
cwF-fcro<?03--/£,

FAFTRCS - AN EXPERIMENT IN COMPUTERIZED C O N F - 8 5 0 9 0 3 — 1 6

REACTOR SAFETY SYSTEMS* DE85 0 1 8 4 1 7

iliiimn

• G. H. Chisholm g £ § . | « S 3 g f 3

|f||j|||||

EBR-II Division §1 f * | l j § I *
Argonne National Laboratory ^»il^f'af'f

P. 0. Box 2528 If j | | | l | I
Idaho Falls, Idaho 83403-2528 SI!lfI=-|l

Thf wbmiCTM manuicript txu t)Hn futnorM » S, 9 <» 3. J* *< *^ d
bv • contractor of tht U. S. Govtmmtrn O ^ § • * a"O § § 3.
undtr contract No. W-3M09-ENG-38. n 3 r » Ef 3 *y *< S
Accvdinglv. th* U. S. Govtrnmtnt rmmi • o 0 3 * * 5 0 § " S 2 j - f i

non«xclu»ivt, royalty<f>M HCAHM to pubtiih * * * " * « « rt S *S •-• ™
or rtproduca th» publishtd form of tftit S* ^ 3 2- *^* o ^ 3* ̂ *
contribuiion. or Hlow othtrs to do to, for « « • J P ? » I 7 ' I ' » I
U. S. Govtrnmtnt puroowt.

Submitted for Presentation
at the

American Nuclear Society
International Topical Meeting

on
"Computer Applications for Nuclear Power Plant Operation and Control

September 8-12, 1985
Pasco, Washington .., fi -,.,» *~,?m-iyr * i«i-':iTrii

-tP
*Work supported by the U.S. Department of Energy under Contract W-31-109-ENG-38

MASTER

Gregory H. Chisholm
Argonne National Laboratory

Idaho Falls, Idaho 83403-2528

ABSTRACT

Nuclear Power Plant availability and reliability could be improved by the
integration of computers into the control environment. However, computer-based sys-
tems are historically viewed as being unreliable. This places a burden upon the de-
signer to demonstrate adequate reliability and availability for the computer. The
complexity associated with computers coupled with the manual nature of these demon-
strations results in a high cost which typically has been justified for critical ap-
plications only. This paper investigates a methodology for automating this process
and discusses a project which intends to apply this methodology to design verification
and validation for a control system which will be installed and tested in an actual
reactor control environment.

1. INTRODUCTION

1.1 The Myth of Fault-Tolerant Computers

A myriad of technologies must be combined to realize an ultra-reliable com-
puter-based system. The visible aggregation of these technologies resides in the
recent explosion in development of fault-tolerant computers.

A myth associated with fault-toleranu computer technology leads the uniniti-
ated to conclude that a system based upon a fault-tolerant computer is inherently
reliable. Unfortunately, a careless application of a fault-tolerant computer may
easily defeat the best intentions of the computer designer and provide dismal reliabi-
lity and availability.

Maintenance of the fault-tolerant design strategy[l] may be attained by a
number of approaches. One approach is that the design team becomes cognizant of those
properties of the computer which are essential for fault-tolerance and confirm that
the final design will comply. A second approach is the development of a number of
building blocks which are demonstrably compatible with the underlying fault-tolerant
strategy and which are generic to many applications on the target system. Inherent in
each of these approaches is the requirement for "demonstrably reliable" or "confirma-
tion of reliability".

The disciplines involved in the implementation and confirmation of an ultra-
reliable, computer-based system are varied. One of the most important aspects of
coalescing a design team, whose combined expertise encompasses the breadth of the
total design problem, is the development of inter-discipline communication.

Within the varied disciplines, there exists a dialogue about which approach
is best suited to solution of the subset of the problem within their purview. This
intra-discipline dialogue centers around the fact that the touted approaches have yet
to be validated. A further complication arises from the inter-discipline dialogue
which centers around which discipline best solves a subset of the total-system prob-
lem.

There is a need for a demonstration project which would endeavor to amass a
team from diverse disciplines whose goal is implementation and confirmation of an
ultra-reliable, computer-based system. This paper describes an ongoing project which

will attempt to demonstrate a total systems approach to the design of a reactor safety
subsystem. The organization of the paper is: a brief overview of the project and a
discussion of automated techniques for formal design verification.

2. FAFTRCS PHASE I

2.1 Background

ANL is currently investigating the issues associated with application of
computers in criticel systems applications. Theee investigations utilize available
technologies as much as practical, i.e., fault-tolerant processors (FTP), software
reliability models, Markov modeling. Novel techniques which could improve the
existing methods also are to be considered. This project, "The Full-Authority,
Fault-Tolerant Reliable Control System," has been given the acronym FAFTRCS. Full-
Authority is the industry vernacular applied to a control/controlled system symbiosis
where adequate functioning of the controlled system is totally dependent upon proper
functioning of the controller. Fault-Tolerant refers to a real-time, multi-processor
which will perform its design function in the presence of a failure. The ultimate
goal of FAFTRCS is to design and demonstrate an automated reactor control system for
which a prospective licensee could take safety credit during the licensing process.
This goal demands the extension of technology ana is the subject of current research
which may not culminate for 5-7 years. To this end, the project has been subdivided
into three phases. Each of the early phases is intended to demonstrate evolving
technologies in support of the next phase.

One facet of the investigations considers reducing the cost of design verifi-
cation and validation (V&V). The strategy being pursued is directed toward developing
an automated methodology for design VSV where the machine performs the mundane tasks
in order to free the person to accomplish more creative tasks. Automated reasoning is
being applied in this area as a potential method of reducing the complexity associated
with a formal analysis of a computer-based system. An important aspect of this re-
search is to assure that the resulting cnalysis is presented in a format which is
usable to the safety review community. As a measure of success, this work will be
applied to an actual system which will be tested at the Experimental Breeder Reactor
No. II.

The FAFTRCS project is concerned with total system reliability which incor-
porates the software, hardware and their respective interaction. The use of fault-
tolerant hardware provides a significant improvement in reliability for the overall
system. However, the properties of the design that are essential for fault-tolerance'
must be established. Though significant benefit is realized from the application of
existing fault-tolerant designs, the FAFTRCS project will perform a formal design
analysis of the hardware.

2.2 Description of FAFTRCS Project

Phase 1, Fault-Tolerant Flow Trip (FT2), is focusing on V&V of the generic
issues for ultra-reliable computer-based control (i.e., fault-tolerant processor),
developing automated aids for V&V, and application of signal validation software.
Phase 1 will culminate with the installation of a fault-tolerant flow channel in the
EBR-II Plant Protection System (PPS).

Phase 2, Fau'it-Tolerant Analytical Redundancy, will expand the software V&V
methods developed during Phase 1. In addition, multi-variable models will be vali-
dated for reactor control. Phase 2 will culminate with a demonstration of V&V tech-
niques for medium software packages plus a demonstration installed at EBR-II.

Phase 3, FAFTRCS, extends analytical redundancy techniques into the realm of
total control.

2.3 The Problems and Proposed Solutions

Four global problems that require resolution for completion of Phase I can be
identified. These problems and the proposed solutions are:

(1) Software reliability - Formal analysis, (validation via testing), and
reliability modeling;

(2) Model certification - Testing in actual environment analysis via
dynamic simulation of nuclear plants (DSNP) code;

(3) Hardware reliability - Ancillary equipment - traditional computer -
fault-tolerant proper ties confirmed via formal
analysis and validation testing;

(4) System validation - Testing in two phases: (1) bench tests to
validate design, and (2) in-plant tests to
provide acceptance.

Reliability will be analyzed via qualitative and quantitative methods. In the
realm of software and, to some extent in hardware, the methods for reliability analy-
sis are developing. Section 3 of this paper presents an overview of the techniques
used for this project.

3. DISCUSSION ON FORMAL VERIFICATION

3.1 What are the Goals of Formal Design Verification?

Formal verification is comprised of a rigid mapping between the design speci-
fication and its implementation. In the past a typical representation of the
implementation was as a set of equations. The verification took the form of a
mathematical proof which was difficult to follow. The mapping, via tools such as
automated theorem provers, rapidly became convoluted and the technique was suspect.
To rectify these problems, a new method for representation is being developed[2,3].
The goals for this representation are:

(1) MUST map directly to the systems of interest,

(2) MUST be conducive to formal verification,

(3) MUST be hierarchical,

(4) MUST be easy to use.

Goals 1 and 2 make the resulting analysis useable by non-experts in the field of for-
mal analysis by avoiding abstract/convoluted proofs. A hierarchical proof is envi-
sioned as providing a number of benefits, i.e. the reviewer may concentrate on those
areas commensurate with personal expertise, many non-critical portions of the system
warrant less detailed analysis, and complexity is restrained.

3.2 Integrated H/W & S/W Design Analysis

3.2.1 Discussion

The representation used for analyzing the behavior of the entire
systems model will be Petri nets[4]. This representation has been chosen for several
reasons. First, the Petri net representation facilitates the hierarchal analysis of
an entire system, permitting different levels of abstraction for different parts of
the system, as appropriate. Second, the Petri net representation is very general,
capable of representing universal Turing machines. In particular, Petri nets have
been demonstrated to be powerful enough to represent both synchronous and asynchronous
hardware and software systems[2,3,4]. Thus Petri nets can be readily enhanced or
restricted to meet the needs of the portion of the entire system being modeled.
Third, Petri nets have a graphical representation similar to flow charts and fault-
trees, thereby providing a familiar representation which can be readily understood.
The formal analysis thus can be examined and validated in a straightforward manner.
Fourth, a rather extensive theory for modeling systems has been developed[3], and this
theory is used to guide the method of representation and formal analysis. Finally,
Petri nets can be used for simulation to help discover properties of the entire system
and to assist in the. analysis.

Figure 3 is a Petri net representation of the driver routine for
inputting sensor data into the FTP. The algorithm is comprised of steps indicated by
annotations to the right of each circle. The four cirlces (places) and bars (transi-
tions) in the upper left portion of the figure represent the hardware involved in the
acquisition of data, i.e. the sensor and the bus. Herein, the sensor is assumed to
comprise the transducer, wiring, transmitter, and converter. The interesting notion
of this representation is that hardware, software and their interaction are equally
represented.

Automation of the formal analysis will be effected using an auto-
mated theorem program called "Interactive Theorem Prover" which was developed by
ANL. Once the Petri net representation was selected, the next task was to define an
operational semantic for presentation to ITP. Extensions to Petri net theory as indi-
cated have been proven successful proving various properties of the CSDL design[3].

The above discussion covers the qualitative aspects of the analy-
sis. Quantitative analysis for computer-based systems is equally pervasive. We are
currently involved in analyzing various methods for performing software reliability :
analyses and will continue in this area until a viable approach beeches apparent[6,7].

4. FORMAL VERIFICATION AS APPLIED TO A FAULT-TOLERANT PROCESSOR

4.1 Introduction to the Representation Technique

Petri nets are comprised of places and transitions. As indicated on Figs. 3
& 4, a place is represented by the circle and a transition by a bar. Operationally a
place denotes any hardware medium that stores or transports data, i.e. flip-flops,
registers, bus. A software place represents any entity which may generate or alter a
token, or which generates a control signal. A hardware transition represents a func-
tional module, i.e. an adder, ALU, voter. A software transition is currently
conceived as representing modules of code executed in a simplex fashion on individual
channels, i.e. conceptually similar to locations in the code where breakpoints would
be used during the debugging process. A token is a symbolic expression which ca>: have
certain properties associated with it.

Clause templates were created (reference 3, Table 1) for input to the ITP
program. The essence of the analysis is that the clausual base is driven by a rule-
based manipulator. This manipulator controls flow of tokens through the clause space
while maintaining a history of the essential elements of its transversal. In addition
it performs various housekeeping functions, i.e. garbage collection and consistency
checks.

Table I lists a selection of clauses used to describe the Fig. 3 Petri net to
ITP. At present the translation of schematics and wiring information into the Petri
representation is manual and as such subject to the frailities of c^y human intensive
effort. Our intent is to develop a tool which would, as a minimum, automate the pro-
cess of creating clauses from a human developed Petri net. We are currently
developing Petri nets on a CAD system and formalizing the representation with
automated clause generation as a specification criteria. A future goal, which is as
yet unfunded, would be to utilize the CAD output from the CSDL design effort for
automated generation of Petri nets.

Table I

Clause Templates for Presentation of a Petri net to the ITP - Interactive Theorem
Prover:
Transition(xtrans_name,xtype,xcontrol);
Place(xplace name,xtoken,xtype);
Connection(xrrans_name,xplace_name); or
Connection(xplace_name,xtrans_name);
Function(xtrans_name,xoutput,xcontrol ,xfunction);

Examples (Figure 3):
Place(Sensor_x,Token(Data,Reactor,nil).destructive);

Place(Comm x,arbitrary,nondestructive);
TransitionTJlxSx,Transfer,cntl(Read_sensor_x),Sensor_x);

Transition(VcxI,Majority_votar,cntl(Vote_x),
Input 1ist(Ibus_ox,Input_l ist(Ibus_xy,Ibus_xz}));

Connection "[Dx_Cx, Sensor _x) ;

Connection (Comm_x,Vcxl);

4.2 An example of Hardware Formal Analysis

The intent of formal analysis is to assure that the system performs according
to specif ication. One method of attaining th is assurance is to traverse the annotated
paths of the Petri net representation and maintain a history of th is traversal. In a
system which ut i l izes four processors, the analysis consists of comparing the h isto-
ries of each traversal in each processor. Common elements in any two histories i n d i -
cate a common source for fai lure which defeats the premise of fault-tolerance.

In the work completed at ANL we have proven various fault-tolerant properties
of the CSDL FTP. These proofs make claims about the hardware, i .e . the capability to
operate with one fau l t , i f certain assumptions are t rue, i .e . synchrony, data source

congruence and adequate failure detection. One aspect of usingvthe suggested combina-
tion of representation and operation is that all assumptions^and assertions are expli-
citly declared. This accomplishes the goal of facilitating review as the reviewer may
focus on determining the acceptability of these declarations.

More specifically, we have examined the quaded system and have shown that the
FROMJJWN instruction, if executed by each processor simultaneously, results in (refer-
ence 3):

CLAIM:
A majority of processors having congruent data and capable of exhibiting this

property in the presence of one fault.

ASSUMPTIONS:
1) There exists six fault-containment regions,

2) The voted data in a processor will be congruent with respect to the
voted data in other processors (provided .its voter is fault free),

3) Some data from duJ. inct sources that is voted is identical.

4.3 An example of Software Formal Analysis

The software analysis tools lag in development behind those described for the
hardware. Figure 4 is a top level Petri net for the operating system (reference 7)
used on the FTP. This network has evolved through a number of iterations and will be
useful for determination of the following properties:

1) Initialization of background tasks in the queque,

2) Deterministic completion time for foreground tasks,

3) Adequate performance of background tasks, (i.e. a complete set of self
tests are performed within a specified time),

4) Resume and Activate provide context switching, and

5) All tasks involved in a reset, exception or timed interrupt are executed
within a predetermined time which is consistent with system response time.

As in the hardware description, the translation of implementation details
into the Petri net representation is currently a human intensive effort. ANL is deve-
loping a tool which automates the generation of verification conditions for high level
code (reference Boyle). The proofs associated with these properties of the top level
description of the operating system are comparable to those for the top level of the
hardware depicted on the Fig. 3 net. Both sets of proofs are dependent upon support-
ing proofs in both software and hardware at levels below those shown. Figure 5 is an
example of a network which shows the interdependence of the hardware and software at a
very detailed level. This figure is included herein for illustration purposes as the
representation for this interaction is in a state of flux.

On Fig. 5, the left-hand section of the net represents the hardware and the
right-hand section the software. This entire net represents the alogrithm associated
with the acquisition of data by the individual channels and execution of congruent
data exchanges between the acquiring channels. This net is an extension of that in
figure 3 in that it represents the interaction between the hardware and software, i.e.

a total system representation. The properties associated with this net are essential
to support the claims of fault-tolerance, i.e. that source congruence of data is
preserved.

The convention of using dashed lines to represent the flow of control between
the hardware and software networks results from the historical distinction between
hardware and software analysis. This distinction is currently being debated as the
lines of distinction in our analysis are becoming less defined.

5. CONCLUSION

The intent of this paper was twofold: 1) to introduce one approach to determining
total system reliability and 2) to report some results for a novel approach to forma]
analysis of a system. The total systems approach to reliability demands the coordina-
tion of many diverse disciplines, e.g. fault-tolerant system design, computer science,
formal analysis (both software and hardware), reliability analysis (both software and
hardware). The project described in section 2 is largely funded by DOE with supple-
mental funding from both NRC and EPRI and is intended to provide a demonstration of a
total systems approach to reliability. The inclusion of a discussion on Petri net •
representation was intended to demonstrate the power of the annotated Petri net..
Specifically, the capability for representation of the interaction between hardware
and software, provides the vehicle for an extension of formal analytical techniques to
apply to total system analysis.

6. ACKNOWLEDGEMENTS

This report encompasses the combined efforts of those involved in the FAFTRCS
project at ANL and CSDL. Specifically the efforts by J. Kljaich, A.S. Wojcik and
8.T. Smith must be mentioned as they are responsible for selection of the Petri net as
the tool for modeling as well as development of the formalism for annotating these
representations.

7 . REFERENCES

1. Smith, T. B., "Fault-Tolerance Processor Concepts and Operation," CSDL-P-1727
(1983).

2. .Wojcik, A. S., Kljaich, J., and Srinivas, N. (1983), "A Formal Design Verifi-
cation System Based on an Automated Reasoning System," Proceedings of the
20th Design Automation Conf.

3. Klijaich, J., "Doctoral Thesis at Illinois Institute of Technology," to be
published. {

4. Peterson, J. L. (1981) Petri Net Theory and the Modeling of Systems,
Prentice-Hall, Inc.

5. Alger, L. S., Lala, J. H., "A Real Time Operating System for a Nuclear Power
Plant Computer," Proceedings of EPRI Seminar: Power Plant Digital Control
and Fault-Tolerant Microcomputers (1985).

6. Butler, R. W. "The Semi-Markov Unreliability Range Evaluator (SURE) Program,"
NASA Tech. Mem 86261 (1984).

7. Farr, W. H., "A Survey of Software Reliability Modeling and Estimation" NSWC-
TR-82-171 (1983)".

FAFTRCS CONCEPTUAL DESIGN
OVERVIEW OF CSDL FTP

A/D
COHV

VHE BUSS

INTERFACE

A/0
CONV

FAULT-CONTAINMENT RES1OH
IVPICAL

VflH SUSS

INTERFACE

MEMORY
AND I/O
INTERFACES

MICRO-
PROCESSOR
CHAN. A

BACKPLANE BUSS

UfiE BUSS
INTERFACE

MEMOR*
AND I/O
INTERFACES

MICRO-
PROCESSOR
CHAN. *

INTERST
COMIi.
CHAN. >

BACKPLANE BUSS

AND I/O
INTERFACES

MICRO-
PROCESSOR
CHAN. C

tNTERSTAfi!
COMM.
CHAN. C

BACKPLANE BUSS

Figure 1

FAULT CONTAIHHEHT
REGION - TVPICAl

INTERSTAiSa
COMH.
CHAM. A

F

A
[1
L

T
I

T
0
L
£
R
A
N
T

B
U
S
S

FAFTRCS CONCEPTUAL DESIGN - F T 2 SVSTEM OUEWIEH

PUI1P I I CHANHEL fl-lR.H <RPH Si CURRENT)

INLET

OUTLET

PRIMARY PUfiP No.l

MOTOR

INLET I

OUTLET

PUMP He.2

PUMP 12 CHAHHEI A-2R.2I

PUMP It CHANNEL B-1R.1I

PUHP 12 CHAHHEt 8-2R.21

PUMP II CHANNEL C-1R.1I

10TOR

PUMP 12 CHANNEL C-2R.2I

MUX/
A/D COHU. W\£ BUSS

MUX/
A/D COHU.

UHE BUSS

une tuss

FAULT-
TOLESOHT
PROCESSOR
CHAMHEt H

FAULT-
TOtEFflNT
PROCESSOR
CHAHIIEl B

FAULT.-

CSDL FTP

Figure 2

