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‘Group theoretical methods are used to obtain the form of ihe elastic mod-
uli matrices and the number of independent parameteré for various symmetries.
Particular attention is given to symlﬁetry groups for which 3D and 2D isotropy

* is found for ‘the‘st‘r'ess—strain tensor relation. The number of independent pa-
rameters is given by the number of times the fully symmetric représentation is
contained in the direct product of the irfeducible representations for two sym-

~ metrical second rank tensors. The basis functions for the lower symmetry groups
are found from the compatibility relations and are explicitly related to tﬁe elas-
tic moduli. These types of symmetry arguments should be'general.ly useful in

treating the elastic propertles of solids and composites.
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I. INTRODUCTION
Christensen has shown.! that the 4th rank symmetric elastic tensor Cijx defined

by
5= 2. Cikew | (1)
7'J‘ .

kd=z,y,2

where Fj is the component of the force in direction 7, retains its form in 3D in going
from the isotropic full rdational symmetry group to the case of 6 ﬁve—fold rotation
axes. Christensen further obtained the corresponding result in 2D where the form of
the Cijp is retained in going from the case of full axial symmetry (inﬁﬂame isotropy)

to hexagonal symmetry with a 6-fold axis. In his paper Christensen!

‘ empha.sizes
that the more restricted symmetry of the 6 five-fold axes in the 3D case, and the
hexagonal axis in the 9D case is sufficient to yield 3D and 2D isotropy with regard
to the elastic properties, defined by Eq. 1. |

Fiber reinfofced composites represent an interesting application of these S‘ymmetry
forms.! If the fibers are oriented in .thx“e.e dimensional space in the six directions
prescribed by icosahedral symmetry, then isotropy of the tensor of elastic moduli
will be obtained. This possibility was first suggested by Rosen.? In the correspbnding
two dimensional situation, if the fibers are oriented at 60° intervals then isotropy
is obtained in the plane. It is standard practice to use fiber composite sheets
stacked at 60° aﬁgular intervals to obtain “quasi-isotropy” in the field of fiber
composites. Recent research on quasi—crystals®? has emphasizéd the connectioﬁ of
tlﬁr icosahedral symmetry to the elastic properties.®

I this note we sh(:nv a generalization of Christensen’s pz:oof? using group theo-
retical arguments. From the group theoretical point of view presented here, the
conditions for retaining isotropy can be clearly defined and when the symmetry is

~further lowered to introduce anisotropy in the elastic properties, the passage from



the isotropic to the anisotropic situations can be i"ollowed adiabatically through usc
of compatibility rcla,timlé. For those with a group theory backgrourﬂ, the results of
this note are almost obvious, but for materials scientists without this background
these results dé noﬁ seermn So obvious. The ob jective of this note then is to make cer-

tain symmetry results available to materials scientists for use in their applications.

II. 3D ISOTROPY

. . . —+ .
For the case of full rotational symmetry, a second rank tensor T transforms ac-
cording to the representation P? where I‘? can be written as a symmetric and an

antisymmetric part

To= I*f};) + rfI:? | (2)

where the symmetric components transform as the irreducible representations
I‘(.f) = I1(:0 + Fl:? ' (3)
T ‘
and the antisymmetr® * components transform as

' =, | o (4)

in which the irred‘uciblefrepresent‘.at.ions of the full rotation group are denoted by
their total angular momentum values {. Since the stress V.F and strain e tensors arc
sy1h1‘ilet1¢ic second rank tensors, both X, and e;; transform according to (I'j=¢ +1'i=2)
in full rotational symmetry, where X, denotes a force in the a direction applied to
a plane whose normal is in the « direction. The fourth rank symmetric iy tensor
of Eq. 1 transforms according to the symmetric part of the direct product of two
second rank symméfric tensors I‘(.;) @ F(;) yield‘ing

(Ti=o + Ti=2) @ (Dizo + Ti=2) = (2= + 201y + Ti=a)) + (Tizy + iz + Di=y),

—
(7
~—



so that in general e;; is specified by 6 constants and t.hé Cijut tensor by 21 constants
because 1t is synn‘notric’u.l under the interchange of ¢j «» kl. The additional 15
constants that specify the antisymmetric off-diagonal irreducible representations
are not needed to specify the Cij/c(- In the case of full rotational symmetry, Eq. 5
shows that the totall& symmetric representation (I'j=o) is contained only twice in
the direct pmdu(‘b of the 111eduC1ble 1eprescntatlons for two second rank symmetric
tcnqozb, 111dl<.‘c1t111g that only two independent non——vamslnng constants are needed

describe the ‘21 con,stzmts of the Cijk tensor, d result that is well known- in
elasticity theory for isotropic media. In general, the number of times the totally
symmetric representation (e.g., Di=o for the fgll rotational group) is contained in the
irreducible representations of a generdl"matrix of arbitrary rank gives the number
of independent non—\;a.nishing'constants needed to specify that matrix,

We denote the two indeimndent ndn-wudshing constants ﬁeeded to specify the Cyju
tensor by. Cp for I'j=¢ and ‘by C; for I'i=y symmetry. We then use thiese two constants
to relate symmetrized stresses and strains labeled by the irreducible representations
['—p and I'=2 in the full rotation group. The symmetrized stress—strain equdtions
are first written in full rotational symmetry, using the partners of the irreducible

representations (one for [ = 0 and five for the | = 2 partners):

(X, + Y, 4+ Z.)=Colers + €yy + €:2) for I=0,m=20
(Xo =Yy + Yy + 10X ,))=Chlera — €yy +1€zy 4 ley,) for 1 =2,m =2
(Ze + X, 1Y, +12,)=Cresr + €20 + 1€y, +ie,y) for 1=2m=1

(Z. = 3(Xo + ¥y))=Caless —L(ean 4 eyy))  for 1=2,m=0
(Ze+ X =Y, —12Z,)=Ch(esn + €02 — 1€y, —1€y) for [=2,m = -1
(Xp =Y, =Yy —0X))=Cofean — €y —t€zy —t€y,) for [=2,m = -2
From Eq. 6 we solve for the six independent stress coefficients in terms of the strains,

yielding



—

. (Co 20y (Cu  C ‘ ‘
X, :(_59 + —.—v-é—?')(’f.‘!?.l'—*-(?() - —§£> (ny + 0:;) N (7)

for the stress component X,. Five additional relations are then written down for

the othier 5 stress components.

oi= Y Cyej, (8)

L J=16

where the 6 components of the symmetiic stress and strain tensors.are written as

o1=X, | f1=eg

or=Y, . . , E2=€Cyy

752 ‘ and EBéezz (9)
oy=3(Y: + Z,) ?4:(ffy.z + ezy)

o5=4(Zs + X.) £5=(Csq + €21)

os=1(X, + Y) 6= (Cay + ya)

and C,‘j is the 6 x 6 elastic moduli matrix Cj;. In this notation the 21 partners that
transform as (22 + 202y + T'i=y) in Eq. 5 corréspond to the symmetric‘purtn‘ers
while the 15 partners in (I'=; + =2+ '1=3) correspond to the antisymmetric partners
that do not give rise to any independeﬁt elastic components, since C; = Cj;. From

the six relations for the six stress components (one of which is given explicitly by

Eq. 7), the relations between the Cy and Cy and the C; follow:

C«'U::-]‘( Co+2Cy) = Chy = Cyy
Cl'z:%(co - C"Q) = Cla = Cza ‘ (10)
C',M‘::%C‘z = C"55 = C"(iG

from which we construcet the C;; matrix for a 3D isotropic medium involving two

independent constants C'y; and C'y



Cy Ci Chg 0 0 0

Ci iy o0 S0
‘. Cu 0 0o 0 .
1Ty = Cra) 0 0 ‘
| 3(Ci=Cig) 0

3(Cy = Che) |

Any subgroup of the full rota.-tioﬁ group for which the 5-fold I'i.y level degeneracy
is not lifted will leave the form of the C; mat’ri‘x mvariant, thus giving a more general
proof of Clu-istensen’s aa.'gm11i‘1el’1ts,‘ The icosahedral group with inversion symmetry

“I n, whichis a subgroup o’f the full rotation group, and the icosahedral group without
inversion I, which is a subgroup of both the full rotation group and the group I,
are bwo exumﬁles of groups which preserve the 5-iold degenerate level and hence
retain the form of the Ci; matrix given by Eq. 11 This result follows from at least
two related arguments. Firstly, from the pertinent compatibility relations between

the full rotation group®® and the I group (see Table I for the character tuble).i

iz — (Ay)1, | (12)
Dizg — (Hy)1,

we show that

MY = (A1, + (Hy)i,- ‘ - (13)

(&
From Eq. 13 we see that no lifting of degeneracy occurs in going from full rotational
symmetry to Iy symrrm‘try from which it follows that the number of noh-»-vanishiug
independent constants in the Cy; matrix remains at 2 for I), (and I) symmetry.
The same conclusion follows from the fact that the basis functions for I'.o and

['i=2 for the full rotation group can also be used as basis functions for the 4, and



H, irre(hmi})io I‘C"pl‘(ﬁﬁt!llt&fi(,‘mS of I, Therefore the same stress-strain relations are
obtained in I), symuctry as arc given in Eq. 6. Tt therefore follows thut the form
~of the Cj; matrix will also be the same for I and ‘fml}]‘ rotational symmetry, thereby
completing the proof. -

Clearly, the direct product F(;) ® I’(;) given by Eq. 5 1s not invariant as the sym-
metry is reduced from full rotational symmetry to I symmetry since the 9-fold )
representation I'iwy 1n Eq. 5 splits into the irreducible representations (G, + H,) in

going to the lower sy""m'net,ry group Ij. But this is not of importance to the linear
stress-strain equations which are invariant to this lowering of symmetry, It ﬁ'lfghh
be worth mentioning here that when non-lincar effect“'s are taken into account and
perturbations from Eq. 1 are nceded to .épecify the stress—strain relations (for exam-
pl‘e,‘ terms in the strain squared), different mechanical behavior would be expected
to occur in Jj symmetry in comparison with the full rotation group. In such a case,
the (’fn‘n[)&ﬂibilik)r relations between the full rotation group and the Iy group can
be used to relate the terms in the generalized elastic moduli matrix for the two
symuetries.

It should be noted that all symmetry groups forming Bravais lattices in solid state
physics have too few symmetry operations to preserve the 5-fold degeneracy of the
I = 2 level; for example in cubic Op symmetry the cubic group with the highest
syminetry, the | = 2 level corresponds to a reducible representation of group O
which splits into a 3-fold and a 2-fold level (the Ty, and E, levels), so that in this

case (see Eq. 6), 3 elastic constants are needed to specify the 6 x 6 matnix for ¢4

~I



~ -

CiiCiCiy 0 0
CyCip 00 0

<

. Cii 0 0 0 o ‘ ,
Cij = ~ ‘ - (14)
C44 {0 0
Cy 0
Cuq

“as is desceribed in many solid state physics books.”®

"

" IIL 2D ISOTROPY
A similar situation applies in 2D, Here the full axial symmetry is described by
‘the group Den. The irreducible representations of Deoy that are contained in the

symunetric second rank tensor are

TW =24, + By, + Ea, ' | (15)

e

so that the symmetric part of the direct product becomes

(M @ W) = 54y, + 3By, + 3Ez, + Eny + Eu, (16)

indicating that the C; matrix can be described in terms of 5 independent constants
for full axial symmetry. The stress-strain relations for Do, symmetry are written

in symmetrized form using the basis functions

(Xo + Y, +2Z,) and (egn + €yy + €22) forl=0m=0 A4,
(X =Y, 4+ +0X,) and (epw ~ €4y + leqy +20y,) for l=2,m =2 E,,
(X =Y, — Y, —iX,) and (e — €y — ity —1ey,) for {=2/m = -2 E,, (a7
(Zy + X, +14Y, +1Z,) and (€0 + a2 + 1€y +tey,) forl=2m=1 K,
(Zy + X, —1iY, —iZ,) and (e + €42 — 1€y, — 1€y,) for l=2,m = ~1 Ey,

(Z, - -],(\'L + Y, and (e, — %(f;“, + €yy)) forl=2m =0 A,



yielding

Xo + Yy + Z,=Cay 1 (Can + €yy + €22) + Caygoless — %(f’ww + "yy)]
Z, — ‘%(A’w + y—y):CAlg,Z[Gzz - %(eww + Eyy )] + CA1g.d [emw + ey + @zz] (18)
Xa - }y=Cb2g(C~Ll + eyy)
and corresponding equations for X, ¥, and X,. We then solve Eq. 18 for X, Y},
and Z, and require Cj; = Cy. In thé case of Dy, the i‘equirement that Cy; =
Ciyy = ‘ng = (93 yields the additional constraint Cmg'é = 2C’A1g',‘ which is needed
to obtain the 5 independent symmetry coefficients as required by Eq. 16: Capgs
Cagzy Cayyo Cry, and Cp,,. The relations between these symmetry coefficients

and the Cy; coefficients are:

C1=Ch = :[3C 4,1 + $Ca1,2 — 2Ca,,8 + Chy,)
Cip=Cp = %[%C"ly-] + -].’iCAly"l - %Cmg@ - CE?y]
Ciy=Cyy = %[CA,g,l ~Cypype + %Omy,a]
Cas=1[Ca,y0 +2C4,,2 +2Ca,, 8]

Cly=Cs = 10, |

C’(')S:%C'E'gy = %(C:rz = Clyy) = %(Cn = Cha).

- Combining the non-vanishing C'; coefficients thei’llyioids the matrix for full axial

symmetry Deop

[ 1
Ch Ci2 Ciz 0O 0
Cy Cis 0 0 0
Coy 0 0 0
Cy = - )
Cag O 0 ‘
Caa O
i %(6'11 - C'yy) ]




Ouce again, the basis functions used to obtain the stress-strain relutions ulso
serve as baéis functions for the irreducible representations Ay, Eyy, and Eyy in the
hexagonal group Dgy, which is a subgroup of Dy, Thus the stress—strain relations
for Dy, symmetry are identical tl,o Deoon and ‘the same form of the 6 x 6 elastic
constant matrix Cy; follows, completing a generalization of the result proven by
Christensen in 2D.!

If we consider the stibgmﬁp of D, with thé next highest symnetry (Dy,), we
immediately see that there is only one 2-dimensional irreducible representation®"
in Dy, so t‘hat the irreducible representations contained in second rank tensor I~
are not in‘va‘riant as the symmetry is 1'educcd from D to Day. .

It must be emphasized that in going from full rotational symmetry to I), symmetry
or in going from Do, to Dgy, the number of symmetry operations goes from oo to a
relatively small number (120 for I, and 24 for Dg;), so that some relations involving
tensors of rank higher than 2 (such as the electrooptic coefficients) are no longer

invariant under this lowering of symmetry both in 3D and in 2D.
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TABLEIL Character table for .

Iy | E 12Cs 12C% 20C3 15C; i 128 128§, 20810 150 Basis functions

A, |11 11 111 1 R
Ry, | 3 rolet 0 -1 3 1-7 T 0 -1 Ry Ry, R,
Fp, | 3 1-r1 r 0 -1 3 o o1-r 0 -1
Gy |4 -1 -1 1 0 4 -1 -1 10
o ' 222 — z?—y
IE2 _ y2
H, | 5 0 0 -1 1 5 0 0 -1 1 4 zy
€rz
yz
A, | 1 1 1 1 1 -1 -1 -1 -1 -1
Fi.| 3 T 1-71 o -1 -3 11 -7 0 1 (a;,y,”zv)
Fo | 3 1-7 T 0 -1 -3 -1 71 0 1 (23,9523
| | (2(22 - 1)
Go |4 -1 -1 1 0 —4 1 Lo g (METE)
2(2? - y?)
. \ Tz
H, |5 0 0 -1 1 -5 0 0 1 -1 |

where 7 = (1 + \/5)/2 and is often referred to as the “golden mean”.










