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STABILITY THEORY FOR INTERNAL RING CONFIGURATIONS

by

Guthrie Miller

ABSTRACT

The magnetohydrodynamic stability theory of
internal ring configurations is developed using a
nearly cylindrical, sharp-boundary plasma model.

I. INTRODUCTION

In this report the stability of a straight configuration with internal
rings 1is investigated. As these configurations are positively stable (in
contrast to the neutrally stable theta pinch), the configuration can be
imagined to be bent into a torus or a U bend. The positive stability is not
altered if the radius of curvature is large enough.

The internal ring experimental work at Nagoyal’2 was based on JSd&/B
theory, which is a low=B concept. The closely relates problem of stability of
the main plasma in EIMO has been solved for arbitrary 8,3 and 1illustrates how
the Jfd&/B criterion generalizes to high B. The ELMO theory is necessarily
rather complicated because of the many degrees of freedom inherent in a diffuse
profile. Here, a sharp~boundary, smail-8é model 1is used to obtain, in a
raelatively simple manner, an overall impression of the stability properties of
internal ring configurations. The model is first discussed in a general way,
for arbitrary axisymmetric fixed internal currents, and then applied to

internal rings. It is also of interest to check the model for the case of ELMO



to see that the predictions are in basic agreement with the more complete

theory.

I17. SHARP-BOUNDARY THEORY

A sharp-boundary, small-~$ theory, analogous to that used for the high-beta
stellarator, can be used to describe fixed internal current configurations.4
Simplicity is the main justification for the assumptions that are made. These
assumptions are (1) a sharp boundary, which means that the equilibrium has only
a single parameter B, and (2) near-cylindrical geometrv, which allows the modes
to be characterized in terms of cylindrical k and m values.

The basic equilibrium consists of a cylindrical plasma of radius a with
external field By and internal field (1-8)!/2B,. This situation s perturbed
by fixed axisymmetric internal and external currents on the surfaces r = b and

r = d, with b < a <d. As a result of the perturbation, the plasma surface

deforms and assumes the shape

r=all+ g 8, cos(hz) | . (1)

The deformation parameters § are given in terms of the Fourier components of

the fixed currents jy and j, as follows

§ = Ge + Gi ’

s dj41g(ha)Kg(hd)
Bgall + Bhaly(ha)Kg(ha)]

(1-8)1/2b3, 4 (hb)K  (ha) |
8 = - \ ~ 2)

Bpall + Bhalg(ha)Kq(ha)]




The growth rate (or oscillation frequency) of an arbirary m, k = 0 mode is
given by

T +T - 2¢ym he2ympm
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where M is the ion mass, and f is defined by
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with x £ ha, 10 = Io(x)/(xla(x)), and KO = Ko(x)/(xKa(x)).
Equation (3) has interesting limits that should be noted. For B + 0, only
the first term in the brackets survives. This term is independent of m and is,

" in fact, just the derivative with respect to flux of fd2/B or V", since

L
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Form » =, I® + 1/m and X® + <1/m. In this limit, for B < 1, the second

term in brackets approaches mB/(2-8). Since this 1s an arbitrarily large
destabilizing term, high-m modes are always unstable. However, very high

m-number modes would be stabilized by gyro-viscosity, because the stability

criterion,S

m(m-l)Ti oo
v < , (6)

2eBy(1-8)1/2a2

is always satisfied for large enough m.



III. INTERNAL RING CONFIGURATIONS

With internal currents carried by slender-»ings, the current density is
given by
Jg =1 &(r=b) ] 68(z-iL) = 8(r-b) } j_ cos(Z2Z) | (7
== n L

the Fourier amplitude for h = 2wn/L is jp = 2I/L, independently of n. The
carried

and
summation in Eq. (3) is exponentially convergent and can readily be

out. The result for the oscillation frequency w for an arbitrary m, k = 0 mode

can be written as

2 _ e 1(1)% (8)

where o is a function of m, B, L/a, and b/a.

In Fig. 1 the stability boundary in m-B space 1is plotted for several

only for large values of m, and for typical

stabilized by gyro-viscosity

geometries. Instability occurs
{theta pinch) experimental parameters would be

(stabilization requires a sufficiently small line density).

The stability of the k = 0, m = 1 mode allows the configuration to be bent

into a large-radius torus or U bend. Toroidal equilibrium is the result of a

balance between the toroidal force Fp and the m = 1 restoring force

proportional to m2€, where £ is the toriodally outward shift. T'e ring current

necessary for equilibrium in a torus of radius R is given by

2.1/2
2a
I =Bjpa LEEE) (9)

In practical units Bpa 1is a current in Amperes equal to 0.8 BolG) alcm].

Fig. 2 shows a plot of olmal vs various parameters. Figure 2 allows the
obtained for cases of interest wusing Eq. (9). The strong

ring

current to be



stzbilizing effect of having the plasma radius nearly equal to the ring radius,
that is, b/a near 1, is evident in Fig. 2.

Figure 3 gives field line plots for L = b and I = BoL (Fig. 3a), and I =
3BgL (Fig. 3b). Also shown are the values of BgV /L associated with each flux
surface. Using Eq. (%), these configurations could be bent into tori or U
bends with radii R = 70a and R = 8a, respectively, for the cases shown in
Figs. 3a and 3b, with £ = 0.15a, 8 = 0.5, and b/a = 0.85.

The sharp-boundary, small~8 theory does not distinguish the sign of the
ring current. Field line plote such as ¥ig. 3 show that when the ring-produced
current 1is in the same direction as the main field {(the Fig. 3 case), there is
a separatrix outside the ring, whereas when the ring-produced field opposes the
main field, there is a separatrix inside the ring. In both cases v s
negative for flux surfaces outside the separatrix and positive inside. For

small currents the critical flux surface is essentially at the ring radius-

IV. ELMO
As a check, and to 1illustrate the relationship that exists between

internal ring devices and ELMO, the sharp-boundary theory can be applied to
ELMO. In ELMO, the hot-electron annuli are treated as rigid objects and their
diamagnetic currents serve as the fixed internal current. The geometry is
shown in Fig. 4.

The hot-electron current in ELMO consists of two azimuthal current sheets
flowing in opposite directions on the inside and outside of the annulus.
Assuming that the spacing between the sheets w (see Fig. 4) is small, the
effective Fourier components of the current, considered as a simple current at

r = b, are given by

¢ . (10)
L7 & 1. (2mb/L)

gff = %} (-1)" sin

The Fourier amplitudes describing the external current at r = d are independent

of n and are given by



2Ig

jn=T=ZBO .

(11)

Using these currents, Eq. (3) is again a convergent sum, which can be
evaluated to determine Y2- In Fig. 5 the stability boundaries for modes with
different m values are shown for a fixed geometry (that illustrated in Fig. 4).
In the sharp-boundary model, high-m~number modes are always unstable for B > 0.
However, from Fig. 5 it 1s possible to have high B and a large number of stable
modes, e.g., m < 30, if the hot-electron current is large enough. Also shown
in Fig. 5 is the stability boundary for m = 30 and £/a = 0.3, that is, a
shorter length hot-electron annulus. '

The diffuse-profile theory of ELMO3 gives similar behavior except that
there 1s absolute stability, as shown 1in Fig. 6 (taken from Ref. 3).
High-m-number modes are the most dangerous; however, with a diffuse profile the
modes do not continue to become more unstable with m as they do with a sharp
boundary. The effect of a short vs 1long annulus is similar in the
diffuse-profile and sharp-boundary theories.

The threshold value of B; for B8 = 0 in Figs. 5 and 6 is determined by the

internal current necessary to give negative V" at the plasma surface. It is
important to note that in a system without external field perturbations (e.g.,
as discussed in Sec. III), there is no such threshold and stability is achieved

for an arbitrarily small internal current.
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Stability of ELMO in the sharp-boundary
model as a function of B and Bl (B = B
of the hot-electron annulus), for

different m values.
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Fig. 4.
Geometry of ELMO. The hot-electron
current 1is denoted by I and flows in
opposite directions on concentric

layers separated by w.
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Stability of the main plasma in ELMO as
a function of [ and Bl, from
diffuse-profile theory.



