably indicate stochasticity, hl

terms of the safety factor q(r)_ the Virtual islmld width is given by

b,_,,_Rqw = 4 Bcn(dq/dr) I, (26)

where bm,,_ combines positive and negative m as in Eq _.(23). The distance between m = 1
islands is given by

At= [ q
n(dq/dv) I. (27)

Thus,

S - 4Ib '=R n(dq/dv) I (28)
Be q

Near the q = 0 surface (the reversal surface), m = 0 islands with different n values interact

with each other and with m = 1 islands. But m = 0 is a special case, already indicated by



the fact that m = 0 does not contribute to Dm. The s.it,tation near the reversal surface is

far from clear.

An important quantitative measure of chaos is the Kolmogorov-Lyaptmov scale length,

which is the length over which a tube of flux chazlges its shape, as shown in Fig. 4. Reference

10 gives a formula for L K, derived using a slab approximation. After some manipulation,
the result of Ref. 10 can be stated as follows:

LK _ 2.75( L_A)2/3(D-___)-1/3, (29)
rO rO 7"0

where L, is the magnetic shear scale length. Reference 11 suggests the following formula

for L, in cylindrical geometry,

Bq (30)
L,- Bo(dq/dr)"

For the case where there are only m = 1 and m = 0 fluctuations, as in the azmlytic

fit given by Eq. (23), a one-to-one relationship exists between the m = 1 mode spectrum

absolute amplitude and tlm quaaltities Dm, S, aaad LK. That is, one qumatity is determined

by any of the others. ..

III. QUASI-STATIC DRIFT MODEL

In this section a mathematical model, the quasi-static drift model, is introduced as a

fraanework for analysis of the five-fingered probe technique. The quasi-static drift model

is defined as follows. Consider a fluctuating quantity Y(8, ¢, t). Iii the quasi-static drift
model Y is assumed to be of the form

Y = E ym,_(t) exp{i[(mO + he)+ wm,n(t)t]}, (31)

where the time variation of Ym,n (t) arid Wm,n (t) is small. Neglecting this time dependence,
the fluctuations consist of static spatial modes, with nmde munbers rn mid n_ drifting with

constant velocities va - -roWm,n/m mid v¢ - -Rowm,n/n. Because Y in Eq. (31) is real,
we have

Y--?Tt,--_ --- Y_,_

and Eq. (31) can be written as

Y = E 2[ym,,_[ cos(m0 + n¢ + _v,_,,_t + a,_,,_)
m:>O

" (32)

+ 2yo, + +

where
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Equation (32) shows that the fluctuations as'e drifting waves With amplitudes Ym,_ aald

phase angles am,_.

One motivation for this model is tlm physical picture of rotating magnetic islands,

where the source of the magnetic perturbation is the magnetic islmld structure. In the

Reversed Field Pinch, the source of the low frequency magnetic fluctuations, while pr'-bably

not islmlds, could be some concentration of current on the rational surface resonant for a

particular mode, having integrity over enough time to be describable as a drift-like motion.
If we define the Fourier trmlsfomx Y,, as

fT/_. Y(t)e -i_t dt, (33)
E, ¢-T/2

then, frgm Eq. (31),

Y"J = E ym,n exp[i(m8 + n¢)]21r6T(Wm,n - w), (34)
rrt , rt

where

sin(aT/2)
6r(X) =_ . (35) •

71"X

The power spectrum Y_I 2 is given by

}% (36)
TI_I In '#

We now define the wide spacing approximation as

(wm,,_ - Wm,,,¢)T > 2.. (37)

When the wide spacing approximation holds, the product of the 6T's in Eq. (36) is as shown

in Fig. 5, and it is a good approximation to make the replacement _T _ limT--oo 6T = 6,

where 6 is the Dirac delta function. Using this approximation,

6T(W,_,,_ -- W)6T(Wm,,,_, -- w) --_ 6T(Wm,, -" W)6T(W,_,,,¢ -- ¢O,n,,_). (38)

The wide spacing approximation implies that 6T(Wm,,,V--wr_,,_ ) --* 6m,m,6,_,,¢T/(2_r), where

6m,m' is the discrete delta function, from Eq. (35).

Equation (36) will now be averaged a frequency interval Aw large compared to the

minimum nonzero spacing between mode frequencies wr_,r_ -- Wm',rV. In the average over

frequency,

(39)[ '
since, referring to Fig. 5, the integral in Eq. (39) is the count of the number of 6-function

spikes in the interval Aw. With these approximations, the frequency-averaged power spec-

trum is given by

f __ __ Onw,m]Y"_ 2dw -2_rTE ym,n.,., 21--_-- IAn. (40)
mit
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Thus we see that the power in frequency interval &w is related to the spatial mode spectrum
in mode number interval [On/Ow[Aw.

Using similar arguments we cml demonstrate the following:

--_ ]Y,,,n---(yS). (41)

Also,

. Y(9+AO,¢+A¢)Y(O,¢)= Z ym,n2exp[i(mO+n¢)]. (42)
.v.y.

7T_ t _,

The relationship used to determine the spatial mode spectrum, using fixed probes separated
in the 8 _md ¢ directions is

Y,(o+ A0,¢+ = (43)

which relates the cross power spectrum of spatially displaced signals to the mode spectrum
aaxdm and n of the modes. As in Eq. (39), the cross power spectrum is averaged over a
frequency interval Aw, which is small yet contains many of the discrete frequencies w,_,,_.'"

The simplest application of Eq. (43) is for the case when one m dominates. In that case
the phase angle of the cross power spectrum varies with spatial separation like exp[i(mAO+
nAC)] and measurements for one separation in 0 and one separation in ¢ (four probes in
all) suffice to determine m and n and the spatial mode spectrum. The mode spectrum is
given by

[y._,.]2 = f Y','Yd a'' , (44)
TI_IZXWo,.,

with m and n determined by the phase angles for the separated measurements.
In actuality, the magnetic fluctuations in all Reversed Field Pinch consist mostly of

m = 1, 0, and -1. Using probes separated across a minor diameter (AO = ct), one directly
measures the relative amounts of m = 1 and m -- 0 (m = 0 is found to be about 10%
of m = 0). However the four-probe technique, using the dominate mode approximation,
overestimates m = 0, as shown schematically in Fig. 6. This is because m --- 1 and m = -1
together lead to a spuriously large inferred m - 0. With the five-probe method, the fifth
probe is used to unambiguously determine the m = 0 component. The n-spectrum of
m = 0 is assumed to be similar to that of m -- 1.

Unlike the case for electrostatic fluctuations_ 1 the drift velocities for magnetic fluctua-

tions observed on ZT-40(M) are not constant as a function of frequency (or mode number).
Data are shown in Fig. 7 for three cases_ normal baalk polarities, Be reversed, mad Bo and
Be reversed. If a,,,(AO) and a_(A¢) are the measured phase aagles for the cross power
spectrum at separations AO and AC, then

¢0

vo = c_(AO)rOAO
w (45)

v_ = RA¢.
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The reversals of Bo and B e show that the drift velocity is of the form v _ P x B (as for the

diamagnetic drift). Tile coefficient, however, changes sign with frequency. Typical drift

velocities are in tile range re, v e _ 2 - 5 × 10_ cm/s.

The wide spacing approximation, Eq. (7), is most difficult to satisfy for modes having

n numbers differing by !. In this case, writing _ = -nv e/R,

AwT veT
= _ _2.4> 1,

2_r 2zrR

for v¢ = 3.5 x 10 _ cm/s, T - 0.5ms, a_d R = 114cm [as in ZT-40(M)], meaning that the
wide spacing approximation is indeed valid for this case.

IV. EXPRAPOLATION OF/9, INTO PLASMA

Using the present experimental technique, with stationary probes, th' magnetic fluc-
tuation measurements cml be done without damaging the probes only in the edge region

for limited duration, low-current discharges. The measurements clearly show chmlges of

fluctuation level (aald even steady vertical field level) as the probes are inserted into the

plasma. This is attributed to the expected variation of/_,(r) with r, which is particu--"
laxly important near the edge, since B,. vmlishes at the effective conducting wall (see Fig.

8). In the actual experiment, what plays the role of the conducting wall is a function of

frequency. The liner bellows provides a conducting wall botmdary condition for high fre-

quency fluctuations, but for low frequencies, magnetic fields penetrate the liner and extend
out to the thick aluminum shell (,-_ 0.1 ro outside the bellows in ZT-40M). The quantity

Ar = B,/(OB_./Or) was calculated using the relation V. B = 0 to obtain OB,/Or from

OBe/cO0 and c9B¢/0¢ measured with the four-fingered probe. Figure 9 shows AT; versus
frequency for two probe insertions: 0 a_ld 1 cm beyond the bellows. The curves are dis-

placed by about 1 cm as expected. The variation of Ar with frequency is characteristic

of the outer boundary condition and, to some extent, of the mode spectrum. For a single
mode

/Xrsl

ar --F(w) I- Arzp, (46)

where Arsi is the separation between shell and liner, Artp the separation between liner

and probe, and

F(w) = iwAr_lf5 m _ + k2a 2
77 f2m2 -b k2a 2 + 1, (47)

with _ the liner thickness, 77the liner resistivity, k = n/R, and f =(length of streched out

bellows)/(actual compressed bellows lengela), x2 Also shown in Fig. 9 is a fit using Eq. (46).

To calculate S(r), D(r), LK(r), aa_d le(r) using formulas given in Sec. II, the fluctua-

tion mode amplitudes bm,_ must be extrapolated into the plasma. This was done using the

quasi-static equation for bran(r), la assuming model equilibrium current profiles consistent

with the experimental constraints. Figure 10 shows exmnples of the radial dependen-

cies obtained for dominant modes. Generally, bm,_(r) does not satisfy the two required

bouaadary conditions, at the outer conducting wall and at the origin, so the two solutions



obtained by integrating out from tb,e origin and in from tlde wall join with some discontinu-

ity in derivative. Since Br is contilmous, tile two solutions themselves must come together .

continuously. The point where tide two solutions were brought together was the singular
surface, if one existed for the particular mode, or at v0/2 if there was no singular surface.

The sign of &', the discontim, ity of the radial derivative of B,. divided by B,, indicates

the mode's resistive stability (assuming ideal stability): A, > 0 unstable, A' < 0 stable.

To extrapolate B, into the plasma we need the shape of the eigenhmction. This is

not strongly influenced by details of the equilibrium profile_ even though the sign of A'

is dependent on details of the equilibrium profile. The radial eigenfimctions calculated

assuming two different equilibrium ctrrrent profiles consisten_ with _he experimental con-

straints (® = 1.5, F = -.1) are shown in Fig. 10 for m = 1, n = -15, and m - 0, n ---, 0.

Figure 11 shows a plot of A' as a function of n for m = 1 modes assuming the two profiles.

There is an unstable region from about n = -10 to n = -20. One profile is actually

ideally unstable near n = -10. The other profile has an unstable region near n = 100.

Details of the current profile thus affect the stability results. However, instability in the

raalge n __ -10 to -20 was eL_feature tkat occured for all of tile several profiles studied,

consistent with the maximum of the measured fluctuation spectrum.

The outer conducting wall boundary location for the bmrL(r) calculation was deter-..

mined using the value of Ar front Fig. 9 for the mean fluctuation frequency of 40 kHz.

Reference 2 gives plots of Dm(r). S(r), aa_d LK(r) obtained from the model mode spec-

trum given by Eq. (23) exprapolated into the plasma.

Ideally, the mode structure calculation would use a theory that included pressure

driven modes and related A' of the modes to the measured fluctuation amplitudes. Param-

eters of the j]I/B and p(r) profiles would be varied to fit calculated to measured fluctuation
amplitudes. The simplified calculation done here involves: 1) neglecting pressure-driven

modes entirely, 2) assuming a jll/B profile, 3) neglecting inertial effects (quasi-static ap-
proximation), and 4) using a marginal stability approximation, where the modes actually

present are assumed to be marginally stable, that is, to have A' _ 0, These approximations

seem valid tbr the largest part of the measured magnetic fluctuations in ZT-40(M), as for

example that part fit by Eq. (23). For the edge-resonant, pressure.driven modes that may
determine Reversed Field Pinch confinement 14, however_ a more accurate measttrement

technique to detennine the small, very high n mode amplitudes, and a better modeling

theory axe needed.

V. CORRELATIONS BETWEEN MAGNETIC AND OTHER FLUCTUATIONS

Certain correlations are clearly seen in the data. In this section a quasi-static model

that explains the largest part of these correlations will be discussed.

The quasi-static model is defined by the following equations:

C_n

+ v.(nv)= o, (4s)
v.v=o, (4,9)

E + v x B = nj, (50)

10



0A

E _ 0t V_. (5_)
B = V ×.. (52)

j x B = rp, (53)

j = V × B, (54)

Fluctuating qua_ltities will be denoted by a superscript "and are spatially resolved into

Fourier modes as in Eq. (1). The subscript m, n will be dropped for notational simplicity,

as well as not showing explicit dependence on r aald t. The radial derivative 0/0r is

denoted by '. A time derivative is denoted by '.

Reference 13 shows how Eqs. (52) - (54) imply the following:

/r m,

& = ,_ _Zk_ [T(_b)'- k,rb], (56)

i_ [k(_b)' - ro,bi, (SS)
Hz = m2 .._ k2_2

where tt -_--ill/B" Also,

3,=,$_, (sr)
_o=,& + ;_Bo, (59)
.;,=_,_,+_B,, (60)

with
irbtz t

f_ = rnBo + krBz"

A vector potential for the magnetic perturbations given by Eqs.(55) - (57) is _3

"_(_b)'+_b]. (6_)
"4" = m _"+ k2r 2 [_r

i_, (62),,io= _,
,_,=0. (63)

Substituting Eq. (51) into Ohm's law, Eq. (50), and dotting with B, we get, to first order

neglecting resistivity,

_/,_- _,6
= -_(_.Bo+ kB_)' (64)

The radial velocity obtained by crossing Ohm's law, Eq. (50), with B is given by

iB_/,+ i(k,.Bo- ,,.B.)_ (65)
_ - kB _ rB 2 "

11



Using Eqs. (48) oa_d (49), the density fluctuation h is given by

Vr, n t

h = - i(_., + k. v)' (66)

assuming time dependence ei'°t and with

k0 - --
P

k, - k,

where v = -0'_ × B/B 2 is tb_ rotation velocity caused by the radial electric field E, =
.--(I )t '

Figures 12 and 13 show sonle experimental data oncorrelotions from ZT-40(M). Figure

12 shows the correlation in phase aaxgle between/_,, mid 5 as measured by Laalgmuir probe

ion saturation current. ?igure 13 shows the correlation in phase aa.'.gle between/_,, and :_11
of hot electrons as measured by ml electrostatic e:'.ergy aaxalyzer.

Traalsport of particles results from the correlation

r. = (67)

From Eq. (66), the quasi-static model, xlfich accounts for most of the fluctuations gives

zero transport.

Transport of kinetic electrons along stochastic field lines obeys Eq. (67) except, that

Br
v. = vii-rf,

and we have a kinetic electron radial flux

1 ~ ~

(F_ i" ) = - e--_(B,.jll ), (68)

where Jll = -f efvtl dvll with f the electron distribution function. Equation (68) allows

direct experimental measurement of stochastic transport using 311measured by an electro-
static analyzer. A quasilinear calculation shows that

/ 0<;(F,ki") = IVll]B Dm -_ (--) dvll ,

where Dm is given by Eq. (20).

.'- VI__Summary ---"""

_i-d]h_,_thematical basis for the experimental measurement of the magnetic fluctuation

mode spectrum has been reviewed. A Gaussian fit of the mode spectrum, given in Ref.

12



2, has been used to calculate quantities of interest and the subleties involving the role of
m = 0 discussed.

The quasi-static drift model and the wide spacing approximation were introduced as

the framework for mlalysis of the five-probe technique. The drift velocities of magnetic

fluctuations are not constaalt, but depend on mode number, unlikethe case for electrostatic

fluctuations. This goes along with the nonlocal nature of magnetic fluctuations.

In order to derive qua_ltities of interest like magnetic diffusivity, the edge-measured

fluctuations must be extrapolated into the plasma. The quasi-static model is used for this

aald seems adequate for the current driven modes responsible for most of the magnetic
fluctuations.

Finally, the correlations between magnetic aald other fluctuations expected from the

quasi-static model are derived. Mostly, tl_is is what is actually seen in the data, except that

the important traa_sport-related correlations are not present in the model. The traalsport-

related correlations can be directly measured experimentally, but because they are not the

leading order effect the measurements must be done carefully.
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