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Group theoretical methods are used to obtain tile form of tile elastic mod-

uli matrices and tile number of independent parameters for various symmetries.

Particular attention is given to symmetry groups for which 3D and 2D isotropy

is found for the stress-strain tensor relation. The number of independent pa-

rameters is given by the number of times the fully symmetric representation is

contained in the direct product of the irreducible representations for two sym-

metrical second rank tensors. The basis functions for the lower symmetry groups

are found from the compatibility relations and are explicitly related to the elas-

tic moduli. These types of symmetry arguments should be generally useful in

treating the elastic properties of solids and composites.
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I. INTRODUCTION

Christenseri ha,s shown.' tlm,t, rh(" 4¢,h rm:k s.vrnmcti'ic, elastic tens(_' )i" Ci.i.kldcfiii(.'d

by

_oF,: E (1)
(07'j k,l=a,,y, z

where F,: is _he component of the force in direction 7';, retains its form in aD in going

from the isotrop{c full rotational symmetry group to tlm case of 6 five-fold rotation
I

axes. Christensen further obtained the corresporlding result in 2D whel:e the form of

the Cijkl is retained in going from the case of full axial symmetry (in-plane isotropy)

to hexagonal symmetry witl: a 6-fold axis. In his pa.i)er Christensen 1emphasizes

' that the more restricted symmetry of the 6 five-fold axes in the 3D case, and the

hexagonal axis in the 2D case is sufficient to yield 3D and 2D isotropy with regard

t0 the elastic properties, 'defined by Eq. 1.

Fiber reinforced composites represent an interesting application of these symmetry

forms. 1 If the fibers are oriented in three dimensional space in the six directions

prescribed by icosahedral symmetry, then isotropy of the tensor of elastic moduli

' will be obta,h:ed. This possibility was first suggested by Rosen. _"In the corresponding

two dimensional situation, ii"the fibers are Oriented at 60° int,.n'vals then isotroi)y

" is obt.ained in the plane. It is standard practice to use fiber cornposite _hec,tss _, ,

stacked at 60° angular intervals to obtain "quasi.-isotr(_py" in the ft(sld of fiber

(:omi:)osites, Recentresearch on quasi-crystals a'4 has emi)lmsized tlle connection of

the icosahedra.1 symmetry to the ela,stic properties. :_,4

In this note we show a generalization of Clmstensen s proof, using group th('.o-

retica,1 arguments. From the group theoretical point of view presented here, tlm

conditions for reta, ining isotropy can be clearly defined and when the symmetry :is

i'urt,her lowered to introduce anisotropy in the elastic proi)(,rties , the passage ft'ore
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t,l:e isotrc, pic to the anisotropic sittmtions can be fbllowed a,di_._ba,tically through us(:

oi' compntibility rela.tio.::s, For those wit,lt a group tll,.'.ory backg,'ound, the results of

thisnotem'ealmostobvious,but forma,terialsscientistswithoutthisha,el:ground
,

th(:..(:.rc,suits do not seem so ol)vious The objective of e,his note _hen is to make ce.r-

ta,in symmetry results a,vaila,ble to materials scientists for use in their applic:_tions.

II. 3D ISOTROPY

• For the case of full rotat.ional symmetry, a second rm:k tensor T tr_msforms' ac-

co:'ding to the representt, tion P- where F- can be written as a symmetric mid mlT T

a,ntisymnaetric pa,rr

r-= :'_+ r_ _ (2)
T T 7'

where the symmetric components transform ,.-tsthe irreducible representa, tions

Pg)= Pl=o+ rl=_ (3)
T

and the a,ntisymmet.r: ' components transform as

r_/= r_=_, (4)
T

in which t;he irreducible representations of the full rotation group are denoted by

their toted angular momentum va.htes l. Since the stress V.F a.nd strain _*tensors _,re

symmetric second raaak tensors, both X,, and eij transform according to (F_=0+ Pl=2)

in full rotational symmetry, where X_ denotes a force in the a: direction a.pplied to

a plane whose normal is in the (r direction. The fourth ra,nk symmetric Cijkl tensor

of Eq. 1 tra.nsforms according to the symmet, ric part of the direct product of two

second rank symmetric tensors P(2) g) P(2} yielding
e e

]7 "_ _ , '_( ,:0 + r,_) _ (r,=0+ r,=_) (2F_=0+ 2r_=_+,p_=4)(_l+ (p_=,+ rr=2+ rr<,) :'')

(5)
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so that a:: general eij is specified by 6 consta,nts a,nd the Cijkt tensor by 21 consta,nts

beca.use it is sy:nmetrica, l under tlm int,ercha, ngeof ij _-..>k,l: The a,dditiona,1 ].5

corist,a,nts tha,t specify the m:tisyrnnletric off-diagona,1 irreducible rel)resenta, tions

m'e not needed to specify the Cijkt. In tlie Case of full rotationa,1 symmetry, Eq. 5

showsthat tlie totMly symmetri,- representation (Pl=0) is eonta,ined only twice in

the direct productl of the irreducible representations for two second rank symmetric

tensors, indiea.ti::g that .only two independent non--vanishing constants are needed

to describe the 21 constants of the Cljkt tensor, a resuit tha.t is well known, in

ela._tac:t,) theory for isotropic media.. In general,, the number of times the totally

p_synm:etric representation (e.g., L=0forthe full rota.tional group) is eont'ained in the

irreducible representa.tions of a genera ! matrix of arbitrm'y raz:k gives the nun:ber

of independent non-vanishing constants needed to specify tha.t matrix.

We denote the two independent non-vanishing constants needed to specify the Cijk¢

tensor by Co for Ft=0 a.nd by C_ fl)r P_=_ symmetry, We then use tlmse two consta.nts

•tc)rela.te symmetrized stresses and strains labeled by the irreducible representations

Fl=0 and Ft=2 in the full rotation group. The symmetrized stress-strain equations

are first written in full rotational symmetry, using the partners of the irreducible

representa, tiorls (one for l = 0 an.d five for the l = 2 partners)'

(X,, + 1_ + Z_)=C0(e:_,_, + ey_+ e_) for l- 0, m =- 0

(X_, - }"y+ iY_, + iX,j)=C_(c_._. - ey._+ ie_.y+ i%._,)for l = 2, m = 2

(Z_..+ X.. -r' i}'%+ iZu)=C'_(e,_ + e._, + ie..uz + ie,u) for l = 2, m-- 1
(6)

(Zx + X_ - it';. - iZ u)=C2(e,_. + ox, - ivy, - iezu) for l - 2, m = - 1

(2_. - i'_j -ii;.- i.X,j)=C'2(c,,, - cy._- ic_._ -. ic,,:_.)for l 2, rn = -2

Fron: Eq. 6 we solv'e..fl)r the six independent stress coefficients in terms of the strains,

yielding
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(_?2c )(c0 )Xx = +-_ e_,:,,+ 3 3 cuu + e_ , (7)

ibr the stret._s cornporw.rit Xa,.. Five addit, iona,1 rela, tions a,re then writ, ten down for

the other 5 :_tress COml)onents.

In the notation t;ha,t is conunonly used, we write the stress-strMn relations

_,,,= _ Cij_j, (s)
3"-1,6

where, the 6 components of the symmet, ric stress and st.rMn tensors.are writ, t,en a,s

O'1 --Na; _1 _exa:

a2=}_ e2=e,v u .

o'a:Zz e'amezz

' mM (9)

a,,;-5(Z_.+ X_) _s=(e_.+ e=)

cr6-5(X:_ + 1'_,) 'ea= (e_w + e._,)

and Cia is the 6 x 6 elastic moduli matrix Cii. In this nota,tion the 21 pa,rtners I,ha,t

tra,nsform as (2Pl=0 + 2P1=2 + Pt=,t) in gq, 5 correspond to the symmetric partners

while t,he 15 partners in (Ft= 1+ Ft=2 + Pl=a ) correspond to t,he an tisymmet ric partners

that do not give rise to any independent elastic components, since Cii = Cji, From

the six relations for the six stress components (one of which is given explicitly by

Eq, 7), the relations between the Co a,nd C2 and the Cii follow:

1
_"11 -" ;_( _'0 -[- 26'_) = C'22= Caa

c',_=½(c'0- c:_)= c',_ = c_:, (10)
1 f t'

G+_=_C2 = G_,s -= C:66

from which we construct the Ci.i matrix for a 3D isotropic medium inw)lving two

independent constants C'21 a,nd Cl_
q
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G'11 C:1_ C1_ 0 0 0

C'C'I_ ,i _, 0 0 0

Ct I 0 0 0
c;j = (II)

! (C:l_- C,'(2) 0 0

-I(6'i_- Cq_) 02

1 01_)_(C_ -

Any subgroup of tile fidl rota.tion gr(mt) for wliich t,he 5-fold Pl=_ level degener_.wy

is not. lifted will leave the form of tlm C0 :nat.fix mw._,riant, thus giving a more genera,1

1)roof of Christensen's a.rguments, l The icos_dmdral group witll inversion symmetry

Ih, which is a subgroup of the full rotation group, a,nd U_eicosMmdral group without,

inversion I, which is a subgroup of both t,he fldl rotation group and the group 1"/,,,

a,re two extra, pies of groups which preserve the 5--told degenera, te level a.nd hence

retain the form of the C 0 ma.trix given by Eq, 11. This result follows from _tt least

t,wo related argument, s. Firstly, from the pertinent compatibility relations between

the full rotation group "5'6 trod the lh group (see Table I for the chara,cter table),J/

ct=t, ----+(A,a)t,, (12)
Pl=__ (H,),,,

we show th_tt

.Pi2) = (A.)_,, -l,-(I-/.)_,, (13)
0

From E_q. 13 we see tlt_t no lift,ing of degeneracy occurs in going from full rot_tiona.1

symmetry to Ih symmetry ft'ore which it follows tha, t, Um number of non--vanishing

independent, consta,:nts in the C.. matrix remmns at, 2 for Ih (and I) symmetry.'lJ

The stone cone.Iu.don follows ft'ore the fa,ct that, the basis func,tions for Ft=-0 a,nd

Pt=_ for the full r()ta.tion group ea,n ttlso be used as basis functions for the Au a,n(l
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H:j irreducible rel:,resent_ttic, ns of ,[h, Therefore the same stress-stra.in reh_ti(nls m'e

ol_ta.ined hi Ih syimnetry n.s a,re, ,!!;ive1_in Eq. 6. It, thcrcfi:_re follows t,ha,t the form

of the Cia' ma.trix will a,lso be the s_une for !)__md full rot:a,t,ional symmetry, therd_y

completing the proof,

Clearly, the direct producl; F_ ) ® P_) giw.,n by Eq, 5 is not inwu'ia.nt as t,he sym-
C f.'

met,,'5, is reduced from full rot,a,tiona.1 symmetry to Ih symmetry since t,he 9-fold

represent_:Ltion Pr=+,an Nq. 5 splits into the irreducible representations (G_j+ He) in

going to the lower symmetry group It,. But this is not of importance to the linear

' _tress-strain equa, tions which a,re inva,ria.nt to this lowering of symmetry, It, might

be worth mentioning here that when non-linear effects a,re taken int,o _-_ccount,and

l_erturbations from Eq. 1 m'e needed to specify the stress-..-stra,in relations (for exmn-

ple, terms in the str_fin squa.red)_ different mecha.nica,1 beha,vior would be expected

to occur in Ih symmetry in comparison with the full rotation group. In such a,ea,se,

the COml:_atiMlity rela,tions between tlm full rotation group a,nd the lh group c.m_

be. used to relate the terms in tl:e generMized elastic moduli ma.trix for the two

symmetries.

It should be no_ed that all symmetry grout_s tbrmillg Bravais lattices in solid state

l)hysics lmve too few symrnet, ry opera.tions t,o preserve the 5-fold degenera, cy of the

l = 2 level; for example in cubic Oh symmetry the cut)it group with the highest

symlnetry, the l = 2 level corresponds to a. reducible reuresenta,tion of group Oi,

• v,,lfi('l_splits into a 3-f()ld a.nd a 2-fold level (the 5/:_..v_md .E,alevels), so tha.t in this

c.a,s(-'(,..e.(.s' Eq, 6), 3 el_:tst,ic constants are :_e(:'d(-:dto sl)ecify tl:(: 6 x 6 rm_L:tx for C'.,.,,a
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Cii Cl_Cl_ 0 0 0

C11Ci,_ 0 0 0

C11 0 0 0
Cii = (14)

C,14 0 0

C,l,t 0

C44

, . as is described ill maaly solid st,ate physics books, r'_

' III. 2D ISOTROPY

A sirnila,r situa,_iorl applies irl 2D. ttere the full axia,1 symmetry is described by

t,he group D/.o_,, The irreducible represent, a,t,ions of .D_,-:,hthat m,'e cont, ained in the

symmetric second rmlk tensor are

P(2) = 2Aly + E lr/+ E_,a (15)
e

so tha,t the symmetric pa,ft of the direct product becomes

(I"(210p l)l. l = + 3E1,j+ 3E2 + Ea:,+ (16)
e g

indic_:tfing t,ha,t the Cii ma,trix can be described in terms of 5 independent consta,nts

, for full axial symmetry. The stress-strain l'ela,tions for Do:o, symmetry are written

in symmetrized form using the basis fimctions

(X_+I'Tu+Z_) and(e_:,+ey_+e_._) fl_r'l=0, m=0 Alsj

(-¥,. -- }_ + iY_ .aci.X,j) a,nd (c_,.- e,_ + le.,,u + le.y,,) for l = 2, 'n_.= 2 E_,

(X,. - Y,a - iY_, - iX!,.) mid (e,,,, - ev_j- ie.,:l -'i%_, ) for I = 2, 7n.= -2 E2,j
(17)

(Z_: q-,X_ + i}'_ -[- iZu) and (e._, + c:,_+ ieu_ +/_-::!l) for l = 2, rl_,- 1. El,j

(Z_, + X_ ---it_ - iZv ) and (e_,, + c.= -ieu_ - ie..u) fi_r l = 2, rr_,= -1 El,

e 1
(Z.. - r1,(.Y_,+ Y_j) a.11d(e_. - _(e:_,_:+ euy)) for I = 2,'n_,- 0 Als_

8
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' yi,..,lding,

z= - _'(x_ + }'_)=CA,_,_[_ _ _ %,

'

_md corresponding equat, ions for Xr, Y= }tnd X.. We then solve Eq, 18 for X_, ]/]

,and Zt a,nd requlre Cq = Cjl. In the case of D_,h, the requirement tll_t Cal =

. Cia = C32 = C2a yields the additional constrt_int Cm,o,a= 2CA_o,,, wlfich is needed

t,o ob_Idn the 5 independent symmctry coefficients t_s required by Eq. 16: CA,o,1,
i

C C . a,nd ' ,'A_.,'2,CA_y,a, F._y C l_._, The rela,tions between these symmetry coefficients
, ¢

a,nd the C;j coefl:icmnts are:

!_ C ' l 2 C,,1

2
_C _CA, _CA,,,,a- CE,_,_]Ci,2=C21= ½[5 'A_.,I + _ _,'_--

1
, , 1[CA, - CA, ,2+ -_CA,,:_]

C t:_=-C'23- 5 0,i . . (19)
1 t 9 _ ,3]Ga:_=-_[(.'A_,l+ 2C,4,.,,_+ ,.,C'a,o

1

1 _ 1 _ _ 1 _l .C,(KI-_--_C,I._2g :- _(C22 -- C2,1) -- ;_(Cll -- 112)

Combining t,he non-va,nishing C'i.i coefficients t,hen yields t,he matrix for full _xi_tl

sylmnetry Dooh

' C'li Ct_ Cia 0 0 0

C'l i C'l_ 0 0 0

C'_:_ 0 0 0
c,'_j= (20)

C,t,i 0 0

(--"4,i 0

1
_(C'l_-d.'_2)



Once a.ga,i::, {,he basis functions used to obt_in the s_ress-st, r_in relt_tions 'tdso

serve a,s t.msi_-s fi.mctions for t,he irreducible representttt, ions Alu, E-ly, trod Eu:j in t;he

hexagona.1 group D_h which is a, subgroup of D_j,, Thus the stress----smfin reh, tions

for DGh symmetry are identica,1 to Dooh a,nd the sa.me forln of th_ 6 x 6 elastic

constant, ma,trix C.,,j follows, completing _:tgenera, liz_,tiox, of the result proven by

Christ, enseI1 in 2D, 1

If we consider the subgroup of Dmh with the next, highest symnmtry (D,th), we

, representatlon_, _immecli_tely see t,ht_t, 'there is only one 2-dimensiomfl irreducible' ' '

in D,ll, so t,h_t the irreducible.representatiorls contained in second rank tensor P?

axe not inv_ritmt as the symmetry is reduced from Dooh to D4h, ,

It must be emplmsized that in going from full rotatiorml symmetry to Ih symmetry

or in going from Dooh to Dab, the number of symmetry, opert, tions goes ft'ore Cx)to a,

rela.tively snmll number (120 for Ih and24 for D6h), so ttmt some reb_tions inw)lving

t,ensors of rtmk higher than 2 (such as the electrooptic coet_fieients) are no longer

inwtria,nt under this lowering of syInrnetry both in 3D ,rod i_l 2D,
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TABLE I. Character table for lh.

lh E 12C5 12C5_ 20C3 15C2 i 12Sto 12830 20Slo 15a Basis functions

Ag 1 1 1 1 1 1 1 1 1 1 x2y2z_

Fla 3 r l-r 0 -1 3 1-r r 0 -1 R_,,Ry, Rz

F2g 3 1-r r 0 -1 3 v 1-r 0 -1

G a 4 -1 -1 1 0 4 -1 -i 1 0

2z 2 _ x 2 __y2

x 2 _ y2

, /tg 5 0 0 -- 1 1 5 0 0 - 1 1 x y

xz

yz

A u 1 1 1 1 1 - 1 - 1 - 1 - 1 - 1

Fa._ 3 r 1-r 0 -1 -3 r-1 -r 0 1 (x, y, z)

F2u 3 1-r r 0 - 1 -3 -r r- 1 0 1 (x a, ya, z 3)

z(z 2 y2)

y( z2 - z _)
Gu 4 -1 -1 1 0 -4 1 1 -1 0

z(z 2- y:)

xyz

H_, 5 0 0 -1 1 -5 0 0 1 -1

w]mre r = (1 + v/5)/2 and is ofte1_ referred to as the "golden mean".
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