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CHAOS NEAR THE COULOMB BARRIER? -- MUCLEAR MOLECULEST

M. R. Strayer
Oak Ridge National Laboratory™
Oak Ridge, Tennessee 37831

I. [INTROBUCTION

Chaos addresses in part the long-time behavior of non-integrable mechanical sys-
tems and how such systems, even though completely deterministic, develop a degree of
randomness.! These concepts have been known for over 100 yearsZ and were first ad-
dressed in the context of nuclear physics by Fermi, Pasta, and Ulam3 30 years ago.

In present-day theoretical nuclear physics, the long-time mechanical behavior of
nuclear systems arises through the various classical and semi-classical limits of the
quantum many-body problem as, for example, in studies of the time-dependent Hartree-
Fock (TDHF) approximation,“ the nuclear partition function,5 fission lifetimes,® and
S-matrix elements.’ There is presently considerable interest in learning how to re-
quantize these types of classical motion8-12 and obtain a viable approximation to the .
quantum spectrum.

Hydrodynamic models of matter in heavy-ion reactions exhibit the characteristic
behavior of dissipative fluid flow,13 and details of the momentum transfer and par-
ticle multiplicities may be suggesting the formation of attractor regions in the re-
action phase space.!* 1Isoscalar and isovector heavy-ion monopole and quadrupole
giant resonances have been computed in 180 and “%Ca by examining the quasiperiodic
motion of these systems using the TDHF approximation.l® These calculations yield un-
quantized vibrational frequencies in good agreement with both the RPA and the GCM
methods and have the classical interpretation of being the most probable frequencies
of the RPA strength functions. Using the same method, Weissl1® studied the deep-
inelastic fragments of the “%a + “0Ca collision at a laboratory bombarding energy of
400 MeV. He computed large amplitude structures laying at energies of about 50 MeV
in excitation energy and suggested that these structures have many of the properties
of simple giant resonances. -

Other authors have addressed the question of guasiperiodic cluster and molecular
structures in both 1ight17-1% and heavy29-22 nuclei. In light nucleus collisions the
Tong-time quasiperiodic motion of a-like clusters gives rise to qualitative agreement
between theory and experiment23s2% and has stimulated a variety of experimental25 and
theoretical2® investigations searching for similar phenomena in heavy nuclei. A1l of

tv...th' whole worl's in a terrible state o'chassis!", s.0'casey, Act II Juno and the
Payceck.
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the TDHF work seems to predict the existence of highly nonlinear structures embedded
in the dynamics of heavy-ion reactions. The present work examines in detail the
classical behavior of the a + !%C and the '2C + 12C(0%) collision at energies near
the Coulomb barrier. The long-time motion of the compound nuclear system is identi-
fied in terms of its classical quasiperiodic and chaotic behavior. The consequences
of this motion are discussed and interpreted in terms of the evolution of the system

along a dynamical energy surface.

I1. TOHF FORMALISM

The theoretical foundations of the nuclear TDHF formalism have been extensively
reviewed in the literature,27-29 and only a brief discussion will be presented. The

most comprehensive treatment of the basic material is given in Ref. 28. We follow
the treatment of Xerman and Xocnin* who obtain the TDHF equations from the Schwinger

variational principle3? for the many-body action S, (set fi = 1)

t

s =I 2 dt <¥(t) | i3, - H| ¥(t)> (1)
t

in terms of the Hamiltonian of the system

A 1
H = T. += V.., 2
DRI (2)

where K is the one-body kinetic energy operator and V is the two-body interaction,
and where ¥(t) is the wavefunction of the A-nucleon system which is assumed to have
the form of a Slater determinant of time-dependent single-particle states y)(t)

+> +> 1 >
¥(ryeeorpst )] = =— det r,t)|f. 3

Equations of motion are obtained

§ <H>

i9,(F,t) e ey G
(4)
P4,(7,t) E—i—j;“’t—) A= L,
An independent functional variation with respect to y) and ¢:, where
<H> = <¥(r) | H| ¥(t)>. (5)
The Eqs. (4) leave the action (1) stationary and the function variation
§ <H> (6)

h(r,t) ‘Pl(ryt):m

defines the Hartree-Fock one-body Hamiltonian. These equations allow an interpreta-
tion in terms of classical field coordinates ¢A(F,t) and momenta “A(F’t)’
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which yield Hamiltonian'c equation for the field ¢) and its conjugate momentum LI

(7)

$.(Fyt) = 8<H>/6m (F,t)
A A (8)

. > +>
“A(r’t) -6<H>/6¢A(r,t).

Equations (4) are solved on a 3-D space time lattice39 for a series of initial con-
ditions specified by

lim ¢A(r?,t) + V2 cos(EA-F-eAt)xA(F-ZA/m t-8,)

trem
and (9)

lim nk(?,t) > V2 sin(?k-??ekt)xA(F-zklm t-8, )

tr-=
where
th(F) N xx(r’), A= 1,...,A.

are solutions to the initial static Hartree-Fock equations. We solve both the static
and the dynamic Hartree-Fock equations, assuming axial symmetry in cylindrical polar
coordinates. Details of the method are given in Ref. 30, and we employ the local
finite-range3! (BKN) form of the Skyrme force without any spin-orbit forces. The
choice of the BKN force is motivated in part by our desire for a realistic treatment
for vibrational motion in light nuclei and the known failure32 of the nonlocal Skyrme
forces to describe harmonic vibrations in these nuclei.

The wavepacket initialization, Eq. (9), leads to a large class of dynamic be-
havior, depending on the parameters 3\ and Bys A =1,...A, labeling the initial
state. In the present work we consider binary fragments fixed in the center of mass,
separated along the symmetry axis by a given displacement Ro and having a kinetic
energy of relative motion, Eo' Thus, even though we are not primarily concerned with
collisional phenomena, the initial state has a configuration which is similar to a
semiclassical entrance channel.

We consider the long-time classical behavior of the A particle system which
evolves from the initial state, Eq. (9), using the TDHF, Eqs. (8). We characterized
the properties of the system in terms of the isoscalar (I=0) and isovector (I=1)

density, .

A > A++*
py(r) = A§1 8(r-r ) Jag (%) (10)

with
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which is consistent with the previously stated classical interpretation. The density

p(fst) = <¥(t) | oy(F) | Ut)>,

in terms of the real fields LY and ¢, is

o (Fot) + p (Fyt)  I=0
%u¢)={9* " (11)
pp(r,t) - pn(r’t) I=1

with

+ _1 > 2 > 2 _
Pq(r,t) -Ez [“A,q(r’t) + ¢A(r’t) ]’ q = psn

The gradient iteration method of solution of the lattice equation32 is equiva-
lent to the first-order imaginary time propagator3“ with the inclusion of a kinetic
energy dampening operator and gives finite difference equations at lattice points r;

and z,
J
ro=ac(i-g)  i=1,2 w N
(12)
2; = 82(j-1) i=1 2w N
as
¥ (5) = 0 JuWiaa) - e ok )Y - sg">)¢g"><fj>§ (13)

where ng), egN), and ng)(ij) are respectively the Hartree-Fock one-body Hamiltonian,
the single-particle energy and wavefunction at the Nth iteration. The operation of
Schmidt orthogonalization of the wavefunctiun at each structure is denoted by the
operator 0. In Eq. (13) D(ko] is the kinetic energy damping operator

Dk,) = {1+ Tk}, (14)
where T is the kinetic energy operator defined at the lattice point. Details of the
method are given elsewhere.35 In Eq. (13) € = 0.05 is the imaginary time parameter
and ko = 40 MeV fixes the energy damping scale. The convergence of the gradient
iteration method is shown in Fig. 1 for three different nuclear configurations,
ground state 20Ne, ground state 12C, and the shape isomeric HF solution for carbon
12c(0*). The fractional change in the Hartree-Fock energy, AE(N),

LMD _

s 15
=) (15)

as a function of the imaginary time index N,



T = ieN. (16)

A1l of the solutions shown converge to within 1 in 10°% after 100 iterations. This
rate of convergence is not as great as that reported in Ref. 33, however we have em-
ployed a slightly different treatment of the dampening operator and have treated the
imaginary time step parameter, At, as a constant, independent of the iteration se-
quence. The HF iteration sequence is fully self-consistent for all of the systems

shown in Fig. 1. The structure in the curve for 2%Ne results from a reordering of
the single-particle states due to three separate shell crossings. The exponential
convergence of the energy is characteristic of the damped gradient iteration method

throughout the periodic table.
The density constraint method i5 easily incorporated into the formation of the

Hartree-Fock equations using the Schwinger method“ by the replacement in Eq. (8),

H+H+ [d3 F(F) o(F), (17)

where p(?) is the HF one-body density, pc(F) is the density function we wish to cobtain
as our solution of the HF problem, and F(r) is an auxiliary field which must drive
the system so that

o(F) + o (F)
during the iteration process. The field F(?) is a regular L2 function, and thus the
addition of the field term in Eq. (17) does not alter the characteristics of the
spectrum of H.3% The modification of the gradient iteration method to include the
density as a constraint is straightforward, assuming that the HF single-particle
states at iteration N, w(N) gives the density Pe approximately

M) - y |5 o)

then the field at iteration F(N+1) which forces p(N+1) to be P can be evaluated in
perturbation theory and results in the set of modified gradient iteration equations,

T,(0) = ogq,g")m - ek JWM + FV L (N (N) 2y

Ne1), 2 _ o(N), > so(r)
F =F + .
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with

Gp(F) = )Z\,'ﬁx(r’) 2. p(N)(f-') (18)
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with
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(] 2y
Do + 2¢ pc(r)

6f(r) = C

The parameters Co and Do must be included to insure stability of the numerical method.
In practice, we chcose Co = 0.9 and D0 as 7 x 16-5, The details of the convergence
of the method does not appear to be sensitive to this choice. A complete discussicn
of the methed is given in Refs. 33 and 35.

III. QUASIPERIODIC SOLUTIONS

We have studied quasiperiodic motion in two nuclear systems, 180 and 2"Mg, which
experimentally display a type of molecular structure. We consider 80 as an 18-
particle determinant of single-particle states which are "close" both in terms of
energetics and in terms of collective and shape variables to an a + l%C configuration.
Experimentally, the a-induced y decays of 180 have been measured in the 1“C(e,v)!%0
radiative capture reactions.2* This work reports enhanced electric dipole and quad-
rupole transitions and suggests the existence of a "molecular band" built on the 3.63
0* state. This state has been extensively studied theoretically3® and has the struc-
ture of a (4p-2h) core polarized deformed state. The formation of an a cluster
molecular configuration in 180 has been suggested in terms of a group theoretical
algebraic approach,37 in with the structure of the molecular states are constructed
from S and P bosons and have a U(4) symmetry.

The present calculations address this question from a microscopic "view" which
provides both a geometrical (classical) picture of the molecule, as well as charac-
teristic information on the rotational and vibrational structure of the molecule.

The TDHF Eqs. (4) are solved to determine the time evolution of the 180 system from
an initial state comprised of a ground state “He nucleus and a ground state l%C
nucleus having an initial separation of 15 fm and a kinetic energy of relative motion
of 7.5 MeV in the center of mass.!? Thes2 are axially symmetric head-on collisions
which initially translate along classical Coulomb trajectories. The density contours
for the subsequent motion are shown in Fig. 2. The initial contact occurs at about
40 fm/c, and for the times shown in Fig. 2, the system has relaxed into a configura-
tion undergoing highly nonlinear quasiperiodic motion. The density distribution has
the appearance of an a-particle cluster and a carbon cluster which are exchanging
with one another about the CM of the 180 system. This type of clustering in TDHF
calculations arises in part from the strong S-wave components of the density-dependent
force, which favors spin-isospin symmetric configurations, and in part from the un-
usual stability of the “He + “C initial configuration.

The initial !“C nucleus is treated in the filling approximation in which four
protons uniformly fill the entire p-shell, thus giving an approximation to “C which
yields a spherically symmetric state. The multipole and isospin decomposition of
the density is defined with the convention



Mg () = [ d3 Y, (F) py(F,)r?

and (19)
My (w) =j_m dt e 1ut My (t).

The time and frequency dependence of the isoscalar, quadrupole and octupole moments,
and the isovector dipole moment are shown in Fig. 3, where we observe well-developed
oscillations with clear frequencies for times as long as 3 x 103 fm/c (about 10-2°
sec). These are times which are long compared to heavy-ion reaction times for this
system. The isoscalar octupole mode corresponds to a relatively pure 4-MeV frequency
and the isoscalar quadrupole to a mixture of 8 and 15 MeV frequencies. The isovector
mode is a combination of 4-MeV and 9-MeV frequencies. The observation of the 4-MeV
frequency in both the isoscalar octupole and isovector dipole channels is probably
due to a single mode occurring in both projections.

The most extensive and compeliing experimental evidence for the existence of
nuclear molecules lies in the narrow resonances observed in the 12C + !2C reactions
near the Coulomb barrier.1? A large number of experimental data has been amassed,
and the most successful organization of these data is in terms of the U(4) model of
Iachell0.23 The representation of the data in terms of this model suggests that the
molecule involves a structure related to the 7.08 MeV 0% state of !2C, This state
has a well-established cluster structure and is approximately given as a HF shape
isomer of 12C.18 The energy as a function of deformation and the density contours
for both the ground state 12¢ and the carbon isomer are shown in Fig. 4. The density
contours corresponding to the time evolution from an initial configuration based on
these two states are shown in Fig. 5(a) and 5(b). The initial state is also labeled
by CM energy, Ecm = 7.5 MeV and separation along the axis of symmetry, RS = 12 fm.,
Again, these are head-on collisions in which the matter flow undergoes a complex pat-
tern nf quasiperiodic motion. The contours in Fig. 5(a) are those for the isoscalar
density, while those in Fig. 5(b) are for the motion of the isovector density. For
the forces used in this study, the structure in the isovector density arises solely
through the Coulomb force. While the motion of the isoscalar density appears regu-
lar, the isovector density has a complex high multipolar structure which varies
rapidly on a time scale where the isoscalar density varies slowly.

The corresponding long-time behavior of the system is shown in Fig. 6 for the
isovector dipole and the isoscalar quadrupole, octupcle, and RMS radius {(two times
the physical radius of .he system).

The time and frequency dependence of the moments is qualitatively similar to
that of the 180 system but quantitatively very different. The time scales are mucﬁ
longer in Fig. 6; the 12C(0%) + 12C system has been followed in for almost 5 x 10-20
sec, about a factor of 5 longer than the 180 system. The time dependence of the
isoscalar octupole motion is very regular and corresponds to a low-frequency



vibration of about 1.5 MeV. As before, the isoscalar quadrupole motion is a combina-
tion of low- (~ 2.5 MeV) and high- (~ 8 MeV) frequency motion.

The individual motion of the proton and neutron fluids give a slightly different
perspective on the motion shown in Fig. 7 and the frequency behavior of the moments-

of the neutron and proton densities for 2?“Mg. Here, because of the long scale, we

see a very complex pattern of small-amplitude oscillations in the motion of the sys-
tem. This small-amplitude frequency behavior is indicative of the breakdown of peri-

odicity in the system.
The motion of both the 180 and the 2“Mg can also be described in terms of col-

lective variables and in terms of collective energies. As the system evolves along a
TDHF path, the density, which may be thought of as a collective variable of the sys-
tem, undergoes a complex motion. The corresponding potential energy as a function of
the density can be calculated using the density-constrained Hartree-Fock (DCHF) equa-
tions. Using this method, we freeze the density along the TDHF path and minimize the
energy of the system along the path using Eqs. (18). This energy is a function of
the constraining density and is shown in Fig. 8 for the 180, and in Fig. 9 for the
24Mg system, as a function of the isoscalar octupole and quadrupole degrees of free-
dom. The energy is a surface in the q,, q; plane. During the time evolution, each
system travels on a path in this plane. Thus, not al!l values of the energies in this
region were observed. These plots were obtained using a least-squares fit to the HF
energies along the path. The time history for the motion of the 80 system with re-
spect to the surface in Fig. 8 is as tollows. The initial solution corresponds to
the coordinates q, = 1.7 Qy00 43 = 2.5 Q3¢ The system quickly evolves into the
region shown in Fig. 8, principally following the equipotential contours, but with a
drift towards small q,. The minimum energy in Fig. 8, Eo’ is an axially symmetric
shape isomer of the 180 system and is a stable solution of the unconstrained static
HF equations. A similar time history of the 2“Mg system can be understood in terms
of Fig. 9. The initial trajectory begins at q, =~ 1.5 Q,0 and q; = +2.9 q,,, With
q,, = 582.7 fm? and q,, = 3431.0 fm3. The system again evolves into a region shown
in Fig. 9 and traverses a complex path about the shape isomer, E0 = -143.8 at q, =
355 fm in q; = 0.0. The energy contours in Fig. 9 are the constrained energies aE =
2(E(constrained)-Eo) in units of MeV. The axially symmetric ground state of 2“Mg
occurs at q, = 67.9 fm2, with an energy of -179.7 MeV. The general features of the
energy surface as shown in Fig. 9 are in agreement with those obtained using

Nilsson-Strutinsky methods.38

IV. CHAOS

The approach of classical systems to chaos addresses a broad spectrum of physi-

cal problems in the mechanics of fluids,3? in storage rings and colliding beam accel-
erators,“0 in plasmas,"“! and in molecular and chemical physics.*2 Sidestepping the
detailed questions as to the universality of bifurcating systems“3 and the topology



of attractor phase space, we follow the general methods outlined by Koonin and
Williams 12 in their treatment of requantization of semiclassical nuclear Hamiltonians.
These authors study a variety of requantization schemes for the classical trajector-
ies (TDHF) of a three-level SU(3) model.“** For this model, exact quantum-mechanical,
as weil as closed-form TDHF solutions, can be obtained. The resulting classical
Hamiltonian is a function of two independent coordinates (q,,q,) and momentum (p,,p,)
and is given in Fig. 10. Here Ne is the total energy of their system and x is the
interaction strength as a (dimensionless). The potential energy surfaces [p1=p2=0)
as a function of q,,q,, are also shown for three values of x. The three values of x
correspond to one, two, and four minima. Hamiltonian equ:tions were integrated
numerically to give the trajectories and Poincaré sections in phase space. Three
types of classifications of motion are given: a) periodic, b), ¢), and d) quasi-
periodic, and e) and f) stochastic. The conclusions they put forth are quite inter-
esting; they conclude it is not possible to requantize the classical motion whenever
it is stochastic, and that a variety of methods 211 give reasonable solutions in the
quasiperiodic regime.

The Poincaré projects for the motion in 2“Mg analogous to those shown in Fig. 10
are displayed in Fig. 11 for the isoscalar quadrupole and octupole modes and for the
isovector dipole mode. We see that the motion is at best quasiperiodic and appears
to be filling almost all of the phase space in this regime. The corresponding auto-

correlation functions, defined in Eq. (20) as

{® do +iwT
Cpp () '5-«'_2? UM, (o) (20)
are shown in Fig. 12. The correlation function is small at all of the relevant fre-
quencies, suggesting that the metion is indeed chaotic.
In an attempt to find more periodic states for 2“Mg, we have also atiempted a

different type of initialization.
Referring to Fig. 9, we follow the evolution from the same initial configuration

until it reaches a point on the energy surface indicated by the "X". This part of
the evolution takes approximately 700 fm/c. At this point, we again minimize the
energy using the DCHF procedure. This has the effect of localizing the system in the
region of the isomer and "cooling" the system keeping the density fixed. This state
is then used to continue the time evolution using the TDHF equations. The subsequent
time and frequency dependence of the isoscalar moments are shown in Fig. 13, and for
the isovector moments in Fig. 14. The time dependence of the isoscalar moments in
Fig. 13 are indeed more periodic than previously; furthermore, the dominant frequency
of the motion at low frequency”nbw appears in all of the moments, as it must for an
exact periodicity. This motion also appears in the.odd-2 isovector moments shown in
Fig. 14. However, the even-2 multipo[es-appéﬁ?ﬂchaotic and do not have the correct
low-frequency behavior for exact harmonic motion. The autocorrelation functions, Eq.
(20), are compared in Fig. 15 for the motion shown in Figs. 13 and 14. Here we



observe strong correlations which do not appreciably dampen in time.

V. DISCUSSION

We have solved for the time evolution of highly excited 180 and 2“*Mg from
reaction-like entrance channels. In both cases, the details of the evolution are
sensitive to parameters of the initialization, the relative kinetic energy, the frag-

For the 180 system, we evolve from an « + 1*C entrance channel, for
The

ment separation.
the 2YMg system we evolve from an asymptotic configuration of 12C(0%+) + 12c,

12¢(0*) configuration is strongly related to a 3-a cluster configuration of carbon.
The memory of the initial a-clustering persists throughout the time evolution for both
systems. In each case, the system rapidly evolves into the region of a shape isomer,
undergoing quasiperiodic motion. The Poincaré phase space analysis and the behavior
of the autocorrelation functions suggest that the motion is chaotic instead of quasi-
periodic. The importance of identifying quasiperiodic instead of chaotic follows

from the work of Ref. 49 where the quasiperiodic motion rzpresents a known classical

1imit of the quantum spectrum whereas the chaotic motion does not. For 2%Mg, methods

were employed to "cool® the motion and this resulted ‘n quasiperiodic motion which

was neither chaotic nor exactly harmonic.
in general terms, we are suggesting the existence of highly collective struc-

tures of a giant resonance nature having compound nuclear properties at excitation
energies of 13 MeV in 180 and 36 MeV in 2“Mg, and very large deformations for 2“Mg.
These ideas have been suggested previously by Cosman“5 and co-workers. From the
point of view presented in this paper, these structures should exist throughout the
periodic table and for a variety of different entrance channel configurations.
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Q3¢ = -654.1 fm2. The point having an energy E, is a shape isomer of the 180 system.

ENERGY SURFACE IN Q3-Q2 PLANE

Time 11:18:44 Date &~JUN-84

. S
A j:/ N

..-. o
o S~

-
-1.2 Y L T | B | Y T

2.0 8.2 0.4
Q2/q2¢

IE

Fig. 9. Density-constrained static HF energies, AE = 2 (E(constrained) -~ E.), E, =
-143.8 MeV as a function of the isoscalar quadrupole and octupole degrees o? freedom.
Contours are labeled in MeV. The constants q,o and q34 are qq = 582.7 fm? and q3,

msadd3l,0 fm3. The point having an energy AE = 0 is a shape isomer of the 2Y4Mg system.



WILLIAMS 8 KOONIN, NUCL PHYS A391 (1982) 72

(%]
1.0+
Hiq.p) -
Ne
osf
gz -1+12q}00 -} + 1/2a3(2 -~ x) + 1720301 + x} + 1/2p3(2 + x)
00
1
+ o xlta] +ad)? o] + p3) - (a] - piNa3 - b3}
-0.5- \_—/ ) 4q'qu‘pzl
-10f §SS$S5555555555555522?2222Q5
-1.2 !
tat Ea
N
S NG IR
SRR, B S B
e ~ -~
(] LAl
~ l'
< o % L &% . @
e ~
e s feegn e 1
[13] . [TRTLY
. .
o Y S 3
- ~ - =
L S FIREREE o "' ..........

Fig. 10. The classical limit of the SU(3) Hamiltonian, the static energy surfaces
for three values of the coupling constant x, and six trajectories and Poincaré
sections, a) harmonic, b), c), d) quasiperiodic, and e), f) chaotic.



%)

CCXBrS8 L= 3 T

Timse 32741

MOMENT

Date

Ee J3H- 54

SO | - -
Do)
-

s O uay

™
-8.6E+82

ML)

MOMENT

Date

S=JUN-24

2 EE+30 %
=k iy 5
2
] o
4 )
ok

4 A E+QE TR

1%

L

¢

2
-

] &g@% :

TR GG E !
bl 13 Gg?&@%{} el

2.6E+62

¥ i L)
4.0E+82 4.4E+02

MeL)

Fig. 11. Poincaré phase space plots MzI(t) vs. MzI(t) for 1 =0, 2

) L} v

i
4 .2E+21



CCXB73@ L=

Time ©@3:2]:45

1 BE -+t

2 T =20

MOMENT

Date

2-JUH-24

R rrMaOoaooo
(i}
Bt
m
Y
B
=
L 1

1.?E-Bl-i

4
WiN

Jt L A

i3, HE+ 16

‘fs }:’:.;A1 a8 ;ﬂn J‘} o

Fa

13.99 1.50

CCXBY3B L=

Time 83:42:182

3.09

TIME (18%%3 FM-C)

3 T=20

MOMENT

Date 8-JUN-24

L A4
U (BSRp———

R TCMAODOO
1 113 5
i

=

o

AT T “r T T Y

EGPAN /\"\."h.\ s

9,39 1.59 3.99

Fig. 12. The autocorrelation function C

quadrupole octupole modes in 244Mg.

TIME (18%%3 FM-C)

4.5a

Be

3

In(t) as a function of time for the isoscalar



%
== nlnn. £ e
!F.. (.wlwuw »I...h,.« B o
= R - -
= = R 3
= -k L = -ta
A BN o S

126(0*) +12¢ Tay

12c(0*)+12¢ T=0

- = - L
: i e .
L
R RRER EERE
b I R b s 5 Yz
cenver R corwee
1 9 v
- - 2
0
Q o~
=
P
o
S o=
o+
- -4 : 4- Q
I [ 4 1=
v s 0
. H = >
oQ
- =
- 2D
oS>
c T
] S @
.11 4 5~
I it = o [
: t 3 A4 : Ez
) p—
formseeen forwsrenn
T v
" cc
R R © +
1 >
< - O
- €0
- . -l S =2
I . o
L~ . £ D .
_ - o . - o
- " -~ z =
. : E:
" - | Y]
] j S
- | - — Y
EX S - 9o o
~—-.]. Qo
E T Y - 0 -
% s I i N owc
noT O
: _m —9oE
: EEERERERE <
A A - ¢ ¥’ - I ¢ v A(w..l.naln
EwE» CEOREwWE»~ EOEWE >
e — QO >
o'
a * O
by “ M oo ®
- - - — QO QO
= <

[ URL )

Fig. 13 for the isovector modes of

n

1€ 110ms, Mg

Same as

Fig. 14.
zuMg_



12¢c 0%y +12¢

T=0 T=1
N
7 Aﬁgn } b
NI AR AV AV ARITYOIRAN
e
[ - 3
0 ¢.7E-er I‘
I S L S AW
TN U AT A
R R\WAWE
o '\1':. "\,"/ \ ’/ 4‘\/ Jlotofieion fo Lp MJMA S aap
AN //' ; / (’

L3 £ , } / A i
o4 ] iWiNj i
e T I
_ / NS S YAV R AV
o
S | A

=4 € s.ec-a

) A L LV AV
1.7E-9 l" ’J \‘ / !E i/J \f\‘ //\
o.0ee0r] \1/ \/ "\ / A juﬁ_ﬁhw/\ A Ne_na,

TINE (10833 FLC) TINE (16353 FRC)

Fig. 15. Autocorrelation function for the isoscalar and isovector “cooled" modes of
ZkMg .



