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In principle, the manner according to which a phase transformation
proceeds should be determlnable by Irreversible thermodynamics just as well
as by appropriate kinetic equations embodying the transport of matter or
energy. In practice, however, the former is seldom Invoked and the latter
approach provides the exclusive description of the transformation leaving
one wondering what role the former plays. In this paper, the problem of
Ostwald ripening of precipitates is studied to throw light on the under-
lying irreversible thermodynamics. From a path integral solution, it is
shown that the size distribution evolves in such a manner that a Lagrangian
is minimized. This Lagrangian is the sum of the dissipation potentials in
the flux and force representations minus the rate of entropy production.
The coarsening process proceeds in accordance with Onsager's principle of
least dissipation. The implications of this study in relation to other
irreversible phenomena are also discussed.

Introduction

The phenomenon of Ostwald ripening of precipitates in a chemically
closed system in which particles in a medium grow and dissolve continuously
resulting in an increase with time of the average size and a corresponding
decrease of the total number of particles has been described by several
theories. Of these, the one put forward by Lifshltz and Slezov [1] and
independently by Wagner [2] (to be denoted collectively as LSW) made a
quantitative statement on the size distribution as a function of time. In
this theory of LSW, the distribution function N(r,t) for the size of a
precipitate evolves with time t in accordance with the continuity equation

Assuming a growth law
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r = v[r(t)] (2)

for the individual particles, LSW obtained an asymptotic solution of Eqn.
(1) for long time t. Kahlweit [3] later introduced a generalization of
Eqn. (1) by allowing for fluctuation around the growth law (2). He rewrote
the continuity equation as

iT " " i7 {vN "
3N.

(3)

where 0 is a measure of the mean-square fluctuation around the growth law
(2).

In the following section, a path integral solution of Eqn. (3) will be
presented treating 0 as a small parameter. In the limit 0 + 0 , the
solution becomes exact for Eon. (1) of LSW.

Representation of Evolution Path

It is convenient to introduce the Green function [4] G(r,t|r't')
through the relation

with
N(r,t) - jdr' G(r,t|r',t')N<r',t') (4)

llm G(r,t|r',t') = 6(r - r')
t + t1

(4a)

Given the size distribution N(r',t') at time t', the green function enables
one to obtain the size distribution N(r,t) at a subsequent time t. The
physical meaning of G(rs,t |r',t') is the fraction of particles of size r' at
time t' that will evolve to particles of size r at time t.

If a given time interval ts~tQ is divided into infinitesimally small
equal segments t -t •,, t ,-t ,, . . . t-i-t , then after s iterations of

. . - S S—1. S i. &~ £. L O

Eqn. (4), we have

Nfr ,t ) = jdr , ...jdr W1 s s; ' s-1 ' o

where
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(5)
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(5a)
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Bearing in mind the meaning of G, W may be regarded as the statistical
weight of the particular evolution path that goes through sizes r ,r,...r

iat times tQ, ts.

Direct substitution of (4) into Eqn. (3) shows that G satisfies the
same differential equation as N(r,t). We write for reasons of bringing in
an analogy



Equation (6) has the same structure as the Schroedinger equation of a
charged particle in the presence of an electromagnetic field with v playing
the role of the vector potential and 0 that of the Planck1s constant h
[5]. This corresponding Schroedinger equation has [5], in the classical
limit h + 0, a solution of the form exp(iij>/h), where the classical action <J>
has the asymptotic expansion <)> =<|>0 + h|>, + h <J>2 + ••• •

By analogy, we write in the limit of small fluctuation, i.e., 9 • 0, a
solution of Eqn. (.6) in the form

G(r,t!r',t'] = G Q exp( - A/0) (7)

where GQ is a constant and A = A(r,t|r",t') may be expanded in powers of 0
as

2
A = A Q + ©Aj^ + 0 A2+ . . . . (7a)

Substituting (7) and (7a) into Eqn. (6) and equating equal powers of 0, we
find that the two lowest order terms in (7a) satisfy respectively

jf + v if + iTT) - ° <8>
and

3A 3A^ 3 2 A 3A 3A

Equations (8) and (9) have been solved [6] to obtain A and hence G. The
results will be quoted here. We have

- Us /tlL + f S 1 ' 0} •
8~1

where the Lagrangian is

e x p

( ) (1Oa)
with

* - r2/4 , (10b)

¥ = v2/4 , (10c)

r - r v/2 , (lOd)

and the restriction that L satisfies the Euler-Lagrange equation

The Varlational Principle

The physical significance of the results (10)-(ll) will now be
clarified. The second term in the integral of (10) may be dropped either
for negligible fluctuation as in the original problem of LSW or
asymptotically for long time t when the rate at which the growth rate
changes with size becomes vanishingly small for both diffusion and reaction
controlled processes. Because of the form of the Green function in (10),.
the statistical weight (5a) of an evolution path which is a product of the
short-time Green functions, will then be just the exponentiation of the



action, i.e., the integral of the Lagrangian L over all the time
segments. Equation (11) which represents extremization of this action
leads to a family of admissible evolution paths of the form

r •= /v* + c , (12)

where c is an integration constant. Of these paths, the one that
corresponds to the growth law (2) minimizes the Lagrangian L for all time
t. This optimal path carries the most statistical weight in the evolution
of the distribution function represented by Eqn. (5) although the other
admissible paths also contribute.

Let us now examine the meaning of the three terms in the Lagrangian
(10a). Treating r as a thermodynaraic variable, the rate at which it
relaxes towards equilibrium, i.e., the flux r, is related to the conjugate
thermodynamic force 9S/9r by

r - X § (13)

where \ is a kinetic coefficient and S is the entropy of the system.
Comparing with Eqn. (2), we have

v - H ? . (14)
3r

Integrating Eqn. (14), we have for the change of entropy along an evolution
path r(t)

AS = ̂  Jdrv = f Jdt(rv) . (15)
A A

Therefore, the rate of entropy production P is

P = S = rv/X . (16)

The kinetic coefficient X may be determined by comparing with results
for the stationary state in which the distribution function loses its
explicit dependence on time [so that Eqn (3) may be set zero] and is related
to the entropy through the Boltzmann distribution N[r(t)] = exp{S[r(t)]/k }, g1

where kR is the Boltzmann constant. It is straightforward to obtain
 l j > "

X = 0/k_ . (17) S

Since r is the flux and v = Ogp/kg its conjugate thermodynamic force, §
we may, following Onsager, interpret * and f in Eqns. (10b) and (10c) as
dissipation potentials [7] in the flux and force representations, respec-
tively. Together with r in Eqn. (lOd) which represents the rate of entropy
production, $ and "F are measures of the degree of irreverslbility and dif-
fer from one another only in the way of description of the nonequilibrlum
state.

Consider now a first order variation of L with respect to the
flux r and the force -̂ p-. We have *•

6L 6r+ * W
ss . as <18>
"T
 mm r 61 I _
0 L ' v O l '



For arbitrary variations of either the flux or the force, the first order
change in L therefore remains zero so long as the deterministic growth law
(2) is satisfied. The variational principle (18) is the same as Onsager's
principle of least dissipation [7,8].

Discussion and Conclusion

From a path integral solution to the continuity equation, it is shown
that the size distribution evolves in such a manner that an action integral
or equivalently a Lagrangian is minimized. It is found that this
Lagrangian is the sum of the dissipation potentials in the flux and force
representations minus the rate of entropy production. Minimization of this
Lagrangian by holding either the flux or the force constant leads to the
conclusion that the underlying irreversible thermodynamic principle for the
Ostwald ripening process as described by Eqns. (1) or (3) is the principle
of least dissipation due originally to Onsager.

In view of our experience with classical mechanics that all natural
paths in mechanical systems can be determined from the principle of least
action, it is tempting to speculate whether a universal minimum principle
also exists in transformation kinetics. This work sheds no light on this
question and its associated controversies. However, Eqn. (3) has the
structure of the Fokker-Planck equation which is used to describe the time
evolution of a general class of irreversible phenomena [8]. Therefore,
Onsager's principle should also be applicable to these phenomena subject to
the condition that either fluctuation is small or the system is not far
from a stationary or equilibrium state.
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