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MEASUREMENT OF MAGNETIC FLUCTUATIONS ON ZT-40(M) *

by
Guthrie Miller

Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract
The mathematical basis for experimental measurement of magnetic fluctuations in a
Reversed Field Pinch is reviewed. A quasi-static drift model is introduced as the frame-
work for analysis of the five-fixed-probe technique. The exprapolation of edge-measured B..
fluctuations intc the plasma is discussed. Correlations between magnetic and other fluctu-
ations expected from a quasi-static model are derived and transport-relevant correlations
are discussed. Data from ZT-40(M) are presented.

1. INTRODUCTION

Magnetic fluctuations and the associated field line stochasticity provide the key to un-=
derstanding many of the special features of plasma behavior in the Reversed Field Pinch
and other magnetic confinement devices. It seems very important, then, to begin a con-
certed wide-spread program of experimental measurement of magnetic fluctuations, and
indeed, such a program is underway at several laboratories. Of particular interest are
fluctuation quantities of direct relevance to transport. These are principally the magnetic
field diffusivity D,,(r) and the Chirikov (island overlap) parameter S(r). Hutchinson et.
al.! have discussed estimates of S in the edge region obtained from external edge mea-
surements of By and By. Measurements of D,,,(r) and S(r) have been reported by Miller
et. al.? using direct edge measurement of B,. These measurements used a simplified
five-probe technique to determine the mode spectrum, rather than mapping out the entire
spatial autocorrelation function. This technique, based on the method of Beall et. al.? will
be discussed in more detail in this paper. Magnetic fluctuation measurements are being
carried out also on the REPUTE® and MST® Reversed Field Pinch experiments.

The ZT-40(M) measurements utilized the five probes shown in Fig. 1., each measur-
ing three components of B. The probes were protected from plasma damage by Boron
Nitride shields surrounding the ceramic vacuum jackets, allowing the centers of the coils
to be inserted 1cm into the plasma for shortened-time 60kA discharges. Figure 2 shows
the withdrawn and fully inserted positions of the probes relative to the hellows vacuum
chamber.

Each probe had three pickup coils bifilar wound on a 11 mm long by 3 mm diameter coil
form, with center tap grounded to a 0.0005-in-thick stainless steel electrostatic shieid. The
coils had an NA of about 10 cm?. Twisted pair cable and differential-input preamplifiers
were used. Signal differeacing was used to minimize bit error, with 1024 level analog-to-
digital conversion, at a sampling rate of 1 MHz.

* Work performed under the auspices of the U. S. Department of Energy
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II. MODE SPECTRUM AND RELATED QUANTITIES

In this section some mathematical background is presented. A numerical example, an
analytical fit to the mode spectrum measurements of Ref. 2, is also discussed. A toroidally-
curved, cylindrical coordinate system will be used, with coordinates r, 6, and ¢, where r is
the minor radius, 6 is the poloidal angle, and ¢ is the toroidal angle. The major radius R
of the torus is assumed to be large compared to the minor radius r, so that the geometry
is approximately cylindrical. The furdamental magnetic field fluctuation quantiti~s will
be taken as the mode amplitudes b,,,(r,t) in the Fourier decomposition of B.(r, 8, ¢,1),

B, = bpnexpli(mf +ng)]. (1)

m,n

Since B, is real, we have the relation

bmn"'bm -n (2)

between amplitudes with positive and negative mode numbers.
From V . B = 0, the surface integral of B, over a cylindrical surface is zero,

df do "
0—/ r{;ﬁ;_bo,01 (3)

which implies that the Fourier amplitude b o is zero.

Several different averages will be used subsequently: 1) time averages over some time
interval for a particular shot at fixed spatial position, 2) shot-to-shot averages at fixed
times and spatial positions, and 3) spatial averages over 6 and ¢ at fixed times and shot
numbers. Three simplifving assumptions allowing these different averages to be related to
one another will be made: 1) that the fluctuations are stationary in time so that average
quantities are time translation invariant, 2) that shots are statistically identical so that
averages are independent of shot number, and 3) that there is approximate cylindrical
symmetry, so that averages are cylindrically invariant. With these assumptions, all of the
different averages are equal. Experimentally, it is usually most convenient to use time and
shot-to-shot averaging. The time average Q is defined by

~ (Tat
Q 2/; ?Q(ra 0, qS, t)’ (5)

and Q is assumed independent of 6 and ¢. This is a useful approximation but not an
exact relation. In a real toroidal plasma there is not exact cylindrical symmetry and Q
does depend somewhat on 6 and ¢.} Theoretically, it is sometimes advantageous to use
cylindrical averaging over 6 and ¢. Thus we define the cylindrical average (Q) of Q(r,6, ¢, 1)

as Ny 21rd¢
o= [ 5[ sarse (4)

By assumption (Q) is independent of time. If Q is independent of § and ¢ and (Q) ie
independent of time, then Q = (Q), since (Q) = (Q) and Q = (Q) = Q) = (Q).
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An important quantity is the spatial autocorrelation function, defined by

(B-(1)B > _ (B-(1)B,(2))
V/(B2(1))(B2(2)) (B2)
where the arguments 1 and 2 refer to points with different 6's and ¢’s. In the surface

average, the separations A8 = 6, — 6, and A¢p = ¢ — ¢, are kept constant. Substituting
Eq. (1) into Eq. (6), we obtain

C(A8, Ad) = (6)

C(A6, Ag) = 32 }: | B n (7, t)|? exp[i(mA6 + nAP)]. (7)

Equation (7) shows how the mode snectrum |b,, »|? determines the spatial autocorrelation
is function. Fourier transforming, the inverse relation is

bl = (B2) [ (86, 8¢) expl-i(ma0 + nag) T2 22, Q
™ 2w

Equation (8) is the basis of the primary experimental method for determining the mode
spectrum. For example, a cross array of probes spanning § and ¢ separately, as shown in
Fig. 3, allows determination of C'(Af, A¢) and hence [bm n|2. Any A6, A¢ combination
can be obtained from measured points on the cross array.

In the case where the magnetic field is stochastic, field lines execute a random walk.
The average radial displacement squared, in traveling a distance [ along the mean field, is

given by
dr d'r' '
dl dly (——
f / & @, )
But J B
T i
i~ B (10)
so that

/dll / dly —= 32 B.(2)). (11)

The average in the integrand of Eq. (11) is just the spatial antocorrelation function C(8; —
62, ¢y — ) times (B?), which is dependent only on the difference of the 8’s and ¢’s. Thus,

we write el
2
(A f dl, / (06, M), (12)

where Al =1[; — l;. Along an unperturbed field line,

A9=%3l

. (13)
Ap= Be Bl
B R
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Substituting Eq. (7) for C into Eq. (12), we obtain, for [ — oo,
2\ - 2 b 2
(ar)) = 5 5ig,] 2 Pmunl*6(n +m/0) (14)

where the safety factor q is given by ¢ = rB,/(RBy).
The magnetic field diffusivity D,, is defined by the relation

((Ar)?) = 2Dl (15)

The factor of 2 results form the primary definition of D,, as the constant in the Folker-
Plank equation (for simplicity in slab geometry)

8 fm 8% fin
Zm o —m 1
ol Drm Oz?’ (16)
where fi, is the field line distribution function.”® A solution of Eq. (15) is
(z — a:-)2 ..
fmle = 2isl) @TD” P~ 5, ) ()
whére x; is the initial location of the field line. This gives
(Az)?) = /(Aw)zfm d(Az) = 2Dy,l, (18)
where Az =z — z;. Equation (18) has the factor of 2 as in Eq. (15).
Comparing Eqgs. (14) and (15) we see that
D, = bym,n | 26( 19
Bl 2 b 6l0 + /). (19)

For m = 0, the only contribution comes when n +m/q = n = 0. But bg, = 0 from Eq. (3)
so, using Eq. (2),
2R
D, = —— bin.n |26 , 20
n = B L brnlftln £ mfg) (20)

that is, D,, can be written as a sum over positive m values.

The along-field autocorrelation length is defined by the relation
(Br)
B2

D, = l,. (21)

In terms of the spatial autocorrelation function,

1 oo
= /_ 48D C(88, 89). (22)
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Reference 2 used the following ana.lytic form to fit the mode spectrum measured on

ZT-40(M):

o n20.2 n 2.2
b = (B = {ebmo xp(= - + (1 = o expl= PG}, o)

with ¢ = 0.1, e = 0.1, and N = —15. The case m = n = 0 is special as already discussed
and bo,o = 0. Equation (2) implies the symmetry operation m — —m, n — —n, so the
m = 1 term should actually be separated into two terms, one with m — —m and n - —n,
each term with a factor of 1/2.

The spatial autocorrelation function is obtained from the mode spectrum using Eq. (7).
We will approximate the summation over discrete n values as an integral over continuous
values. Using Eq. (23) in Eq. (7) and doing the integral over n we obtain

2 A 2
C(Af,A¢) = e{exp[—-(-%j-b}—] — V270 } + (1 - €) cos(A8 + NA¢) exp [—--(——z—gszl]. (24)
The term multiplied by ¢ is Eq. (24) results from the m =0 term in Eq. (23). Note that

because bg,o = 0, this term gives 0 when integrated over A¢. Thus it does not contribute™
to D,, or l.. Using Egs. (22) and (24), we obtain for .,

v 0‘2
[, = R‘—gqs—'ox/.—?,_fr(l — €) exp [-—-5-(N - 1/9)%]. (25)

At the reversal surface, where 1/q — oo, I, vanishes, counterintuitive to the motion that
m = 1 leads to [, & rg. The transistion from magnetic surfaces to stochasticity is thought
to occur when the Chirikov parameter S exceeds 1, where S is the ratio of virtual island
width to spacing between islands. Theoretical studies® have mostly been of the case of two
islands, so the Reversed Field Pinch case with many islands is more uncertain, nevertheless,
S > 1 throughout most of the plasma would seem to reasonably indicate stochasticity. In
terms of the safety factor g(r), the virtual island width is given by

bm.nRq |
Byn(dq/dr) !

w=4,/| (26)

where by, » combines positive and negative m as in Eq; (23). The distance between m =1
islands is given by

q -
Ar = |—————1. 2
"= 0
Thus,
S 4| bin Rn(dq/dr) |1/2.
By q
Near the ¢ = 0 surface (the reversal surface), m = 0 islands with different n values interact
with each other and with m = 1 islands. But m = 0 is a special case, already indicated by

(28)
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the fact that m = 0 does not contribute to Dy,. The sitnation near the reversal surface is
far from clear.

An important quantitative measure of chaos is the Kolmogorov-Lyapunov scale length,
which is the length over which a tube of flux changes its shape, as shown in Fig. 4. Reference
10 gives a formula for Ly, derived using a slab approximation. After some manipulation,
the result of Ref. 10 can be stated as follows:

Lic _ g 75(Leyprs(Bmy-vs, | (29)

To To To

where L, is the magnetic shear scale length. Reference 11 suggests the following formula
for L, in cylindrical geometry,

Bq
Bo(dg/dr)’

For the case where there are only m =1 and m = 0 fluctuations, as in the analytic
fit given by Eq. (23), a one-to-one relationship exists between the m = 1 mode spectrum
absolute amplitude and the quantities D,,, S, and Lg. That is, one quantlty is determined

by any of the others.

L,=

(30)

-

III. QUASI-STATIC DRIFT MODEL

In this section a mathematical model, the quasi-static drift model, is introduced as a
framework for analysis of the five-fingered probe technique. The quasi-static drift model
is defined as follows. Consider a fluctuating quantity Y (6, ¢,t). In the quasi-static drift
model Y is assumed to be of the form

Y = Z Ym,n(t) exp{z[(mb + n¢) + W,n ()2 ]} (31)

where the time variation of ym n(t) and wm (t) is small. Neglecting this time dependence,
the fluctuations consist of static spatial modes, with mode numbers m and n, drifting with
constant velocities vy = —rowp, n/m and vy = —Rowm n/n. Because Y in Eq. (31) is real,
we have

y-—-m,-—n = ym,n
Wem,—n = —Wm n,

and Eq. (31) can be written as

Y = Z 2Ym,n| cos(mb + ng + wm nt + tryn)
m>0

. ‘ (32)
+ Y 2lyo,nl cos(ng + wo,nt + o,n),

n>0

where

Ymn = |ym,n| exp('éam,n).
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Equation (32) shows that the fluctuations are drifting waves with amplitudes ym,n and
phase angles am pn.

One motivation for this model is the physical picture of rotating magnetic islands,
where the source of the magnetic perturbation is the magnetic island structure. In the
Reversed Field Pinch, the source of the low frequency magnetic fluctuations, while pr~bably
not islands, could be some concentration of current on the rational surface resonant for a
particular mode, having integrity over enough time to be describable as a drift-like motion.

If we define the Fourier transform Y, as

. aT/2 '
Y, = / Y(t)et dt, (33)
~T/2
then, from Eq. (31),
Y, = Z Ym,n eXp[i(md + ng)|2wbp(wm,n — w), (34)
where in(=T/2)
sin(z
= —, 35).
br(z) o (35)
The power spectrum |Y,|? is given by
1Yol Z Ym,nYmi 0 20T (Wi, n w)27r67~(wm/ n —w)exp[i(m—m')8+(n—n')p]. (36)

We now deﬁne the wide spacing approximation as
(wm,n il wm/'n')T 2 2m. (37)

When the wide spacing approximation holds, the product of the ér’s in Eq. (36) is as shown
in Fig. 5, and it is a good approximation to make the replacement ér — limr_.o 617 = 6,
where 6 is the Dirac delta function. Using this approximation,

61 (wmn = )50(mi = @) = S (mn — W)Br (Wt — Wmpn)e  (38)

The wide spacing approximation implies that §7(wms n/ —=wWm,n) — Om,m/6n,nT/(27), where
Sm,m¢ is the discrete delta function, from Eq. (35).

Equation (36) will now be averaged a frequency interval Aw large compared to the
minimuwm nonzero spacing between mode frequencies wy, n — Wm/,n. In the average over
frequency,

2

since, referring to Fig. 5, the integral in Eq. (39) is the count of the number of §-function
spikes in the interval Aw. With these approximations, the frequency-averaged power spec-

trum is given by
an,
SIS =T S o7 (40)

/id‘ﬁ Or(Wmp —w) — |3nw T |A (39)



Thus we see that the power in frequency interval Aw is related to the spatial mode spectrum
in mode number interval |On/0w|Aw.
Using similar arguments we can demonstrate the follnwing:

Vi /1’2~-—Z|ym,n12 vy, (a1)

Also,

Y(9+ 40,6+ AQ)Y (6,) = Y [ym,nl” expli(mf +ng)). (42)

m,n

N

The relationship used to determine the spatial mode spectrum using fixed probes separated
in the € and ¢ directions is

dw
2

9 w,m i(m n
/y (0 + A0, ¢ + AP)Y(6, ¢) - =Tzl.ym‘n|2|_%w_v_lAwe( A6+ng) (43)

which relates the cross power spectrum of spatially displaced signals to the mode spectrum
and m and n of the modes. As in Eq. (39), the cross power spectrum is averaged over a
frequency interval Aw, which is small yet contains many of the discrete frequencies wy, .
The simplest application of Eq. (43) is for the case when one m dominates. In that case
the phase angle of the cross power spectrum varies with spatial separation like exp[i(mA6+
nA¢)] and measurements for one separation in 6 and one separation in ¢ (four probes in
all) suffice to determine m and n and the spatial mode spectrum. The mode spectrum is
given by
j‘ }r Y-o- dw

‘an IA (44)

|ym.n|2
with m and n determined by the phase angles for the separated measurements.

In actuality, the magnetic fluctuations in an Reversed Field Pinch consist mostly of
m =1, 0, and —1. Using probes separated across a minor diameter (A8 = ), one directly
measures the relative amounts of m = 1 and m = 0 (m = 0 is found to be about 10%
of m = 0). However the four-probe technique, using the dominate mode approximation,
overestimates m = 0, as shown schematically in Fig. 6. This is because m = 1 and m = —1
together lead to a spuriously large inferred m = 0. With the five-probe method, the fifth
probe is used to unambiguously determine the m = 0 component. The n-spectrum of
m = 0 is assumed to be similar to that of m = 1. '

Unlike the case for electrostatic luctuations,! the drift velocities for magnetic fluctua-
tions observed on ZT-40(M) are not constant as a function of frequency (or mode number).
Data are shown in Fig. 7 for three cases, normal bank polarities, B4 reversed, and By and
By reversed. If a,(Af) and a,(A¢) are the measured phase angles for the cross power
spectrum at separations Af and Ag, then

w

Vg = —QW(AH) ToAH (45)
w

N v
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The reversals of By and By show that the drift velocity is of the form v ~ £ x B (as for the
diamagnetic drift). The coefficient, however, changes sigr. with frequency. Typical drift
velocities are in the range vg, vy & 2 — 5 x 10% cm/s. |

The wide spacing approximation, Eq. (7), is most difficult to satisfy for modes having

' n numbers differing by 1. In this case, writing w = —nvg/R,
AwT  vyT
—_——= 24> 1
2r  2nR 7

for vy = 3.5 x 108cm/s, T = 0.5ms, and R = 114 cm [as in ZT-40(M)], meaning that the
wide spacing approximation is indeed valid for this case.

IV. EXPRAPOLATION OF B, INTO PLASMA

Using the present experimental technique, with stationary probes, th: magnetic fluc-
tuation measurements can be done without damaging the probes only in the edge region
for limited duration, low-current discharges. The measurements clearly show changes of
fluctuation level (and even steady vertical field level) as the probes are inserted into the
plasma. This is attributed to the expected variation of Br(r) with », which is particu--
larly important near the edge, since B, vanishes at the effective conducting wall (see Fig.
8). In the actual experiment, what plays the role of the conducting wall is a function of
frequency. The liner bellows provides a conducting wall boundary condition for high fre-
quency fluctuations, but for low frequencies, magnetic fields penetrate the liner and extend
out to the thick aluminum shell (~ 0.17ry outside the bellows in ZT-40M). The quantity
Ar = B,/(8B,/0r) was calculated using the relation V. B == 0 to obtain @B, /0r from
8B¢/80 and 8B4/8¢ measured with the four-fingered probe. Figure 9 shows Ar versus
frequency for two probe insertions: 0 and 1cm beyond the bellows. The curves are dis-
placed by about 1cm as expected. The variation of Ar with frequency is characteristic
of the outer boundary condition and, to some extent, of the mode spectrum. For a single
mode ‘

Ar = o + Arip, (46)
)

where Ar,; is the separation between shell and liner, Ary, the separation between liner
and probe, and

iWwAr g f6 m? + k%a?
n 72m? + k242

F(w) = +1, (47)
with é the liner thickness, n the liner resistivity, k = n/R, and f =(length of streched out
hellows)/(actual compressed bellows length).}? Also shown in Fig. 9 is a fit using Eq. (46).

To calculate S(r), D(r), Lk(r), and l.(r) using formulas given in Sec. I, the fluctua-
tion mode amplitudes b, must be extrapolated into the plasma. This was done using the
quasi-static equation for byn(r),!® assuming model equilibrium current profiles consistent
with the experimental constraints. Figure 10 shows examples of the radial dependen-
cies obtained for dominant modes. Generally, by, (r) does not satisfy the two required
boundary conditions, at the outer conducting wall and at the origin, so the two solutions
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obtained by integrating out from the origin and in from the wall join with some discontinu-
ity in derivative. Since B, is continuous, the two solutions themselves must come together
continuously. The point where the two solutions were brought together was the singular
surface, if one existed for the particular mode, or at ry/2 if there was no singular surface.
The sign of A', the discontinuity of the radial derivative of B, divided by B., indicates
the mode’s resistive stability (assuming ideal stability): A’ > 0 unstable, A’ < 0 stable.

To extrapolate B, into the plasma we need the shape of the eigenfunction. This is
not strongly influenced by details of the equilibrium profile, even though the sign of A'
is dependent on details of the equilibrium profile. The radial eigenfunctions calculated
assuming two different equilibrium current profiles consistent with the experimental con-
straints (@ = 1.5, F' = —.1) are shown in Fig. 10 for m = 1,n = —15, and m = 0, n — 0.
Figure 11 shows a plot of A' as a function of n for m = 1 modes assuming the two profiles.
There is an unstable region from about n = —10 to n = —20. One profile is actually
ideally unstable near n = —10. The other profile has an unstable region near n = 100.
Details of the current profile thus affect the stability results. However, instability in the
range n ~ —10 to —20 was a feature that occured for all of the several profiles studied,
consistent with the maximum of the measured fluctuation spectrum.

The outer conducting wall boundary location for the dpn(r) calculation was deter-
mined using the value of Ar from Fig. 9 for the mean fluctuation frequency of 40 kHz.
Reference 2 gives plots of Dy (r), S(r), and Lg(r) obtained from the model mode spec-
trum given by Eq. (23) exprapolated into the plasma. ‘

Ideally, the mode structure calculation would use a theory that included pressure
driven modes and related A’ of the modes to the measured fluctuation amplitudes. Param-
eters of the jj /B and p(r) profiles would be varied to fit calculated to measured fluctuation
amplitudes. The simplified calculation done here involves: 1) neglecting pressure-driven
modes entirely, 2) assuming a jj /B profile, 3) neglecting inertial effects (quasi-static ap-
proximation), and 4) using a marginal stability approximation, where the modes actually
present are assumed to be marginally stable, that is, to have A’ & 0. These approximations
seem valid for the largest part of the measured magnetic fluctuations in ZT-40(M), as for
example that part fit by Eq. (23). For the edge-resonant, pressure-driven modes that may
determine Reversed Field Pinch confinement!4, however, a more accurate measurement
technique to determine the small, very high n mode amplitudes, and a better modeling
theory are needed.

V. CORRELATICNS BETWEEN MAGNETIC AND OTHER FLUCTUATIONS

Certain correlations are clearly seen in the data. In this section a quasi-static model
that explains the largest part of these correlations will be discussed.
The quasi-static model is defined by the following equations:

%t’l +Ve(nv) = 0, (48)
V.v=0, ‘ (49)
E+V><B=T?j, ' (50)
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. BA
E= o
Vo,

(51)

B=VxA, (52)

i Xx B = Vp, (53)
j=V xB, (54)

Fluctuating quantities will be denoted by a superscript ~ and are spatially resolved into
Fourier modes as in Eq. (1). The subscript m,n will be dropped for notational simplicity,
as well as not showing explicit dependence on r and t. The radial derivative a3/0r is
denoted by '. A time derivative is denoted by .

Reference 13 shows how Eqgs. (52) - (54) imply the following:

B, =b, | - (55)
; ™ (b)Y — kpurb
By = m[—;(r )' = kurb], (56)
~ i
= m[k(rb)' ~ mub), : (58)
where p = j;/B. Also,
37- = /J‘BM (57)
Jo = B + [iBg, (59)
.;z =/"'Bz +;aBza (60)
with
wrbu

o= mBe + krB,’
A vector potential for the magnetic perturbations given by Egs.(55) - (57) is?

i Ty

Ar -Tn2_kk2r2[kr(rb) + prb), (61)
~ b : ‘

Ag = o (62)
A, =0. (63)

Substituting Eq. (51) into Ohm’s law, Eq. (50), and dotting with B, we get, to first order
neglecting resistivity,

5 ibBe — @b (64
T i(mBe+kB,) )
The radial velocity obtained by crossing Ohm’s law, Eq. (50), with B is given hy
. iB,; i(krBy —mB,) =
Up = — szb + Bz . (65)
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Using Eqs. (48) and (49), the density fluctuation 7 is given by

O (66)
wtk-v)’

n =

assuming time dependence e**“* and witl1

kg

]

m
r

il
>

1
Ky y

where v = —®'f x B/B? is the rotation velocity caused by the radial electric field E, =
-, ’

Figures 12 and 13 show some experimental data on correlations from ZT-40(M). Figure
12 shows the correlation in phase angle between B, and i as measured by Langmuir probe
ion saturation current. Tigure 13 shows the correlation in phase angle between B, and 3'”
of hot electrons as measured by an electrostatic energy analyzer.

Transport of particles results from the correlation .

T, = (Ad,). (67)

From Eq. (66), the quasi-static model, which accounts for most of the fluctuations gives

zero transport.
Transport of kinetic electrons along stochastic field lines obeys Eq. (67) excent that

B,
Ur = 1) B
and we have a kinetic electron radial flux
(Tkm) =~ (B,5)) (68)
r eB r ” )
where j|| = - f e fv“ dv” with f the electron distribution function. Equation (68) allows

direct experimental measurement of stochastic transport using j; measured by an electro-
static analyzer. A quasilinear calculation shows that

| 8
(Tr™) =f|v||lBDmga;(%->~)dvn»

where D, is given by Eq. (20).

(.fs/%

——

o m——
<. VL. Summary
TTie Thathematical basis for the experimental measurement of the magnetic fluctuation
mode spectrum has been reviewed. A Gaussian fit of the mode spectrum, given in Ref.
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2, has been used to calculate quantities of interest and the subleties involving the role of
m = 0 discussed.

The quasi-static drift model and the wide spacing approximation were introduced as
the framework for analysis of the five-probe technique. The drift velocities of magnetic
fluctuations are not constant, but depend on mode number, unlike the case for electrostatic
fluctuations. This goes along with the nonlocal nature of magnetic fluctuations.

In order to derive quantities of interest like magnetic diffusivity, the edge-measured
fluctuations must be extrapolated into the plasma. The quasi-static model is used for this
and seems adequate for the current driven modes responsible for most of the magnetic
fluctuations.

Finally, the correlations between magnetic and other fluctuations expected from the
quasi-static model are derived. Mostly, this is what is actually seen in the data, except that
the important transport-related correlations are not present in the model. The transport-
related correlations can be directly measured experimentally, but because they are not the
leading order effect the measurements must be done carefully.
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