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RESISTIVE EVOLUTION OF GENERAL PLASMA CONFIGURATIONS

by

Guthrie Miller

ABSTRACT

The resistive evolution through equilibrium states of
general plasma configurations with closed magnetic field
lines is described. Cases where the magnetic field forms
magnetic surfaces and where the magnetic field is ergodic
are treated. In the former case, a sijnple equation for the
rate of change of rotational transform at fixed values of
toroidal flux is obtained, as is already known. In the
latter case the evolution of the equilibrium is naturally
described in terms of the magnetic helicity by use of the
formalism of relaxed states introduced by J. B. Taylor. The
equation for rate of change of magnetic helicity is shown to
be a general law of resistive evolution, implying the former
equation for rotational transform in the case of magnetic
surfaces. In principle, the resistive evolution model
provides a complete description of global long—time—scale
plasma behavior in the limit where the plasma density
vanishes. In this limit, the magnetohydrodynamic
description of a plasma is not practical because of the
vanishing of the inertial time scale.

I. INTRODUCTION

We consider the fluid description of a plasma-magnetic field system with

the Ohm's law:

_ M _ v* + vxB = tjj , (1)

where A is the vector potential, • is the scalar potential, v is the plasma

flow velocity, B = VxA is the magnetic field, j = 'xB is the current, and T) is

the plasma resistivity. The structure of Eq. (l), while mathematically



peculiar, seems to be natural in physics in that an analogous form also

applies to a Navier-Stokes fluid.

We postulate that the plasma is at every instant of time in mechanical

equilibrium so that, in addition to Eq. (1), the following equations define

the mathematical model under consideration:

Vp = jxB (2a)

j = VxB (2b)

B = VxA , (2c)

where p is the plasma pressure. The complete neglect of the acceleration

terms in the equation of motion to obtain Eq. (2a) corresponds to the limit p

-» 0, where p is the plasma density, or the dimensionless limit pr} /(B a ) •+ 0,

where a is a characteristic scale length. In this limit, the straightforward

numerical solution of the magnetohydr©dynamic equations is not practical

because the numerical time step is limited by numerical stability to be

vanishingly small. This limit corresponds to a parameter regime cf great

interest and a regime for which there is not at present a good method for

global long—time-scale plasma description.

The resistive evolution model has been considered by many authors for

various special cases. The evolution of three-dimensional configurations with
19 20magnetic surfaces has been considered by Grad, using the method of

flux-surface averaging, and by Pereversev et. al and Shafranov, using a

method similar to that used here.

The Navier-Stokes equation can be written as

at

where v, p, p, a, and v are, respectively, fluid velocity, pressure, density,

vorticity (u = ^xv), and kinematic viscosity.



In magnetohydrodynamics, the velocity is advanced in time using the

equation of motion. In equilibrium evolution, however, the velocity is

determined indirectly in a nonobvious way by the constraints imposed by

Eqs. (1) and (2). The key property of the equilibrium evolution model is that

magnetic field evolution proceeds independently of the velocity and scalar

potential so that the velocity and scalar potential entirely drop out of the

governing equations. To understand this we first consider a general

implication of Eq. (1) if closed lines of B or v exist; namely,

- 0 T7 • dl = j TJJ • di (3)

where the line integral is taken around a closed B or v line. We consider

only the case where all magnetic field lines are closed. By integrating

Eq. (1) around a closed magnetic field line we obtain Eq. (3), or

alternatively,

- j- 0 A • dJl = $ tjj • di . (4)
at

where the field line can be considered to move with arbitrary velocity or can

be considered stationary. Equation (4) supplies one equation for every closed

magnetic field line. This is just sufficient information to specify the

evolution of the plasma equilibrium because of the structure of Eqs. (2), as

will be discussed subsequently in detail.

The velocity and scalar potential have been eliminated from the problem

and are yet to be determined. This is done as follows.23 By dotting Eq. (1)

with B we obtain

<5) .



To specify • , we must choose a gauge, and having done so. A and dA/dt may be

considered known. Thus, Eq. (5) determines the variation of • along a field

line. The resultant • will be single valued, as is necessary, by virtue of

Eq. (3). The variation of • from field line to field line is free and

connected with a corresponding freedom in the velocity v. The velocity

perpendicular to B is determined as the last step by crossing Eq. (1) with B

to obtain

v = \ B x (TJJ + ^ + V»J . (6)
B 2 3t

The velocity parallel to B is not determined, as is clear from Eq. (l).

II. EQUILIBRIUM RELATIONS

The equilibrium relations for a plasma with magnetic surfaces as well as

general nomenclature used in this report are briefly developed in this

section. The basic equilibrium equations are given by Eqs. (2). We assume

the magnetic field lines form nested toroidal surfaces that are labeled by a

surface-dependent quantity S so that B«VS = 0. Equation (2a) implies that

B«Vp = o, and if a field line traces out the entire magnetic surface, pressure

must be constant over the surface. Thus, p = p(S) and

(7)

where ' denotes the derivative d/dS. From Eq. (2a), j«Vs = 0 and j and B may

be represented as follows:

• (8a)

B = VsxVj/ . (8b)

where,23



(9a)

v = I ^^- . dr . (9b)
S I'S|2

Another surface function of use is defined as follows:

<• = / B • dr . (10)
S

Note that the quantities defined by Eqs. (9a), (9b), and(10) are independent

of the path of integration but multiple valued. The periodicity of these

functions is given by

fi = I 'u + J'v + a (11a)

V = y'u 4- Xv + P (lib)

< - = I u + J v + y , (lie)

where u and v are multiple-valued angle coordinates that increase by 1 in each

circuit of the toroidal magnetic surface the short way around and the long way

around, respectively, and a, /S, and y are periodic functions of u and v. The

quantities I and ^ are the toroidal current and flux through the minor cross

section of the torus, while J and x are the poloidal current and flux through

the major cross section of the torus. Note that this definition of J and \ 's

nonstandard and differs, for example, from that of Ref. S3. From Eqs. (8b)

and (10),

B 2 > 0 (12)



and S, v, and f thus can be used to define a coordinate system.

The equilibrium relation Eq. (2a) can be written

p'Vs = - B«VM Vs , (13)

or

B 2 | * L - - P ' (14)

OA

The general solution of this equation with the required periodicity is

(15)

where X is periodic in v. The following notation has been used:

F

F

F

To

/
0

oo

0

= F —

= /
0

have

F df

F

j =

(16a)

(16b)

(16c)

single valued, it is further necessary that



which translates to the well-known condition that on a rational surface either

4r = constant

from field line to field line or

p' = 0

Evaluating the periods of fi from Eq. (15) and comparing with Eq. (11a)

leads to the following equalities:

p' (-M I + f r = I' . (17a)
B2

p' [M J + f X' = i' • (17b)
B 2

Furthermore,

The integrand in the numerator may be considered a volume element of a tube of

flux by use of the relation



dV = dA dA = &<p — , (19)
B

where d<p is the flux in the flux tube with transverse area dA. This gives

where N u and N y are the number of circuits of the path of integration (a field

line) the short way around the torus and the long way around the torus,

respectively. The origin of the minus sign in Eq. (20) is the fact that if \

and TII increase as one goes away from the magnetic axis (in V), then the field

line rotates in a negative (left-hand) sense around the magnetic axis.

The denominator in Eq. (18) may be written as

/ B • d* = N v (/I + J) , (21)

where / = Nu/Ny. Thus, Eq. (18) becomes

(22)

Equations (17a) and (17b) can be solved for p' and f, yielding

<23a>



where we have used the relation / = -

The current parallel to the magnetic field is conveniently specified by

the quantity

(24)
B2 B2

From Eq. (15),

cr = - p — ( — ) + f + — , (25)

and

= f + !* . (S6)

where the general relation F = 0 is used. As B«Va = B Jff/3f = 0, one can

argue that a is constant on a magnetic surface in complete analogy to the

argument that p is constant on a magnetic surface (specific properties of

rational surfaces are overlooked in either case). If a = <r(S), the terms

A(S.i') in Eq. (15) must be zero, and we have simply

ft = f • (27)

III. EVOLUTION OF A MAGNETIC FIELD WITH MAGNETIC SURFACES

Consider a particular rational magnetic surface, a toroidal surface upon

which field lines close on themselves after Nu circuits the short way around



and Ny circuits the long way around. Integrating Eq. (1) along a field line

gives the result

Nv H + Nu |f = ~ * * j * dl

where it is assumed that 77 is constant along a field line. The left-hand side

of Eq. (28) can be written as

-2- (v

or

with / = Nu/Ny = - dx/dV. which follows from Eq. (20). Letting S = -fr, we

obtain

|f I - " nJ-^-AL . (80)

Taking the derivative with respect to y, we obtain

at If 3 ^ ( Ny

The right-hand side of Eq. (31) involves the integral

10



= 0 a df = cr

where Af = INU + JNV = Ny( /I + J)

From Eq. (2?) and (23b)

J — - 1 —
9y tya = f =
/ i + J

1 ft
which leads to the result

'' i (f'"'' i (f» (32b)

The quantities /, i>, 1, J, and ij appearing in Eq. (32) are, respectively,

rotational transform, toroidal flux, toroidal current, poloidal current, and

resistivity. By a straightforward change of dependent and independent

variables / •» q = 1//, V "* X. Eq. (32) can also be written as18

!?!„-£ •'"£-•£
pO pe p£J

It is known' ' ' that magnetostatic equilibria are specified by the

two functions /(f) = - dx/d̂ fr and dM/df, where

11



l/r
= / p dr . (33)

with the integration volume bounded by the magnetic surface f (the quantity M

is related to the total number of particles contained within surface f as well

as their entropy). Thus, Eq. (32) and a corresponding equation for the rate

of change of dM/dV', which is not discussed here, describe the evolution of

plasma equilibria with given flux-surface topology. The process of change of

flux-surface topology, or magnetic island formation, is not described by

Eq. (32); however, the subsequent growth or decay of islands, once introduced,

is. An inconsistency of the equilibrium evolution model occurs for very small

islands in +.hat the resistive diffusion time, which scales like w /i\, where w

is the island width, can become short compared with the time for an inertial

disturbance to propagate accross the island, invalidating the neglect of

acceleration terms in the equation of motion. Roughly speaking, as long as

the islands are sufficiently large that the resistive diffusion time exceeds

the inertial time (Alfven or magnetosonic time), the equilibrium description

27
of the plasma remains valid. In the low-density limit, the critical island

size vanishes, and the equilibrium evolution model offers a complete

description of plasma behavior.

Such a complete description involves tests for stability toward islation

of each (low—order) rational surface as time proceeds. In a cylindrical
28

plasma, stability toward islation is determined in a straightforward way by

examining neighboring plasma equilibria, and this fairly clearly remains true

in the general case. Stability is actually determined by boundary conditions

rather than by properties of Eq. (32) itself. In the complete description of

plasma behavior, the islation stability test must be carried out and if the

plasma is unstable, a small island introduced and the evolution continued.

Examples of Eq. (32) in simple geometries are of interest. For a

cylindrical plasma of length 2TVR, described in cylindrical coordinates r, i>,

and z,

12



rBz

I =
V

J = 2TTRBZ

and Eq. (32c) becomes

<34)

where dtf = rB^dr.
z

In slab geometry (r, i>, z •» x, y, z ) , the equilibrium fields are of the

form

B = B situ?

B z = B cos? , (35)

with B = (BQ - 2p) ' , where B Q is the field outside the plasma region, and

Eq. (34) reduces to

at * — * " * a^ "'" Bf

or

(36)

13



so clearly <p(i/,t) has a simple diffusive character.

Equation (36) is equivalent to a Eulerian form used by other authors.

The time derivative in Eq. (36) is given by

dt\f ~ at'x 3x at'yr 3t
3x

leading to the following Eulerian equation in the pressureless case:

* _ i£ B/cosy dx - B/ysin» dx _ cosy _3_ / 7?B 8£\ . ,
V 3x Bcos^ B 3x lcos<p 3xJ ' * '

where the dot (*) denotes the derivative with respect to time. Equation (37)

is of the form

f + -3C— f f sina- dx = g
cos^ 'o

where f = 3̂ >/3t and the prime (') denotes 3/3x. The above integral equation

is equivalent to the differential equation

cosp

Thus, we have the inversion

(^) dx



Judiciously integrating the right-hand side above by parts and using the fact

that <p is odd about z = 0, we obtain the desired form

32 _ & rl , x fef dx] = ± i 9£j (38)
3t 3x lB X + ; o ^ l3x j J 3x l^ 3xJ ' V '

which is an equation given by Low.

Low has pointed out that the slab model of resistive diffusion can

exhibit a curious behavior in the high-current regime. In certain cases,

profiles develop infinite gradients in a finite time rather than relaxing to a

stationary state. This behavior is probably not physically relevant because

of the neglect of islation. In fact, high—current profiles are very unstable

toward islation and would probably evolve into a fully stochastic state,

leading to a different description of the evolution process.

IV. EVOLUTION OF AN ERGODIC MAGNETIC FIELD

We consider a region containing a stochastic magnetic field bounded by a

magnetic surface. Equation (1), when integrated along a field line, is

We assume that the field line ergodically fills the entire stochastic volume.

Using Eq. (19), we may interpret dA/B as a volume element, leading to the

relation

/ I7 • B dr = q / j • B dT , (40)
at

where AT is an element of volume.

15



Equation (40) constitutes the constraint imposed by Ohm's law in the case

of an ergodic field. This single relation is sufficient because ergodicity

severely constrains the form of the plasma equilibrium, implying (1) that p is

spatially constant throughout the ergodic region from the relation B»'p = 0

and the assumption of ergodicity, and (2) that a is also spatially constant

from the relation j = <TB and its divergence, which gives B«'cr = '»j = 0. The

magnetic field thus satisfies (approximately, in some limiting sense)

(41)

with a spatially constant, and such a field is completely determined by the

value of a and a normalization factor. These two quantities are specified by

two equations, one of which is Eq. (40). The second equation might be an

equation for the toroidal flux if this is imagined to be specified externally.

Equation (40) can be cast into a form more closely related to the work of

J. B. Taylor29'30 by defining

K(S) = £ / A.B dr - i [X f] , (42)

where the integral is taken over the ergodic region, i> is the toroidal flux

within the ergodic region, y is the poloidal flux at the bounding magnetic

surface S = C, and the square brackets denote the difference in the enclosed

quantity between the outer and inner surfaces. The reason for this definition
O i Op

of K, ' slightly different from that originally proposed by Taylor, is that

it depends only on the magnetic field within the ergodic volume and not on the

volt«second history of the plasma (i. e., the gauge of A). We then find that

(assuming S monotonically increases with volume)

dt 2 ' l3t 3t' 2 l dt ' |VS| da ldt * * dtJJ

16



where da is an element of the bounding magnetic surface S = C and

BxVS dC
+

3t |Vs|2 dt

In the surface integral, A can be replaced by V\, where \ is the

multiple-valued function

A = / A»dr . (43)
S

The fact that VxA'da = o means the line integral is independent of path.

However, because of multiple values, the surface of integration (the magnetic

surface bounding the ergodic region) must be cut in the toroidal and poloidal

directions. In terms of X, the surface integral can be written as

/ A x V • d<r = / V x (X V) • da

where V*v«da = 0, which follows from B«d<r = 0 and V.B = 0, where B is written

as Vsxw with w = BxVs/|Vs|2. Using

dt

17



we obtain

- = / _ . B dr -

= - / 7,j • B dr - [if, jj* ] . (44)
at

The quantity K can be taken as one of the two parameters specifying the

ergodic field state, with K evolving according to Eq. (44). The significance

of Eq. (44) for the problem of resistive evolution is the main new result of

this report.

For a stochastic magnetic field not bounded by a magnetic surface, the

ergodic assumption is not valid because individual field iines begin and end

on external boundaries. Such a configuration belongs to the class of open

rather than ciosed magnetic topologies and would seem to be fundamentally

different regarding the effect of resistivity.

A simple example of resistive evolution of an ergodic magnetic field is

such a field contained within a perfectly conducting cylinder. A solution of

= crB satisfying the wall boundary condition (B = 0 ) is

= B0 Ji(ffr)

= B o J0(<7r) , (45)

with JQ and Jj the Bessel functions. We are free to choose A = B/cr, which

gives

K = B 2 2^_R [ j r ( J 2 + J 2 ) d r _

^ = 27TBQ / JQ rdr ,

18



and

^ ) , (4.)
Jf(x)

where x = <7a with a the wall radius. Equation (44), with dx/dt = 0 at the

wall, implies that

32

1? 1?
dr . (47)

Therefore, K/ty2 decays with time. Since K/ty given by Eq. (46) is a

monotonically increasing function of a, a also decays with time. The equation

for toroidal flux gives dB0/dt in terms of dcr/dt and completes the

determination of the time dependence of the magnetic field.

For this solution, (3A/3t + TJJ)»B does not vanish locally. If it did,

one would obtain the evolution of a nonergodic cylindrical field. From

Eq. (5), the potential therefore has a complicated structure depend.ng on the

detailed stochastic structure of the magnetic field. Likewise, v. has a

complicated structur , containing singularities where a finite potential

difference occurs between field lines that are arbitrarily close at some

point. These singularities would probably be eliminated by other physical

effects in a more correct treatment. In addition to the problem with velocity

singularities, the detailed stochastic structure of the magnetic field or its

time evolution have not been determined. Indeed, an important unresolved

question is exactly how the solutions of VxB =crB with magnetic surfaces are to

be interpreted as limiting cases of stochastic fields.

We can obtain the evolution equation for a plasma with magnetic surfaces,

Eq. (32), from the equation for K, Eq. (44). Thus, the K equation may be

taken as the general law of resistive evolution of a plasma. First we note

19



the following relations concerning an infinitesimal plasma volume bounded by

magnetic surfaces S = C and S = C + dC.

d (/ A • B d-r) = * &f - f d\

d (/ B • j d-r) = J dl - I dJ . (48)

These relations can be proved using a substitution of the type given by

Eq. (43) and arguments similar to those used in obtaining Eq. (44). If

Eq. (48) is used for a plasma with magnetic surfaces, K is given by

K = - / y d x = / y / d ^ . (49)

This equation had been proposed as a definition of K, although clearly the

form given by Eq. (42) is preferrable because of its greater generality.

Equation (44) for the time derivative of K leads to

dt f l3tly, 3y dt' ' Vi

where the lower boundary of the integration is taken at ^ = 0. However, from

Eq. (49),

so that

20



Taking the derivative with respect to i/i, w^ obtain

3t 3t
_ j _ / 7 ? j . B d T

3*

implying

ffl =-^^/ J-Bdr = 7, (I g - J f±) . (50)
dt 1-̂  of of of

Taking another •$ derivative leads back to Eq. (32) or the alternate form

V. OHMIC STATES

In this section, the properties of steady states of resistive evolution

are examined. Consider a plasma bounded by a toroidal surface on which there

are prescribed toroidal and poloidal voltagas Vy and Vu. In a steady state,

the voltages are constant in time. As Vu = - df/Bt , V must be zero.

Similarly, V = Vy = - 3^/3t, although V is not necessarily taken to be zero.

However, the poloidal flux within the plasma is assumed constant in time. The

toroidal voltage V is then the same throughout the plasma.

For a plasma with magnetic surfaces, Eq. (30) gives

V = V

which leads to the identification

21



<52>

or

V = v ̂  (/ J • B dr) • (53)

In a true steady state, V = 0. Such configurations are stellarators, or, in

more general terms, plasma without externally driven currents. Ohmic states

of a stellarator satisfy

which implies that I = aJ with a constant. Since I is zero on the magnetic

axis, but J is not (JQ = /B«d£0 includes the currents in the external coils),

a must be zero. Thus, we obtain the condition that a stellarator has zero net

current on each flux surface in a steady state. If a steady state

stel larator contains an r.-rgodic magnetic field region, then j = crB within that

region, and Eq. (44) implies that a = 0. Sines pressure is uniform in the

ergodic region, this region is completely current free and is effectively a

vacuum field region.

The Ohmic condition for a cylindrical plasma with magnetic surfaces can

be written as

2TTR B,
it

(54)

from Eq. (S3), while for ergodic fields, only the integral relation

22



2TTR
/ B rdr = r)cr J B2rdr (55)

applies. Ergodic Ohraic states in a cylinder are given by Eq- (45), with the

above relation determining the necessary driving voltage.

In the case of Magnetic surfaces, Eq. (52) leads to the following

alternate form:

- - 1 — £(-£-) • <56>2TTR ' B_ dr

Within the context of the model, cylindrical Ohmic states cannot have a

reversal of sign of B . If B did reverse at some point, immediately outside

this point, B z and 3[Bz/(rB1j)]/9r would be negative, leading to a

contradiction in the signs of the left- and right-hand sides of Eq. (56).

Ergodic Ohmic states in a cylinder are given by Eq. (45) and can have

sustained B_ reversal. Another interpretation of sustainment of reversal is

given in Ref. 34.

In the slab model, Ohmic states satisfy

E = r, B2 |j , (57)

where E is the driving electric field, B = B simp, and B = B cosy. In the

pressureless case with uniform 17, Eq. (57) implies

"*
7,B2

23



where we use the fact that <p and f vanish at x = 0. Inserting the definition

of V.

V = — / COS<0(Xj)

and

dy E
— = ~r:
COSf T)B

The solution of this equation that has <p = 0 at x = 0 is given by

V = tan-l[sinh(^)] (58)

Note that as E •* », <p •+ 7r/2 SO that Bz -» 0 but never reverses sign.

The perpendicular flow velocity for the cylindrical case with magnetic

surfaces is determined from the general relation Eq. (6), with * = 0 by

symmetry in this case, giving

vr - - -SL h. _ JL dp. (59)
r 2TTR B 2 B 2 dr

In the pressureless case, the flow is inward. Equation (54) applied on axis

identifies V as

-*- - 77(O)a(O)B(O)
alW.

24



which when substituted in Eq. (59) yields a condition determining steady-state

pressure profiles with no inward pinching. The steady—state pressures are
op

found to be quite large. Stability investigations indicate that in the

high-current regime, such cylindrical Ohmic states, even with no pressure, are

extremely unstable toward islation. This- suggests that sustained high-current

cylindrical discharges would be in a stochastic state.

VI. CONCLUSIONS

The resistive evolution of magnetic fields with closed field lines is

specified in a simple and natural way by the equation for the rate of change

of magnetic flux linking those closed lines. For the case of magnetic

surfaces, closed field lines exist on each rational surface, leading to the

equation describing the time rate of change of rotational transform on each

such surface. For an ergodic magnetic field region, however, a single

magnetic field line is imagined to trace out the entire region and flux

linkages are defined by the quantity K and associated with the entire ergodic

volume. A geometric interpretation of K as the degree of "knottedness" of

35
tangled filaments has been given by Moffatt. The equation for the time rate

of change of K can in fact be taken as the general law of resistive evolution

as it implies the previous result for magnetic surfaces as a special case.
23

The energy priciple of Kruskal and Kulsrud can be restated to include

ergodic regions as follows: stable magnetohydrodynamic equilibria are minima

of the potential energy, with the constraint that the function dK/dy» = /(^)/2

is given on magnetic surfaces, while the quantity lC/ty is given for ergodic

field regions (the pressure is imagined tn be specified in either case). The

process by which a plasma reaches the minimum potential energy state

consistent with the particular flux constraints of the problem is the

dissipation of kinetic energy through viscosity or other means. This

"relaxation" process takes place on the inertial time scale. Relaxation as

defined by J. B. Taylor takes place by an unspecified process. Taylor

relaxation is the tendency of a plasma, whatever its initial flux constraints,

to approach a unique final minimum energy state. For a plasma in a perfectly

conducting chamber, the minimum potenial energy state associated with a given

total K in the chamber is the Taylor state with a spatially uniform. Thus,

25



insofar as the resistive dissipation of K is negligible, ' the plasma will

be forced by resistive dissipation of potential energy into the Taylor state.

Clearly, one interpretation of Taylor states is that they are

configurations with ergodic field lines, as has already been suggested.

This report provides a more complete conceptual framework for dealing with

such configurations.

Although many questions remain, the resistive evolution model would seem

in principle to offer a complete description of long—time-scale plasma

behavior. The process of island formation or change of magnetic topology is

not described by the evolution equations, but the growth or decay of islands

or ergodic regions, once introduced, is. Thus, a complete description of

plasma behavior would involve tests for stability toward change of magnetic

topology by introducing (conceptually, if not actually, in computations) such

changes and observing whether the effects grow or decay with time.

26
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