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A variety .of numerical methods for solving the time-dependent fluid
transport equations for tokamak plasmas 1s presented. Among the problems
discussed are techniques for solving the sometimes very stiff  parabolic
equations for particle and energy flow, treating convection-dominated energy
transport that leads to large cell Reynolds numbers, aptimizing tuae flow of
a code to reduce the time spent updating the particle and energy source
terms, coupling the one~-dimensional (1-D) £lux-surface-averaged fluid
transport equations to solutions of the 2-D Grad-Shafranov equation for the
plasma geometry, handling extremely fast transient problems such as internal
MED disruptions and pellet injection, and processing the output to summarize
the physics parameters over the potential operating regime for reactors.
Emphasis is placed on computational efficiency in both computer time and
storage requirements. :
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DEVELOPMENTS IN TOKAMAK TRANSPORT MODELING

.

INTRODUCTION

Efforts to model the time- and spatial-dependent behavior of tckamak plasmas
have grown over the past decade from a few small codes containing simplified
treatments of the particle and energy sources and losses to a large number
of sophisticated codes that provide an ever Increasing impact on our
interpretation and prediction of the behavior of tokamak plasmas. The
increased sophistication has been made possible not only by our improved
understanding of the physical processes but also by the advances made in
numerical methods for solving the complicated sets of highly nonlinear
equations. ~All of the actively used codes are being improved continuously
by changing the physics, corputational techniques, and flow. Bacause of
this, Tuser’s manuals" and 'standard" techniques are essentially
nonexistent. Therefore, it would be a monumental undertaking to review all
the wvariations in physical approximations and numerical techniques of
tokamak transport codes. In this paper we will concentrate on the WHIST
code which has many features similar to those of other transport codes;
indeed, many of the concepts and methods have been borrowed from other
codes. WHIST is a 1-1/2-dimensional (1-1/2-D) (1-D transport plus 2-D MHD
equilibrium), time-dependent transport code.

In the following two sectiomns, we devote most of our discussion to the basic
1-p, time~dependent transport equations and the 2-D MHD equilibrium
equations and methods for solving them. Transient physiecs phenomena
associated with internal MHD instabilities and pellet injection are
discussed in the next section. A new approach to using time-dependent
transport codes for reactor studies is then introduced. Finally, we close
with a view of where significant new advances in physics and numerical
techniques will have to be made.

SOLVING THE TRANSPORT EQUATIONS

THE TRANSPORT EQUATIONS IN FLUX COORDINATES

The tokamak plasma has a toroidal geometry and in some cases a noncircular
cross section in the smaller diwmension that makes rigorous mathematical
analysis impossible. There are, however, a few simplifying assumptions that
can reduce the transport equations to cylindrical form, with toroidicity and
noncircularity entering  through transport coefficients and geometric
factors. In the limit of low toroidal field ripple, the plasma is uniform
in the toroidal direction (axisymmetric) because of the very fast toroidal
transit times of the ionized particles. There is also a poloidal component
to the magnetic field produced by a current driven in the toroidal
direction. The plasma safety factor q, which is typically of the order of
1-5 across the plasma, is the number of transits a magnetic field line makes
in the toroidal direction per transit in the poloidal direction. Because
particle orbits basically follow the magnetic field lines, the time scale
for flow in the poloidal direction is nearly as fast as in the toroidal
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direction. In the absence of magnetic islands or ergodicity, the field
lines then trace out a set of nested magnetic flux surfaces with plasma
densities and energies constant on a flux  surface. A set of
flux-surface~averaged equations can then be derived to follow the flow of
particles, energy, and current diffusion on the mich slower time scale of
transport between flux surfaces. 1’2 The resulting fluid equations for
particles and energy are given by
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for each of the thermal ion densities ny» and the electrons are subject to
charge neutrality constraints
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The energy balance equations are
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for the thermal ion components, which are assumed to have a common
Maxwellian temperature Ty, and
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for the electron fluid with a Maxwellian temperature T,- All terms in the
above set of equations are functions of the effective radial coordinate p,
with primes denoting differentiation with respect to p. V is the plasma
volume contained within a flux surface; V° then represents an effective
surface area. The particle fluxes for the ionic species are effective
flux surface averaged such that V~ T. represents the tot;l number of ions
flowing across the surface o per unit tlme. The conductfon heat fluxes T
and Q similarly represent effective flux-surface-averaged quantities. Thg
terms with the 1 subscripts denote losses of particles and energy along the
field 1lines in the scrape-off layer, where field lines are intercepted by a



divertor or limiter. Ly is the effective parallel flow 1length to the
divertor or limiter. Note that the parallel and radial flows are treated as
being separately ambipolar (charge conserving) in equations 3 and 4. In
reality, this approximation is 1likely not wvalid, but our 1lack of

understanding of the transport processes in the scrape-off layer prevents
more rigorous treatment. Q,; is the flow of energy between electrons and

ion specie j, usually called the rethermalization term, and Qyy is the ohmic
heating (OH) term. The third term on the right in equations 5 and 6
represents a transfer of energy from ions to electrons due to particles
flowing down a pressure gradient. These flow-work terms are sometimes
neglected or 1in part combined with the convective flow terms. The
nonrigorous treatment of these terms 1is probably justifiable because
classical collisional transport processes were used in ordering and relating
terms in the derivation of the equations while in practice nonclassical
processes dominate the transport. In equation 2 for the electron density,
allowance has been made for electrons associated with fast-lon components
(neutral beam ions and fusion products) and a stationary impurity component.
We will not discuss these terms further in this paper; we only note that
these components are generally treated as species separate from the thermal
ions.

We have stated that p represents a label for a flux surface and that the
flows of particles and energies in equations 1, 5, and 6 are relative to
that flux surface. At any instant in time a flux surface may be labeled
with either the toroidal or poloidal flux, but these fluxes diffuse with
respect to each other during the evolution of the plasma. The choice of one
or the other as a flux surface label is arbitrary and leads to differences
in the treatment of the problem. The toroldal flux is relatively constant
in real space (unless compression is considered) because it is dominated by
the strong wvacuum toroidal field. Weak paramagnetic effects are introduced
by the toroidal current and diamagnetic effects by the plasma kinetic
pressure. On the other hand, the poloidal flux gemerally changes more
rapidly due to increasing toroidal current and subsequent resistive
diffusion. In the WHIST transport code, we do not affix our p label to
either the toroidal or poloidal flux but instead use the half-diameter of
the plasma. This is a matter of convenience because we use a fixed-boundary
calculation for the MHD equilibrium. Both the toroidal and poloidal
nagnetic fluxes diffuse with respect to the labeled surfaces.

The current diffusion equation can be cast in several forms. Generally, the
poloidal magnetic field 1is used as the independent variable, and the
toroidal current, current density, toroidal electric field, and plasma
safety factor are treated as dependent variables. In this form TFaraday’s

law is given by
3B
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at ¢ ) P) ’ (7)

where v, Trepresents the wvelocity of a surface of constant toroidal flux
relative to the surface labeled p. This term is generally small with our
choice of p. The toroidal component of the plasma current integrated from
the magnetic axis out to surface p, I(p), and the plasma safety factor q are
related to Bp through the plasma geometry:

pel = szbGeBp R (8)
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where R is the geometric center of the plasma and G, and G, are
dimensionless flux-surface-averaged geometric factors that wili be discissed
later. F is the poloidal current Integrated from outside the plasma to
surface p and is used to evaluate the toroidal flux:
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In equation 12 P is the total plasma kinetic pressure summed over all plasma
components.

Using an Ohm“s law that relates the components of the electric field and
current density parallel to the total magnetic field and then flux surface
averaging gives a relationship~between the effective electric field E, the
effective total current density J, and the effective non-ohmically-driven
current density Jg?

E=n@ -3 » (14)
where ny is the electrical resistivity parallel to the total magnetic field.

Ampere’s law 1is used to relate J to I (and similarly 35 to the current
driven source Ig) in the form

3“?&%’6}(’9, . : (15)

The effective current density J cannot be used to evaluate the OH term in
equatlon 6. An effective ohmic current density can be defined as

" _ (ZTIRO)Z y 1
Jou = _-E;V’—- (Ge p) = ZwRo.VT so that (16)
Qg = Elog Soan

All the effective quantities have been chosen so that they reduce to the
usual definitions in low-beta, circular cross section plasmas where the
geometric quantities become
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FINITE-DIFFERENCE METHODS FOR THE SPATIAL VARIATION

Equations 1, 5, 6, and 7 constitute the basic set of parabolic partial
differential equations for tokamak transport. A cell method for obtaining a
finite~differenced form of the transport equations can be set up on a
nonuniform spatial grid in such a way that spatial derivatives are second
order accurate and particle and energy conservation is ensured.3 Let Py
represent a discrete number of points N in the plasma and construct a cell
around each of these points. If the boundaries of the cells p, are defined
as being midway between the main grid points, the particle and energy fluxes

become second order accurate:

p, + P
= _l____kll and

The last node on the main grid py is a dummy node that 1is used only for
applying the outer-boundary coudition so that the outer boundary of the last

cell represents the edge of the plasma, p& =a_-

Integrate equation 1 over a cell to obtain the finite~differenced form:

M i M
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Noting that V* integrated over the cell is just the cell volume, then the
left-hand side of equation 18 is the rate of change of the total number of
particles in the cell, the first term on the right is the flow of particles
across the cell boundaries, and the last terms are cell-integrated sources
and losses. If the volume of the cell 1Is changing slowly in time, it can be
taken outside the time derivative and the equation divided by the cell
VOIU@F AVy becomes

?Ej,i - - vi+lrj,i+1 - Virj’i + S - Tnjﬁi . {19)

where the demsity and source and loss terms are interpreted as being

appropriate cell averages. The effective surface areas,V£ and the particle

fluxes Pj ; are to be defined at the cell interxfaces pl- The parallel loss
s
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term 1s nonzero only in the scrape-~off layer near the plasma edge. A fine
mesh is required there because of the sharper gradients and atomic physics
processes. The mesh 1s set up so that the limiter tip or separatrix lies at
an interface and cells lie entirely in the plasma or scrape~off region. The
radial flux can be divided into two terms, one due to diffusion on the
density gradient of specie j (the dominant or “diagonal" term) and the
remainder due to temperature gradients, electric fields, etc:

- 2 anj ro

= D <|V — + 20
where the gradient metric <|Vp[2>f represents the flux-surface-averaged
conversion factor from gradients 1n p to gradients in real space. In
finite~differenced form, eguation 20 becomes
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The diffusion coefficient and gradient metric are evaluated on the interface
grid, and the gradient is central differenced because the interface lies

midway between the density grid points.

Equations 5 and 6 ,can be differenced in the same way but must first be
divided by (V’)Z/B. The energy Ffluxes a and Qe are treated similar to the
way the particle flux is differenced in efjuation 2] except that the diagonal
terms are for T; and T gradients, respectively. In treating empirical
transport models, the factor 3/2 is used instead of 5/2 in the convective
terms of equations 5 and 6 and the flow-work terms are neglected.

The finite-differenced form for the current diffusion equation is obtained
by first integrating Ampere’s equation (equation 15) over a cell then
substituting into Faraday’s equation (equation 7):

M M
I°i+1 To, ] 1 1{fi+1
—= dp = -
M F 27R_F| M . (22)
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Because G p, we can take a factor of G,L/pF outside the integral on the
left as a weakly varying term and interpret the resulting J as an effective
average current density in the cell:

MO\2 | My
3, (i) 2 @) MSsr . Ser N1 (i T\ | (23)
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At the magnetic axis, I, = p? = G¢1 = 0, so the expression for 31 becomes
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The integrated toroidal and poloidal currents I and F and the metric G are

defined at the cell interfaces, and J is defined on the py grid.” 1Inm
equation 14 E J., and n, are also defined on the p, grid. For convenience,

we will define an effective cross-sectional area ~AAy for each cell to
simplify the notation in equation 23:
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Using equations 8, 14, and 25, the finite-differenced form for equation 7
becomes

Bpi _ v¢i+lgpi+1 B V¢i_1gp1-1 _ (y3Js5 = Mygo17s1-1)
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BOWMDARY COXDITIONS

The boundary conditions on the particle and energy balance equations are
that the fluxes vanish at p = 0 and a condition at the plasma boundary that

can take one of several forms. Vanishing particle flux at the boundary,
r = 0, can be used to simulate full recycle or test particle

cgﬁservation, but normally one of the following conditions is imposed:

1 on 1
n =n,{a ) or — & e e
J,N joo nJ 9p a Anj
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In finite~-differenced form the gradient condition becomes

N T PN-l L PN T RyNe1
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with similar options provided for the temperatures.

The boundary condition at the origin on B is that § = 0. The condition
at the edge can correspond to elther fixed total plasma current, fixed
safety factor, or no applied electric field, which  become, in

finite~differenced form,
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respectively. The last condition comes from setting EN-l = 0 and would
result in current decay during a shutdown simulation. Note that the
finite-differenced forms above have been constructed so that E = constant
(no radial dependence) in steady state.

WIGGLES IN THE RADIAL PROFILES

With some transport models, "wiggles" have been observed in the solution for
the ion temperature profile near the outer boundary, as shown in Figure 1.
These wiggles are time independent, so they are not assoclated with
iterative or nonlinear effects. It is a classic case of large cell Reynolds
numbers. The cell Reynolds number is calculated from the local f£flow
velocity wv.» the cell mesh size Ap, and the local thermal conduction

coefficient for the diagonal contribution to the heat flux:

2V _Ap
R. =~ , wvhere
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Roache" shows that these spatial oscillaticns or wiggles can occur if R, is
large enough even in elementary linear problems with constant coefficients.
In slab geometry the condition for the onset of wiggles is R, > 2. When
this happens, convection dominates the heat flow and the equation looks
first order im its spatial variation. In the limit v, + =, the temperature
solution should be flat. The outer-boundary condition essentially over-



specifies the equation, and a shocklike solution is superimposed on the
temperature profile.

Figure 1 1llustrates a case in which R, >> 2 over the outer part of the
plasma in the ion energy equation. As the spatial mesh size is decreased or
the scale length for the gradient boundary condition is increased, the
magnitude of the wiggle decreases, as shown in Figures 1(a) and (b),
respectively. Under most circumstances, changing the mesh size and/or
outer~boundary condition can reduce or eliminate the wiggles. However,
there are cases, such as the one shown in Figure 1(¢), where wiggles occur
in an internai region. Here the convective and conductive heat flow are
assumed to be comparable in the scrape-off region. In the confined plasma
region, there is a sharp change in the transport model to one dominated by
convection. We have used an upwind difference at the last cell in the main
plasma when R, > 2 to eliminate the wigglas, but this is equivalent to
introducing an artificially enhanced thermal conductivity.* The upwind
difference for the convection term in the boundary cell is given by

M
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where 0O = O@(R_~ 2) is a Heaviside step functicn. @c can be replaced with
any function that turns on in the vicinity of R, = 2 and obeys the condition
0 <0, <€1. We have tried several other approaches including a modification
of Lax’s method but have not found any {other than decreasing the mesh size)
that solve the problem without changing it. It should be noted that in
miltispecies plasmas, wiggles can occur if a main driving term for one of
the profile fluxes 1is a density gradient of another specie. Criteria
analogous to those used in defining R, and v, can be determined for mesh
size limitations for a given set of plasma parameters.

FINITE-DIFFERENCE METHODS FOR THE TEMPORAL VARIATION

Fach term 1in the particle and energy balance equations is expanded in time
about t + 8At. If all terms were time centered (8 = 0.5), this would be a
Crank-Nicholson method. Many transport codes have gone to more implicit
methods to enmhance the numerical stability, either using 6 as a wvariable
parameter or setting © = 1. Although the numerical stability improves if
all terms are expanded about 8 > 0.5,3 the critical terms that govern the
numerical stability are the diagonal contributions to the fluxes and the
parallel loss terms in the scrape-off layer.

Many of the terms in the transport equations are highly nonlinear and not
worth the effort to linearize for implicit time treatment. Expressions for
the transport coefficients and various particle and energy source and loss
terms fall in this category. If accuracy is important for the time
expansion, then these terms can be evaluated explicitly at predicted <walues
for the parameters.> A corrector loop cam also be added, as in the PROCTRS
or BALDUR codes,G which not only provides a check on the convergence of the
solution at each timestep but generally Improves numerical stability. A
schematic flow diagram for the WHIST code is shown in Figure 2, in which a
corcector loop has been added for the purpose of illustration, although the



code does not currently contain a corrector loop. The predictor-corrector
method shown in Figure 2 has the advantage of being atle to run without the
corrector loop if either N, = 0 or the convergence criterion 1s not -<ery
stringent. HoweS has found the predictor-corrector loop advantageous for
obtaining particle conservation when coupling solutions for particle
transport in the plasma with recycle from the chamber walls.

FREQUENCY OF UPDATING MAJOR PHYSICS ROUTINES

There are a number of major parts of the physics calculations that are v:ry
time consuming and therefore not likely to be re-evaluated at each timestep.
Among these are neutral beam heating terms, ionization and charge exchange
profiles from gas puffing and wall recycle, and MHD equilibrium as noted in
Figure 2. The calculations for particle and energy source terms are
typically broken up into shape factors that are tied to fractional changes
in the 1local or global densiiy and/or temperature profiles and plasma
geometry. Efforts have concentrated on including more physies in these
terms while increasing the speed of computation, although these two goals
are many times incompatible.

Computationally efficient yet accurate methods have been found for a number
of the physics problems, although the ranges of wvalidity may be
restricted. Examples include SPUDNUT,” a slab model for r 1tral gas
transport in large plasmas, which has been benchmarked against ANISN
calculations; a semiempirical model for neutral beam deposition in
noncircular plasmas;8 velocity moments of the Fokker-Planck equation for
calculating the thermalization of fast ions;9 and a moments method of
solving the Grad-Shafranov equation for MHD equilibrium that will be
discussed in the next section of this paper.

Neutral beam deposition calculations for finite-sized beams injected into a
plasma with noncircular, nonconcentric flux surfaces are a problem that has
been treated rigorously only with relatively time~consuming Monte Carlo
methods.!? However, an approximate solution can be obtained by first
calculating numerically the attenuation along a single ray representing the
centerline of the beam and then constructing an algorithm that removes the
singularity where the ray passes through the magnetic axis. The deposition
profile 1in the center region can be approximated as a cubic in p and then
matched onto the ray solution at some intermediate radius oy 1f Py is
taken as twice the finite beam radius, excellent agreement can be obtained
between the two methods over a wide range of parameters.8 A typical set of
benchmark cases is shown in Figure 3. Computation times on the CDC 7600 are
8.5 ms for a deposition profile with the semiempirical method and 0.1 ms per
particle for the Monte Carlo method.

MHD EQUILIBRIWM SOLUTIONS

THE GRAD-SHAFRANOV EQUATION ’

On the slow diffusion time scale of interest, the inertia term in the
momentum balance equation can be neglected. For a 2-D axisymmetric toroidal
system, substitution of this equation into Ampere’s law yields the
Grad-Shafranov equation
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where J, 1s the toroidal compcnent of the current densit
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¥ and F are the poloidal magnetic flux and the poloidal current enclosed
between the axis of symmetry and the magnetic surface of 1interest,
respectively, and

* 32y 13y 3%
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The Grad-Shafranov equation imposes a constraint on the flux surface
geonetry. As the plasna evolves through a sequence of MHD equilibrium
states, the flux surface shape rmust change in a way such that the
Grad-Shafranov equation is satisfied.

VARIATIONAL MOMENTS SOLUTIONS

Repeatedly solving the 2-D Grad-Shafranov equation for the evolving flux
surface peometry can significantly increase the computer time and storage
requirements of a transport code. A computationally efficient method to
find approximate solutions to the Grad~Shafranov equation has been
developed.11 The flux surface coordinates (R,Z) are expanded in Fouriar
series in a poloidal angle 9 that increases by 27 the short way around the
torus:

R
R(D’e) x= RO(D) - RI(D)COS 9+ 27 (p)cos nd and (30)
DR )
Z(p,8) = E(p) 21 R, (0)sin nd on
n=i-

where p 1is a flux surface label and the flux surfaces are assurmed to have

up-down symmetry 2{(0,9) = Z{(p,-9). Also, the poloidal anzle 9 has been
chosen such that 72 (D) = E{0)R_(0). The armplitude Ffunctions u (n),
Ry (p),and E(p) uoscrlge the shift, Bhe minor radius, and the ell;ptlcity of
the flux surfaces, respectively, and the amplitude R,(0) describes their
triangularity. A few terms (n € 3) in the Fourier series are generally
sufficient to describe many plasma equilibria, including those for
high-beta, strongly D-shaped plasmas. Thus, the problem of finding 2-D MHD
equilibria i1s reduced to that of solving a few ordinary differential



equations for the amplitude functions R, (p) and E(p). The equations
describing R_(p) and E(p) can be conveniently obtained using a variational

principle. They can be shown to be moments of the Grad-Shafranovy equation
with basis functions Mp, and M,

{8y = 0 and (32)

Mgy= 0, (33)

where G 1s the Grad-Shafranov equilibrium operator in (p,9) coardinates:
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The flux-surface-averaged quantities G, and G, are given Ly equations 10 and
11, respectively. The 3-D Jacobian of the transformation from (R,%,Z) to
{p,59,%) coordinates (3 is the ignorable coordinate) is given by

¥g = Rt , where (35)

T =RgZ - RZy - (36)

Here the subscripts p and 9 on R and Z denote differentiation with respect
to these variables. The elements of the metric tensor are

=RR +22 (u,v = p,9) , n

gyuv v

= »2 and (38)

all other elements are zerc. The basis functions are given by

s

Mo = RZ, (39
Mp; = R(ERysin 9 + Z,cos 8) , (40)
Mpn = R(ERgsin n8 - Z cos n3) tn >2) , and (41)
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M = E§1 R RRysin nd . (42)

<A> is the poloidal-angle-averaging operator defined for any scalar A as

COMPARISON WITH COMPLETE 2-D SOLUTIONS

The moments equations 32 and 33 form a set of coupled second-order ordinary
differential equations. Given two driving functions P(p) and L(p), they are
solved numerically with the boundary conditions corresponding to a fixed
plasma boundary using a shooting technique.

In Figure 4 the flux surface contours (constant p contours) are shown for amn
ETF/INTOR equilibrium. The solid lines are from the moments calculation,
and the dashed lines represent the calculation using a standard 2-D code.
Figures 5(a}-5(¢) illustrate the normalized shift S(p), elongation E(p), and
triangularity D(p) parameters of the flux surfaces for the exact 2-D and
moments solutions. Figures 5(d)~5(f) provide a comparison of the effective
surface area V“{p), the safety factor q(p), and the poloidal magnetic flux
Y(p). The agreement betwcen the noments method approximation and the 2-D
results is well within acceptable limits for transport simulation, but the
moments calculation is typically faster by a factor of 10 in computational
speed and requires much less storage.

COUPLING TO THE TRANSPORT EQUATIONS

The 2-D equilibrium constraint is imposed om the 1-D transport equations as
follows. An equilibrium calculation is performed using P{p) and I(p) to
obtain the effective surface area V“(p) and various peomectric factors. The
plasma density and temperatures are then readjusted adiabatically to be
consistent with the new flux surface geometry using?

(nj)new(v’)new - (nj)old(v’)old and (43)
+y2/3 273
TP hew™Y Mew = T1201aV 010 - (44)

The toroidal current I(p) is readjusted by keeping the safety factor q fixed
(i.e., flux couserving):

F _ (T
(f G¢Gq>new - (f G¢GQ)old ) (45)

All the above calculations and parameter readjustments ocecur in the box
denoted MHD equilibrium in Figure 2. Next, transport calculations are
carried out for one or more timesteps holding V° and the geometric Ffactors




fixed, as shown in the main time loop of Figure 2, until certair physical
parameters (densities, temperatures, magnetic field, etc.) have changed by a
specified amount. Transport is halted, and the resulting P(p) and I(p) are
used to calculate a new equilibrium.

TRANSIENT PHYSICS PROCESSES

Trarsient physics processes introduce a rapid change in the plasma
varameters over a very short time scale; then the plasma relaxes over a
longer transport time scale until the conditions are met for another plasma
disturbance. Examples of the physical processes that exhibit this kind of
behavior are pellet injection and some types of MHD instabilities such as
sawtooth disruptions and double~tearing-mode disruptions for inverted
current profiles. If the disturbances are frequent enough for pellet
injection or sawtooth bebavior, a continuous model can be constructed. The
condition for a continuous model to be valid is that the repetition time for
the disturbance be much less than the time scale for the relaxation of the
profiles.

PELLET INJECTION

When a high~velocity pellet is injected into a large, hot reactor plasma,
the pellet 1s expected to completely ablate in a period of a few hundred
microseconds.!? This tine scale is much shorter than the l-s time scale for
radial £low but long compared Lo the time scale for electron energy flow
along field lines. The rate of ablation of the pellet can then be
calculated from the background plasma parameters using either an infinite-
or finite-medium calculation.!?® All terms in equations 1, 5, and 6 are
negligible on an ablation time scale except for the time derivatives on the
left and the source and loss terms from pellet ablatign on the right. These
equations can be integrated over the ablation time interval to come up with
conditions for step changes in the densities and temperatures due. to
injection of a pellet:

t +e Tl
P ay
ftp-E dt(——- Spj) , (46)

ot

which gives the step condition

n_,’(tp + €) nj(cp e) + Anpj . 47)
Similarly, we find that the total electron and ion energy densities must be
preserved with allowance made for a small amount of energy 1loss associated
with the agblation and ionization of the pellet. Thus, to simulate discrete
pellet injection, step changes are periodically made in the density and
temperature profiles subject to particle and energy conservation
restrictions on the short ablation time scale. The plasma transport
simulation is then reinitiated with new profiles after the injection step.l!"

If the pellet repetition rate is rapid (i.e., short compared to both
particle and energy transport time scales), then pellet injection can be
simulated as a continuous process. The deposition profile is calculated



from the ablation profile, but the source term An,; 15 averaged over the

pellet repetition time to arrive at an effective average source strength.
Typical reactor simulations with 20-ms repetition times for the pellets show
good apreenent hetween continuous and discrete pellet models because the
transport time scales are of the order of 1 s.

INTERNAL MHD DISRUPTIONS . .

Detailed calculations for the conditions that lead to 1internal plasusa
disruptions and the redistributicn of the plasma during disruption are
extremely complex 2-D or 3-D nonlinear calculations involving both Alfven
(microsecond) and transport (second) time scales. 5716 Fmpirical models can,
however, be constructed for transport modeling that preserve the gross
features of the disruptions.

Using the flux surface parameters defined earlier, we can construct
approximate helical flux functions for the sawtooth mode (m = 1, n = 1),

p R
* o -
o= - - 1G dQ
Xs(p) . b TR ’
Q o]

and double tearing mode,

*
Xma(p) = il
m

where n and m denote the toroidal and poloidal mode numbers, resvyectively.
These expressions are valid only in the circular cross section limit bhut
have been extended into the noncircular regime using empirical arguments.

A condition or set of conditions must then be impcsed on the gq profile to
determine when a disruption will occur. For the sawtooth disruption, this
may be in the form of empirical conditions such as q(o) < q. < 1 or
q(rs) < la The critical parameters g or r_ can be constants or can be
determined self-consistently from the plasma profiles.!® We have usad
q, = 0.9-0.92 to give penerally good acrececment with experimental results.
In matching a given experinent, specification of the singular surface T, is
usually more direct. For the double tearing mode to occur, the safety
factor must be double valued and rational, q = m/n. Usually we consider
only n = 1 modes because these are likely to be the most unstable.

Next, the radial extent of the disruption r, must be determined. 1In
Kadomtsev’s modell® for the sawtooth disruption, the condition is given by
xé(ro) = 0. For the double tearing mode, the condition is similar except

that there are two rational q surfaces involved:

qlrgy) =a(rgy) = a/n .




The extent of the double-tearing-mode disruption r, i1s then determined from

xﬁn(ro) = x;n(rsl) ’

<r <r .
wvhere rsi s2 o

The flux surfaces inside r, must then be reconstructed. The simplest form
for this reconstruction is to assume the new safety factor q(p) = q(ry) is
uniform for p < rge

Because the flux surfaces reconnect during an dinternal disruption, the
plasma density and temperature profiles are necessarily perturbed. Uniform
redistribution of both density and energy has been used to successfully
model the major features of experimental observations. Numerically, this is
done with the constraints of particle and energy conservation over the
region p < x,- The transport and MHD evolution are then restarted with what
is essentially a new set of initial conditions. The disruption appears as a
step change in the profiles with appropriately preserved global conditions.

SCANNING THE PLASMA OPERATING REGIME

We have recently found a way to maximize the information gained from
comprehensive transport simulations through the use of countour plots in
density and temperature space. We would like to know how much supplementary
heating power must be provided for the steady-state operation of a plasma at
a given density and temperature, the corresponding plasma beta, and other
parameters such as the fusion power nutput in a reactor. We can scan
density and temperature space by providing feedback on the particle and
energy sources and using time as a way to march from one equilibrium to the
next. Figure 6 shows a set of beam power, fusion power, and beta contours
for a typical tokamak reactor calculation. The results from eight time-
dependent 1-1/2-D transport runs with the UHIST code were stacked to
generate this set of plots. Each run is at a constant density maintained by
feedback on the particle source. The temperature is slowly ramped from the
initial state to the final temperature (20 keV in this case) by providing
feedback on the neutral beam heating source. If the time scale for the ramp
from initial to final temperatures is long compared to the time scale for
the relaxation of the profiles; the plasma remains in near steady state. 1In
Figure 6 the transport time scales are about 1 s whereas the simulation time
for each constant density scan was 20 s. Comparison with 40-s sinulations
shows little differeunce. A set of data is generated along each scan that
gives all source and loss rates from the plasma and major plasma parameters.
This data set is then fed to a contour plotter. The set of eight transport
suns to generate Figure 6 consumed about 10 min of CDC 7600 time and
included the evolution of the MHUD equilibria and the effects of the shift of
the plasma at high beta on beam penetration and toroidal field ripple

losses.

SUMMARY

The set of equations describing the evolution of tokamak plasmas possesses
many features that present severe tests for computer analysis. Coupling the
highly nonlinear 1-D equations for the densitv, temperature, and current
profiles to the 2-D solution of the Grad-Shafranov equation for the changing
geometry has many subtle difficulties. The debates over which methods are
‘most appropriate or accurate are still continuing. ' Efforts at modeling
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discontinuous processes such as pellet injection and MHD disruptions in
plasma transport calculations have begun only during the past couple of
years. These are areas where far greater effort will be concentrated in the
future as we strive to gain further insight into disruptive processes in
general and the plasma’s ability to recover from disruptions. As more
physics is incorporated into the models, the numerical techniques have to be
made more efficient because both size and computation time can already
approach the limits of many computer systems.
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