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STABILITY THEORY FOR INTERNAL RING CONFIGURATIONS

by

Guthrie Miller

ABSTRACT

The magnetohydrodynamlc stability theory of
internal ring configurations is developed using a
nearly cylindrical, sharp-boundary plasma model*

I. INTRODUCTION

In this report the stability of a straight configuration with internal

rings is investigated. As these configurations are positively stable (in

contrast to the neutrally stable theta pinch), the configuration can be

imagined to be bent into a torus or a U bend* The positive stability is not

altered if the radius of curvature is large enough.

The internal ring experimental work at Nagoya » was based on /d£/B

theory, which is a low-B concept. The closely related problem of stability of

the main plasma in ELMO has been solved for arbitrary 8,J and illustrates how

the /d£/B criterion generalizes to high 6. The ELMO theory is necessarily

rather complicated because of the many degrees of freedom inherent in a diffuse

profile. Here, a sharp-boundary, small-6 model is used to obtain, in a

relatively simple manner, an overall impression of the stability properties of

internal ring configurations. The model is first discussed in a general way,

for arbitrary axisymmetric fixed internal currents, and then applied to

internal rings. It is also of interest to check the model for the case of ELMO



to see that the predictions are in basic agreement with the more complete

theory.

II. SHARP-BOUNDARY THEORY

A sharp-boundary, small-6 theory, analogous to that used for the high-beta

stellarator, can be used to describe fixed internal current configurations.

Simplicity is the main justification for the assumptions that are made. These

assumptions are (1) a sharp boundary, which means that the equilibrium has only

a single parameter B, and (2) near-cylindrical geometry, which allows the modes

Co be characterized in terms of cylindrical k and m values.

The basic equilibrium consists of a cylindrical plasma of radius a with

external field B Q and internal field ( 1 - 0 ) 1 ' 2 B Q . This situation is perturbed

by fixed axisymmetric internal and external currents on the surfaces r = b and

r = d, with b < a < d. As a result of the perturbation, the plasma surface

deforms and assumes the shape

r = a[l + I «h cos(hz)] . (1)

The deformation parameters 6 are given in terms of the Fourier components of

the fixed currents j d and j ^ as follows

6 e +

djdI0(ha)K0(hd)
6 = -
e Boa[l + PhaI0(ha)K0(ha)]

1 Boa[l + 6haIo(ha)Ko(ha)]



The growth rate (or oscillation frequency) of an arbirary m, k » 0 mode is

given by

- -^—- a I h2«2 {2x2f -a y h 6 { 2 x f ! +
M fi 1-p

where H is the ion mass, and f is defined by

Im(l-g) - Km

_±+ K° -£• , (4)

with x = ha, 1° = Io(x)/(xlo(x)), and K° = K Q(X)/(XKQ(X)).

Equation (3) has interesting limits that should be noted. For 3 * 0 , only

the first term in the brackets survives. This term is independent of m and is,
0 0

in fact, just the derivative with respect to flux of fdZ/B or V , since

h2«2(2x2f - 1) (5)

For m + °°, Im + 1/m and Km + -1/m. In this limit, for 6 < 1, the second

term in brackets approaches m£/(2-0). Since this is an arbitrarily large

destabilizing term, high-m modes are always unstable. However, very high

m-number modes would be stabilized by gyro-viscosity, because the stability

criterion,

is always satisfied for large enough m»



III. INTERNAL RING CONFIGURATIONS

With internal currents carried by slender—pings, the current density is

given by

j e = I <5<r-b)_[ 6(z-iL) = 6(r-b) I j n
i=—oo n

(7)

and the Fourier amplitude for h = 2nn/L is j n = 21/L» independently of n. The

summation in Eq. (3) is exponentially convergent and can readily be carried

out. The result for the oscillation frequency u> for an arbitrary m, k •= 0 mode

can be written as

XLIi (JL)2
M

i (JL)2 JL
Ba 2

,.,

where o is a function of m, 8, L/a, and b/a.

In Fig. 1 the stability bounr^ry in m-8 space is plotted for several

geometries. Instability occurs only for large values of m, and for typical

(theta pinch) experimental parameters would be stabilized by gyro-viscosity

(stabilization requires a sufficiently small line density).

The stability of the k = 0, m = 1 mode allows the configuration to be bent

into a large-radius torus or II bend. Toroidal equilibrium is the result of a

balance between the toroidal force F^ and the m = 1 restoring force

proportional to u ?, where £ is the toriodally outward shift. Tie ring current

necessary for equilibrium in a torus of radius R is given by

I = B 0a (9)

In practical units BQa is a current in Amperes equal to 0.8 BQ[GJ a[cm].

Fig. 2 shows a plot of ol^i vs various parameters. Figure 2 allows the ring

current to be obtained for cases of interest using Eq. (9). The strong



stabilizing effect of having the plasma radius nearly equal to the ring radius,

that is, b/a near 1, is evident in Fig. 2.

Figure 3 gives field line plots for L - b and 1 - BQL (Fig. 3a), and I =

3BQL (Fig« 3b). Also shown are the values of BQV /L associated with each flux

surface. Using Eq. (9), these configurations could be bent into tori or U

bends with radii R = 70a and R « 8a, respectively, for the cases shown in

Figs. 3a and 3b, with € - 0.15a, 3-0.5, and b/a - 0.85.

The sharp-boundary, small-6 theory does not distinguish the sign of the

ring current. Field line plote such as Fig. 3 show that when the ring-produced

current is in the same direction as the main field (the Fig- 3 case), there is

a separatrix outside the ring, whereas when the ring-produced field opposes the

main field, there is a separatrix inside the ring. In both cases V is

negative for flux surfaces outside the separatrix and positive inside. For

small currents the critical flux surface is essentially at the ring radius»

IV. ELMO

As a check, and to illustrate the relationship that exists between

internal ring devices and ELMO, ths sharp-boundary theory can be applied to

ELMO. In ELMO, the hot-electron annuli are treated as rigid objects and their

diamagnetic currents serve as the fixed internal current. The geometry is

shown in Fig. 4.

The hot-electron current in ELMO consists of two azimuthal current sheets

flowing in opposite directions on the inside and outside of the annulus.

Assuming that the spacing between the sheets w (see Fig. 4) is small, the

effective Fourier components of the current, considered as a simple current at

r = b, are given by

Jnff " ¥• (-Dn sinR-j :=• -=• . (10)
" ' '" I0(2irnb/L)

The Fourier amplitudes describing the external current at r = d are independent

of n and are given by



2I0

-7- = 2B0 . (11)

Using these currents, Eq. (3) is again a convergent sum, which can be

evaluated to determine Y • In Fig. 5 the stability boundaries for modes with

different m values are shown for a fixed geometry (that illustrated in Fig. 4).

In the sharp-boundary model, high-m~number modes are always unstable for 0 > 0.

However, from Fig. 5 it is possible to have high B and a large number of stable

modes, e.g., m < 30, if the hot-electron current is large enough. Also shown

in Fig. 5 is the stability boundary for m = 30 and £/a = 0.3, that is, a

shorter length hot-electron annulus.

The diffuse-profile theory of ELMO"* gives similar behavior except that

there is absolute stability, as shown in Fig. 6 (taken from Ref. 3).

High-m-number modes are the most dangerous; however, with a diffuse profile the

modes do not continue to become more unstable with m as they do with a sharp

boundary. The effect of a short vs long annulus is similar in the

diffuse-profile and sharp-boundary theories.

The threshold value of &± for 8 = 0 in Figs. 5 and 6 is determined by the

internal current necessary to give negative V at the plasma surface. It is

important to note that in a system without external field perturbations (e.g.,

as discussed in Sec III), there is no such threshold and stability is achieved

for an arbitrarily small internal current.
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The normalized fcscillation frequency of
the m = 1 mode.| In (a) o is plotted vs
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Fig. 4.
Geometry of ELMO. The hot-electron
current is denoted by I and flows in
opposite directions on concentric
layers separated by w.
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Fig. 5.
Stability of ELMO in the sharp-boundary
model a§ a function of P and 0j (Bj = 0
of the hot-electron annulus), for
different m values.
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Stabil i ty of the main plasma in ELMO as
a function of 3 and B,, from
diffuse-profile theory.
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