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NUCLEAR MOLECULES IN TDHF*

M. R. Strayer
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

U.S.A.

In present-day theoretical nuclear physics, the long-time mechani-

cal behavior of nuclear systems arises through the various classical

and semi-classical limits of the quantum many-body problem as, for ex-

ample, in studies of the time-dependent Hartree-Fock (TDHF) approxima-

tion,1' the nuclear partition function,2) fission lifetimes,3) and S-

matrix elements. **)

Hydrodynamic models of matter in heavy-ion reactions exhibit the

characteristic behavior of dissipative fluid flow,5) and details of the

momentum transfer and particle multiplicities may be suggesting the

formation of attractor regions in the reaction phase space.6) Iso-

scalar and isovecfcor heavy-ion monopole and quadrupole giant resonances

have been computed in 160 and **°Ca by examining the quasiperiodic

motion of these systems using the TDHF approximation.7) These calcula-

tions yield unquantized vibrational frequencies in good agreement with

both the RPA and the GCM methods and have the classical interpretation

of being the most probable frequencies of the RPA strength functions.

All of the above work seems to predict the existence of highly non-

linear structures embedded in the dynamics of heavy-ion reactions with

the subsequent development of either classical quasiperiodic or chaotic

behavior of the compound nuclear system.

^Research sponsored by the Division of Nuclear Physics, U.S.
Department of Energy under contract DE-AC05-840R21400 with Martin
Marietta Energy Systems, Inc.



In the present work we study, using the time-dependent Hnrtree-

Fock approximation (TDHF), the quasiperiodic motion in 2**Mg, which ex-

perimentally displays a type of molecular structure. The theoretical

foundations of the nuclear TDHF formalism have been extensively re-

viewed in the literature8"10) and are not discussed here. The TDHF

method addresses the question of molecular formation from s microscopic

"view" which provides both a geometrical (classical) picture of the

molecule, as well as characteristic information on the rotational and

vibrational structure of the molecule. The most extensive experimental

evidence for the existence of nuclear molecules lies in the narrow

resonances observed in the 12C + l2C reactions near the Coulomb bar-

rier.**/ A large number of experimental data has bean amassed, and the

most successful organization of these data is in ferns of the U(4)

model of Iachello.lz' The representation of the data in terms of this

model suggests that the molecule involves a structure related to the

7.08 MeV 0+ state of 12C. This state has a well-established cluster

structure and is approximately given as a HF shape isomer of i2C. The

energy as a function of deformation and the density contours for both

the ground state 12C and the carbon isomer are shown in Fig. 1. The

present work examines in detail the classical behavior of the 12C +
l2C(0+) collision at energies near the Coulomb barrier. The long-time

motion of the compound nuclear system is identified in terms of its

classical quaslperJLodic and chaotic behavior. The consequences of this

motion are discussed and interpreted in terms of the evolution of the

system along a dynamical energy surface.

TDHF density contours corresponding to the time evolution from an

initial configuration based on these two states are shown in Figs. 2(a)

and 2(b). The initial state is also labeled by CM energy, E "7.5

MeV and separation along the axis of symmetry, R - 12 fm. Again,

these are head-on collisions in which the matter flow undergoes a com-

plex pattern of quasiperiodic motion. The contours in Fig. 2(a) are

those for the isoscalar density, while those in Fig. 2(b) are for the

motion of the isovector density. For the forces used in this study,

the differences in the structure of the isovector and isoscalar den-

sities arises solely through the Coulomb force. While the motion of



the isoscalar density appears regular, the isovector density has a com-

plex high multipolar structure which varies rapidly on a time scale

where the isoscalar density varies slowly.

The corresponding long-time behavior of the system is shown in

Fig. 3 for the Isovector dlpole and the isoscalar quadrupole, octupole,

and RMS radius (two times the physical radius of the system). The
l2C(0+) + 12C system has been followed in for almost 5 x 10"20 sec.

The time dependence of the isoscalar octupole motion is very regular

and corresponds to a low-frequency vibration of about 1.5 HeV. The

isoscalar quadrupole motion is a combination of low- (~ 2.5 MeV) and

high- (~ 8 MeV) frequency motion.

The motion of 2<*Mg can also be described In terms of collective

variables and in terms of collective energies. As the system evolves

along a TDHF path, the density, which may be thought of as a collective

variable of the system, undergoes a complex motion. The corresponding

potential energy as a function of the density can be calculated using

the density-constrained Hartree-Fock (DCHF) equations. Using this

method, we freeze the density along the TDHF path and minimize the

energy of the system along the path. This energy is a function of the

constraining density and is shown in Fig. 4 for the 2**Mg system, as a

function of the Isoscalar octupole and quadrupole degrees of freedom.

The energy Is a surface in the q,, q, plane. During the time evolu-

tion, the system travels_on a path in this plane. Thus,, not all values

of the energies in this region were observed. These plots were ob-

tained using & least-squares fit to the HF energies along the path.

The time history can be understood in terms of Fig. 4. The initial

trajectory begins at q2 - 1.5 q2Q and q3 - +2.9 q3(), with q2Q - 582.7

fm2 and q3Q « 3431.O'fm
3. The system again evolves into a region shown

in Fig. 4 and traverses a complex path about the shape isomer,, E =

-143.8 at q2 » 355 fm in q3 «• 0.0. The energy contours in Fig. 4 are

the constrained energies AE - 2(E(constrained)-E ) In units of MeV.
o'

The axially symmetric ground state of 2**Mg occurs at q =67.9 fm2,

with an energy of -179.7 MeV. The general features of: the energy sur-

face as shown in Fig. 4 are in agreement with those obtained using

Nilsson-Strutinsky methods.l3)



The approach of classical systems to chaos11*' addresses a broad

spectrum of physical problems in the mechanics of fluids,15) in storage

rings and colliding beam accelerators,A 6) in plasmas,17) and in molec-

ular and chemical physics.16) Sidestepping the detailed questions as

to the universality of bifurcating systems19) and the topology of at-

tractor phase space, we study the Poincare projections in which the

multipole moments of the TDHF density

MtI(t) - / d
3r '

and

dt•J:
play the role of classical coordinates describing the motion of the

nucleus. These are displaced in Fig. S for the isoscalar quadrupole

and octupole modes. We see that the motion is, at best, quasiperiodic

and appears to be filling almost all of the phase space in this regime.

The corresponding autocorrelation functions,

are shown in Fig. 6. The correlation function is small at all of the

relevant frequencies, suggesting that the motion Is indeed chaotic.

In an attempt to find more periodic states for 2<*Mg, we have also

attempted a different type of initialization.

Referring to Fig. 4, we follow the evolution from the same initial

configuration until it reaches a point on the energy surface indicated

by the "X". This part of the evolution takes approximately 700 fm/c.

At this point, we again minimize the energy using the DCHF procedure.

This has the effect of localizing the system in the region of the iso-

mer and "cooling" the system keeping the density fixed. This state is

then used to continue the time evolution using the TDHF equr' *cns. The

subsequent time and frequency dependence of the isoscalar moc;i..ts are

shown in Fig. 7 and for the isovector moments in Fig. 8. The time de-

pendence of the isoscalar moments in Fig. 7 are indeed more periodic



than previously; furthermore, the dominant frequency of the motion at

low frequency now appears in all of the moments, as it must for an

exact periodicity. This motion also appears in the odd-* isovector

moments shown in Fig. 8. However, the even-fc multipoles appear chaotic

and do not have the correct low-frequency behavior for exact harmonic

motion. The autocorrelation functions are compared in Fig. 9 for the

motion 6hown in Figs. 7 and 8. Here we observe strong correlations

which do not appreciably dampen in time.

We have solved for the time evolution of highly excited 2l*Mg from

reaction-like entrance channels. In both cases, the details of the

evolution are sensitive to parameters of the initialization, the rela-

tive kinetic energy, and the fragment separation. For the 2**Mg system

we evolve from an asymptotic configuration of 12C(0+) + lzC. The
12C(0+) configuration is strongly related to a 3-a cluster configura-

tion of carbon. The memory of the initial a-clustering persists

throughout the time evolution. In each case, the system rapidly

evolves into the region of a shape isomer, undergoing quasiperiodic

motion. The Poincare phase space analysis and the behavior of the

autocorrelation functions suggest that the motion is chaotic instead

of quasiperiodic. The importance of identifying quasiperiodic instead

of chaotic follows from the work of Ref« 20 where the quasiperiodic

motion represents a known classical limit of the quantum spectrum

whereas the chaotic motion does not. For 2l*Mg, methods were employed

to "cool" the motion, and this resulted in quasiperiodic motion which

was neither chaotic nor exactly harmonic.

In general terms, we are suggesting the existence of highly col-

lective structures of a giant resonance nature having compound nuclear

properties at excitation energies of 36 MeV in 2**Mg and very large

deformations. These ideas have been suggested previously by Cosman21'

and co-workers. From the point of view presented In this paper, these
t

structures should exist throughout the periodic table and for a variety

of different entrance channel configurations.
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CALCULATIONS ON CARBON
CONSTRAINED HARTREE FOCK

14 16

Fig. 1. Energy as a function of quadrupole deformation ($ and
the corresponding density configurations for 12C.
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Fig. 2. The density contours of 2lfMg evolving from a 12C(0+) + 12C initial configuration for the
isoscalar (I»0) and isovector (1=1) densities.
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Fig. 3. The time and frequency dependence of the isoscalar
quadrupole moment, octupole moment and the RMS radius, and
the isovector dipole moment for 2<fMg.



ENERGY SURFACE IN Q3-Q2 PLANE
Time 11:18:44 Date 8-JUN-84

Fig. 4. Density-constrained static HF energies, AE - 2 (E(constrained) - E o ) , E o - -143.8 MeV
as a function of the isoscalar quadrupole and octupole degrees of freedom. Contours are labeled
in MeV. The constants q20 and q30 are q2o = 582.7 fm

2 and q3o " 3431.0 fm3. The point having
an energy AE - 0 is a shape isomer of the 2l*Mg system.
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