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CHAOS NEAR THE COULOMB BARRIER? — NUCLEAR MOLECULES*

M. R. Strayer
Oak Ridge National Laboratory11

Oak Ridge, Tennessee 37831

I. INTRODUCTION

Chaos addresses in part the long-time behavior of non-integrable mechanical sys-

tems and how such systems, even though completely deterministic, develop a degree of

randomness.1 These concepts have been known for over 100 years2 and were first ad-

dressed in the context of nuclear physics by Fermi, Pasta, and Ulam3 30 years ago.

In present-day theoretical nuclear physics, the long-time mechanical behavior of

nuclear systems arises through the various classical and semi-classical limits of the

quantum many-body problem as, for example, in studies of the time-dependent Hartree-

Fock (TDHF) approximation,11 the nuclear partition function,5 fission lifetimes,6 and

S-matrix elements.7 There is presently considerable interest in learning how to re-

quantize these types of classical motion8"12 and obtain a viable approximation to the

quantum spectrum.

Hydrodynamic models of matter in heavy-ion reactions exhibit the characteristic

behavior of dissipative fluid flow,13 and details of the momentum transfer and par-

ticle multiplicities may be suggesting the formation of attractor regions in the re-

action phase space.1** Isoscalar and isovector heavy-ion monopole and quadrupole

giant resonances have been computed in 1 G0 and **°Ca by examining the quasiperiodic

motion of these systems using the TDHF approximation.15 These calculations yield un-

quantized vibrational frequencies in good agreement with both the RPA and the GCM

methods and have the classical interpretation of being the most probable frequencies

of the RPA strength functions. Using the same method, Weiss16 studied the deep-

inelastic fragments of the **°Ca + **°Ca collision at a laboratory bombarding energy of

400 MeV. He computed large amplitude structures laying at energies of about 50 MeV

in excitation energy and suggested that these structures have many of the properties

of simple giant resonances.

Other authors have addressed the question of quasiperiodic cluster and molecular

structures in both light17"19 and heavy20"22 nuclei. In light nucleus collisions the

long-time quasiperiodic motion of a-like clusters gives rise to qualitative agreement

between theory and experiment23*21* and has stimulated a variety of experimental25 and

theoretical26 investigations searching for similar phenomena in heavy nuclei. All of

t"...th' whole worl's in a terrible state o'chassis!", s.o'casey, Act II Juno and the
Paycock.
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the TDHF work seems to predict the existence of highly nonlinear structures embedded

in the dynamics of heavy-ion reactions. The present work examines in detail the

classical behavior of the a + 14C and the l2C + 12C(0+) collision at energies near

the Coulomb barrier. The long-time motion of the compound nuclear system is identi-

fied in terms of its classical quasiperiodic and chaotic behavior. The consequences

of this motion are discussed and interpreted in terms of the evolution of the system

along a dynamical energy surface.

II. TDHF FORMALISM

The theoretical foundations of the nuclear TDHF formalism have been extensively

reviewed in the literature,27-29 and only a brief discussion will be presented. The

most comprehensive treatment of the basic material is given in Ref. 28. We follow

the treatment of Kerman and Koonin** who obtain the TDHF equations from the Schwinger

variational principle30 for the many-body action Ss (set fi = 1)

S = f 2 dt <*(t) I i a - Hi f(t)> (1)

in terms of the Hamiltonian of the system

A . A
H -^ T. + { . j_2 V i r (2)

where K is the one-body kinetic energy operator and V is the two-body interaction,

and where V(t) is the wavefunction of the A-nucleon system which is assumed to have

the form of a Slater determinant of time-dependent single-particle states ty\(t)

*(r,...r.;t) = — det||*- (r,t)||. (3)

Equations of motion are obtained

. • i •*• ^ v 6 < H >

(4)

i*t(p.t) • ;6%\, , A - i A
A 6 *(7\t)

*
An independent functional variation with respect to <|>x and i|»\, where

| H| ¥(t)>. (5)

The Eqs. (4) leave the action (1) stationary and the function variation

defines the Hartree-Fock one-body Hamiltonian. These equations allow an interpreta-

t ion in terms of classical f ie ld coordinates <j>.(r,t) and momenta n ( r , t ) ,



(7)

which yield Hamiltonian1^ equation for the field <f>x and its conjugate momentum -n ,

I (r,t) = 6<H>/6* (p,t)
A A (8)

r+,t).

Equations (4) are solved on a 3-D space time lattice30 for a series of initial con-
ditions specified by

lim <frx(r,t) * /?cos(Kx-r-ext)xx(r-Kx/m t-Px)
t +-«»

and (9)

lim *x(r,t) • H sin(icx»r-ext)xx(r-Kx/m t-Bx)
t +-«

where

hxx(r) = e x xx(r), \ = 1.....A.

are solutions to the initial static Hartree-Fock equations. We solve both the static

and the dynamic Hartree-Fock equations, assuming axial symmetry in cylindrical polar

coordinates. Details of the method are given in Ref. 30, and we employ the local

finite-range31 (BKN) form of the Skyrtne force without any spin-orbit forces. The

choice of the BKN force is motivated in part by our desire for a realistic treatment

for vibrational motion in light nuclei and the known failure32 of the nonlocal Skyrme

forces to describe harmonic vibrations in these nuclei.

The wavepacket initialization, Eq. (9), leads to a large class of dynamic be-

havior, depending on the parameters *x and p^, X = 1,...A, labeling the initial

state. In the present work we consider binary fragments fixed in the center of mass,

separated along the symmetry axis by a given displacement R and having a kinetic

energy of relative motion, E . Thus, even though we are not primarily concerned with

collisional phenomena, the initial state has a configuration which is similar to a

semiclassical entrance channel.

We consider the long-time classical behavior of the A particle system which

evolves from the initial state, Eq. (9), using the TDHF, Eqs. (8). We characterized

the properties of the system in terms of the isoscalar (1=0) and isovector (1=1)

density,

A
^(r) = I «(r-r )ar(X) (10)
1 x=l X £

«(
x=l

with



= / v+1 • q = proton
<q| a |q > = ^

" 1 ) 6 ' q = neutron.

which is consistent with the previously stated classical interpretation. The density

Pjfr.t) =

in terms of the real fields v and <f>x is

. (r.t) - fP < ? > t ) * "»(?>t) '"° (H)

with

=~ I [»Xfq(r.t)2 + 4»x(r,t)
2J, q = p,n

The gradient iteration method of solution of the lattice equation33 is equiva-
lent to the first-order imaginary time propagator34 with the inclusion of a kinetic
energy dampening operator and gives f inite difference equations at lattice points r.
and z.

r. = Ar(i - I j i = 1, 2, . . . Np

(12)
z. = Az(j-l) j = 1, 2, . . . Nz

- 0 J#W(ij , - . D(ko)(WW - 4 N ) M N ) (U ) j (13)

(N) (N) fN^where Wĵ  ', e^ , and ̂  (ij) are respectively the Hartree-Fock one-body Hamiltonian,

the single-particle energy and wavefunction at the Nth iteration. The operation of

Schmidt orthogonalization of the wavefunction at each structure is denoted by the

operator 0. In Eq. (13) D(k ) is the kinetic energy damping operator

D(ko) = {1 + Vko}-\ (14)

where T is the kinetic energy operator defined at the lattice point. Details of the

method are given elsewhere.35 In Eq. (13) e = 0.05 is the imaginary time parameter

and k » 40 MeV fixes the energy damping scale. The convergence of the gradient

iteration method is shown in Fig. 1 for three different nuclear configurations,

ground state 20Ne, ground state 12C, and the shape isomeric HF solution for carbon
1 2C(0 +). The fractional change in the Hartree-Fock energy, AE^ ',

(H) E ( N + 1 ) - E { N )

^ ^ T J )

as a function of the imaginary time index N,



T N = ieN. (16)

All of the solutions shown converge to within 1 in 109 after 100 iterations. This

rate of convergence is not as great as that reported in Ref. 33, however we have em-

ployed a slightly different treatment of the dampening operator and have treated the

imaginary time step parameter, AT, as a constant, independent of the iteration se-

quence. The HF iteration sequence is fully self-consistent for all of the systems

shown in Fig. 1. The structure in the curve for 20Ne results from a reordering of

the single-particle states due to three separate shell crossings. The exponential

convergence of the energy is characteristic of the damped gradient iteration method

throughout the periodic table.

The density constraint method is easily incorporated into the formation of the

Hartree-Fock equations using the Schwinger method1* by the replacement in Eq. (8),

H * H + / d3r F(r) p(r), (17)

where p(r ) is the HF one-body dens i ty , plr) is the density funct ion we wish to obtain

as our so lut ion of the HF problem, and F(r ) is an aux i l i a r y f i e l d which must dr ive

the system so that

p(r ) + Pc(r)

during the iteration process. The field F(r) is a regular L2 function, and thus the

addition of the field term in Eq. (17) does not alter the characteristics of the

spectrum of H.31* The modification of the gradient iteration method to include the

density as a constraint is straightforward, assuming that the HF single-particle
(H)states at iteration N, <|r ' gives the density p approximately

then the f i e l d at i t e r a t i o n F^N+1^ which forces p^N+1^ to be PC can be evaluated in

per turbat ion theory and resuHs in the set of modified gradient i t e r a t i o n equat ions,

\if) - 0

with

«p(r) =

and

with

DQ+2e

P ( N ) ( P ) (18)



The parameters C and D must be included to insure stability of the numerical method.
In practice, we choose C » 0.9 and D as 7 * 10"5. The details of the convergence

of the method does not appear to be sensitive to this choice. A complete discussion

of the method is given in Refs. 33 and 35.

III. QUASIPERIODIC SOLUTIONS

We have studied quasiperiodic motion in two nuclear systems, 180 and 24Mg, which

experimentally display a type of molecular structure. We consider 180 as an 18-

particle determinant of single-particle states which are "close" both in terms of

energetics and in terms of collective and shape variables to an a + lt*C configuration.

Experimentally, the a-induced Y decays of 1 80 have been measured in the 1'*C(a,T)180

radiative capture reactions.21* This work reports enhanced electric dipole and quad-

rupole transitions and suggests the existence of a "molecular band" built on the 3.63

0 + state. This state has been extensively studied theoretically36 and has the struc-

ture of a (4p-2h) core polarized deformed state. The formation of an a cluster

molecular configuration in l80 has been suggested in terms of a group theoretical

algebraic approach,37 in with the structure of the molecular states are constructed

from S and P bosons and have a U(4) symmetry.

The present calculations address this question from a microscopic "view" which

provides both a geometrical (classical) picture of the molecule, as well as charac-

teristic information on the rotational and vibrational structure of the molecule.

The TDHF Eqs. (4) are solved to determine the time evolution of the 180 system from

an initial state comprised of a ground state ^He nucleus and a ground state lkC

nucleus having an initial separation of 15 fm and a kinetic energy of relative motion

of 7.5 MeV in the center of mass.19 Theso are axially symmetric head-on collisions

which initially translate along classical Coulomb trajectories. The density contours

for the subsequent motion are shown in Fig. 2. The initial contact occurs at about

40 fm/c, and for the times shown in Fig. 2, the system has relaxed into a configura-

tion undergoing highly nonlinear quasiperiodic notion. The density distribution has

the appearance of an a-particle cluster and a carbon cluster which are exchanging

with one another about the CM of the 1 80 system. This type of clustering in TDHF

calculations arises in part from the strong S-wave components of tha density-dependent

force, which favors spin-isospin symmetric configurations, and in part from the un-

usual stability of the **He + llfC initial configuration.

The initial ll|C nucleus is treated in the filling approximation in which four

protons uniformly fill the entire p-shell, thus giving an approximation to 1J*C which

yields a spherically symmetric state. The multipole and isospin decomposition of

the density is defined with the convention



(^(r) Pl(r,t)r*

and (19)

dt e M (t).

The time and frequency dependence of the isoscalar, quadrupole and octupole moments,

and the isovector dipole moment are shown in Fig. 3, where we observe well-developed

oscillations with clear frequencies for times as long as 3 * 103 fm/c (about 10~20

sec). These are times which are long compared to heavy-ion reaction times for this

system. The isoscalar octupole mode corresponds to a relatively pure 4-MeV frequency

and the isoscalar quadrupole to a mixture of 8 and 15 MeV frequencies. The isovector

mode is a combination of 4-MeV and 9-MeV frequencies. The observation of the 4-MeV

frequency in both the isoscalar octupole and isovector dipole channels is probably

due to a single mode occurring in both projections.

The most extensive and compelling experimental evidence for the existence of

nuclear molecules lies in the narrow resonances observed in the 12C + 12C reactions

near the Coulomb barrier.17 A large number of experimental data has been amassed,

and the most successful organization of these data is in terms of the U(4) model of

Iachello.23 The representation of the data in terms of this model suggests that the

molecule involves a structure related to the 7.08 MeV 0+ state of 1 2C. This state

has a well-established cluster structure and is approximately given as a HF shape

isomer of 1 2C. 1 8 The energy as a function of deformation and the density contours

for both the ground state 12C and the carbon isomer are shown in Fig. 4. The density

contours corresponding to the time evolution from an initial configuration based on

these two states are shown in Fig. 5(a) and 5(b). The initial state is also labeled

by CM energy, E « 7.5 ileV and separation along the axis of symmetry, R « 12 fm.

Again, these are head-on collisions in which the matter flow undergoes a complex pat-

tern of quasiperiodic motion. The contours in Fig. 5(a) are those for the isoscalar

density, while those in Fig. 5(b) are for the motion of the isovector density. For

the forces used in this study, the structure in the isovector density arises solely

through the Coulomb force. While the motion of the isoscalar density appears regu-

lar, the isovector density has a complex high multipolar structure which varies

rapidly on a time scale where the isoscalar density varies slowly.

The corresponding long-time behavior of the system is shown in Fig. 6 for the

isovector dipole and the isoscalar quadrupole, octupole, and RMS radius (two times

the physical radius of *he system).

The time and frequency dependence of the moments is qualitatively similar to

that of the 180 system but quantitatively very different. The time scales are much

longer in Fig. 6; the 12C(0+) + 12C system has been followed in for almost 5 x 10" 2 0

sec, about a factor of 5 longer than the 1 80 system. The time dependence of the

isoscalar octupole motion is very regular and corresponds to a low-frequency



vibration of about 1.5 MeV. As before, the isoscalar quadrupole motion is a combina-

tion of low- (~ 2.5 MeV) and high- (~ 8 MeV) frequency motion.

The individual motion of the proton and neutron fluids give a slightly different

perspective on the motion shown in Fig. 7 and the frequency behavior of the moments

of the neutron and proton densities for 21*Mg. Here, because of the long scale, we

see a very complex pattern of small-amplitude oscillations in the motion of the sys-

tem. This small-amplitude frequency behavior is indicative of the breakdown of peri-

odicity in the system.

The motion of both the 180 and the 2l*Mg can also be described in terms of col-

lective variables and in terms of collective energies. As the system evolves along a

TDHF path, the density, which may be thought of as a collective variable of the sys-

tem, undergoes a complex motion. The corresponding potential energy as a function of

the density can be calculated using the density-constrained Hartree-Fock (DCHF) equa-

tions. Using this method, we freeze the density along the TDHF path and minimize the

energy of the system along the path using Eqs. (18). This energy is a function of

the constraining density and is shown in Fig. 8 for the 1 80, and in Fig. 9 for the
21*Mg system, as a function of the isoscalar octupole and quadrupole degrees of free-

dom. The energy is a surface in the q2, q3 plane. During the time evolution, each

system travels on a path in this plane. Thus, not all values of the energies in this

region were observed. These plots were obtained using a least-squares fit to the HF

energies along the path. The time history for the motion of the 1 80 system with re-

spect to the surface in Fig. 8 is as follows. The initial solution corresponds to

the coordinates q2 = 1.7 q2Q, q3 = -2.5 q3Q. The system quickly evolves into the

region shown in Fig. 8, principally following the equipotential contours, but with a

drift towards small q2. The minimum energy in Fig. 8, E , is an axially symmetric

shape isomer of the 180 system and is a stable solution of the uncor.strained static

HF equations. A similar time history of the 2l*Mg system can be understood in terms

of Fig. 9. The initial trajectory begins at q2 - 1.5 q20 and q3 - +2.9 q30, with

q 2 0 = 582.7 fm
2 and q 3 0 = 3431.0 fm

3. The system again evolves into a region shown

in Fig. 9 and traverses a complex path about the shape isomer, E = -143.8 at q «

355 fm in q3 - 0.0. The energy contours in Fig. 9 are the constrained energies AE =

2(E(constrained)-E ) in units of MeV. The axially symmetric ground state of 2l*Mg

occurs at q2 = 67.9 fm
2, with an energy of -179.7 MeV. The general features of the

energy surface as shown in Fig. 9 are in agreement with those obtained using

Nilsson-Strutinsky methods.38

IV. CHAOS

The approach of classical systems to chaos addresses a broad spectrum of physi-

cal problems in the mechanics of f l u ids , 3 9 in storage rings and col l id ing beam accel-

erators,1*0 in plasmas,1*1 and in molecular and chemical physics.t*2 Sidestepping the

detailed questions as to the universality of bifurcating systems1*3 and the topology



of attractor phase space, we follow the general methods outlined by Koonin and

Williams12 in their treatment of requantization of semiclassical nuclear Hamiltonians.

These authors study a variety of requantization schemes for the classical trajector-

ies (TDHF) of a three-level SU(3) model.44 For this model, exact quantum-mechanical,

as well as closed-form TDHF solutions, can be obtained. The resulting classical

Hamiltonian is a function of two independent coordinates (q1,q2) and momentum (plfp2)

and is given in Fig. 10. Here Ne is the total energy of their system and x is the

interaction strength as a (dimensionless). The potential energy surfaces (p1=p2=O)

as a function of q1»q2»
 are a^so snown for three values of x« The three values of x

correspond to one, two, and four minima. Hamiltonian equations were integrated

numerically to give the trajectories and Poincare sections in phase space. Three

types of classifications of motion are given: a) periodic, b), c), and d) quasi -

periodic, and e) and f) stochastic. The conclusions they put forth are quite inter-

esting; they conclude it is not possible to requantize the classical motion whenever

it is stochastic, and that a variety of methods all give reasonable solutions in the

quasiperiodic regime.

The Poincare projects for the motion in 24Mg analogous to those shown in Fig. 10

are displayed in Fig. 11 for the isoscalar quadrupole and octupole modes and for the

isovector dipole mode. We see that the motion is at best quasiperiodic and appears

to be filling almost all of the phase space in this regime. The corresponding auto-

correlation functions, defined in Eq. (20) as

i> / \ f " dm +1UT u » i /on\
C*I ( T ) = J . c o ^ e MAl(<0) (20)

are shown in Fig. 12. The correlation function is small at all of the relevant fre-

quencies, suggesting that the motion is indeed chaotic.

In an attempt to find more periodic states for 24Mg, we have also attempted a

different type of initialization.

Referring to Fig. 9, we follow the evolution from the same initial configuration

until it reaches a point on the energy surface indicated by the "X". This part of

the evolution takes approximately 700 fm/c. At this point, we again minimize the

energy using the DCHF procedure. This has the effect of localizing the system in the

region of the isomer and "cooling" the system keeping the density fixed. This state

is then used to continue the time evolution using the TDHF equations. The subsequent

time and frequency dependence of the isoscalar moments are shown in Fig. 13, and for

the isovector moments in Fig. 14. The time dependence of the isoscalar moments in

Fig. 13 are indeed more periodic than previously; furthermore, the dominant frequency

of the motion at low frequency now appears in all of the moments, as it must for an

exact periodicity. This motion also appears in the add-l isovector moments shown in

Fig. 14. However, the even-* multipoles appear chaotic and do not have the correct

low-frequency behavior for exact harmonic motion. The autocorrelation functions, Eq.

(20), are compared in Fig. 15 for the motion shown in Figs. 13 and 14. Here we



observe strong correlations which do not appreciably dampen in time.

V. DISCUSSION

We have solved for the time evolution of highly excited 180 and 2l*Mg from

reaction-like entrance channels. In both cases, the details of the evolution are

sensitive to parameters of the initialization, the relative kinetic energy, the frag-

ment separation. For the 180 system, we evolve from an a + i4C entrance channel, for

the 21*Mg system we evolve from an asymptotic configuration of X2C(0+) + 1 2C. The
12C(0+) configuration is strongly related to a 3-a cluster configuration of carbon.

The memory of the initial a-clustering persists throughout the time evolution for both

systems. In each case, the system rapidly evolves into the region of a shape isomer,

undergoing quasiperiodic motion. The Poincare phase space analysis and the behavior

of the autocorrelation functions suggest that the motion is chaotic instead of quasi -

periodic. The importance of identifying quasiperiodic instead of chaotic follows

from the work of Ref. 49 where the quasiperiodic motion represents a known classical

limit of the quantum spectrum whereas the chaotic motion does not. For 21*Mg, methods

were employed to "cool" the motion and this resulted \n quasiperiodic motion which

was neither chaotic nor exactly harmonic.

In general terms, we are suggesting the existence of highly collective struc-

tures of a giant resonance nature having compound nuclear properties at excitation

energies of 13 MeV in 180 and 36 MeV in 21|Mg, and very large deformations for 2l*Mg.

These ideas have been suggested previously by Cosman1*5 and co-workers. From the

point of view presented in this paper, these structures should exist throughout the

periodic table and for a variety of different entrance channel configurations.
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imaginary time step.

5

0

-5

—i 1 1—

..!:'iil!i"°"-'""!ii':i!i«!iiii!i::ii... t = 5 O 7 f m . 4 ;
- ! l ! _B miiniml Aafea • • • • •

| ;

If l|

i i !

t+90 -

t + 30 • • t +120 -

5-

0-

-5

t+60 t+150
si! 'ii i

•iiiSu'si? }i i

-K) -5 10 -10 -5
z(fm) 0 10
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Fig. 8. Density-constrained static HF energies, AE = E(constrained) - E o ) , Eo =
-122.3 MeV, as a function of the isoscalar quadrupole and octupole degrees of free-
dom. Contours are labeled in MeV. The constants q2o» Q30 are q2o

 = 89.8 fm2, and
q30 = -654.1 fm

2. The point having an energy Eo is a shape isomer of the
 180 system.
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Fig. 9. Density-constrained static HF energies, AE = 2 (E(constrained) - E Q ) , Eo =
-143.8 MeV as a function of the isoscalar quadrupole and octupole degrees or freedom.
Contours are labeled in MeV. The constants q2o and q30 are q2o = 582.7 fm

2 and q30
-^411J)fm 3. The point having an energy AE = 0 is a shape isomer of the 2tfMg systsystem.
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Fig. 10. The classical limit of the SU(3) Hamiltonian, the static energy surfaces
for three values of the coupling constant x, and six trajectories and Poincare
sections, a) harmonic, b), c), d) quasiperiodic, and e), f) chaotic.
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