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ABSTRACT

This paper discusses recent theoretical results on above threshold ionization,
harmonic generation and high-frequency, high intensity suppression of ionization. These
studies of multiphoton processes in atoms and molecules for short, intense pulsed optical
lasers have been carried out using techniques which involve the explicit solution of the time-
dependent Schridinger equation.

INTRODUCTION

In the past few years several developments in the use of time-dependent methods for
studying laser-atom interactions in intense, short pulsed laser ficlds have occured. The
important advances include the calculation of above threshold ionization spectra for realistic
(three-dimensional) atomic sy.tems, the calculation of photon emission from laser excited
atoms and some recent results on high frequency, high intensity suppression of ionization.
For intensities within the regime in which perturbative techniques are valid up to 10" - 106
W/cmz, time-dependent techniques have provided accurate results for the measured
photoelectron energy and angular distributions and for photon emission for many atomic
species. Most of these results have been obtained from single-electron calculations which are
exact for hydrogenic systems, but only approximate for the multi-electron systems
considered. For the hydrogen atom, similarly comprehensive results have been obtained
using Floguet methods.! At even higher intensities, multi-electron processes may become
important, meaning the calculations in this regime will be significantly more complicated.
The intensity for which this is true depends on wavelength, target species and pulse length.

Time dependent methods have also been employed using one-dimensional model
potentials to study multiphoton processes through “numerical experiments.” Much insight
has been gained from these calculations, which recently have been reviewed extensively by
Eberly, et al.2 and therefore will not be discussed further hiere except in connection with the
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In the next section we briefly discuss the new techniques being used to study intense
field, multiphoton phenomena. The following section includes illustrative results for
photoelectron spectra. In the fourth section we discuss the calculation of the single atom
photoemission spectrum including harmonic generation. The final section provides a
discussion of a systematic investigation of ionization suppression in an intense high-
frequency field.

METHOD

The time-dependent Schrédinger equation is solved using a finite difference
representation for the electronic wave function. In our earlier work® we employed cylindrical
coordinates, p, z and ¢, to represent the time-dependent electronic wave function. Recently,
we have developed codes which use a spherical coordinate system, r, 8 and (p.4 We consider
only the case of linear polarization, so that the azimuthal quantum number is conserved.
Therefore the equations involve only the two important spatial dimensions. This is true even
in the cases of the multi-electron systems we have studied because of the form of the model
potentials we have employed to approximate the effects of the other atomic electrons not
explicitly included in the calculations.” The change to spherica! coordinates has allowed us to
(1) utilize a more compact description (fewer grid points) of the wave function, (2) reduce the
storage requirements and increase the speed of the calculation (3) easily obtain angular
distributions and excited state probability amplitudes for the electronic wave function after (or
during) the laser pulse and (4) use &-dependent effective potcm:ials."'6 The time integration
still can be carried out using an alternating-directions, implicit (Peaceman-Rachford)
method.’

Because the relevant Schridinger equation is solved explicitly, the intra-atomic
interactions are treated on an equal footing with the iaser-electron interaction, i.e., no
assumptions are made about the relative strengths of these interactions. Also, by obtaining a
solution of the time-dependent problem, the dependence of the results on the pulse shape can
be investigated.

We expand our time-dependeni wave function in spherical harmonics,

V8@ =Xy Xpn® Y,y @.0)r (1)

Inserting this expansion in the time-dependent Schridinger equation, we obtain the following
equation for the orbital
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where

H = Tr+\/r ‘ (3)

ard
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As previously, we assume the laser is polarized in the z-direction and is sufficiently intense to
be treated classically. Thus,

VI =-e zf(t) me sin(wt) (5)

which couples £to £ + 1. The envelope function, f(t), increases to unity at the peak of the
pulse. The discretized equations are derived variationally from the equivalent Lagrangian
formulation, explicitly taking into account the r=0 boundary. Using a three-point second
difference for the radial kinetic energy, Tr, both parts of the Hamiltonian are tridiagonal.
Therefore, we can use the Peaceman-Rachford time propagator,

v 14 SR TTLA R s RLTAT R i 6)

where T = Ay/2 and " is a vector containing the values of the wave function at the grid points
at the time t = nAt. This propagator is accurate through second order in the time-step and,
since it involves only tridiagonal matrices, can be efficiently and rapidly inverted with
vectorizable operations.

Similar integration schemes have been employed by other workers in this field to
explicitly integrate the time-dependent Schrédinger equation. Hermann and Fleck® used this
coordinate system but employed fast Fourier transforms to evaluate the kinetic energy with a
split-operator propagator. DeVries’ also used spherical coordinates and finite difference
spatial derivatives combined with a different split-operator propagator. LaGattutal%!! has
used a fourth-order predictor-corrector to evolve hydrogenic wave functions on a grid in
spherical coordinates. Finally, various basis expansions have been developed to represent
the time-dependent wave function. Pindzola and coworkers'®!3 and Tang, et al. " have
used a spline basis, Laikos and Horbatsch!> have used a gaussian function and Collins and
Mertz'® have expanded the wave function in terms of Volkov functions. In all these basis
expansion approaches, a system of first order temporal equations is solved. In contrast to



these methods, Faisal and Moloney’’ developed a formalism to study multiphoton ionization
using a non-Hermitian Schridinger equation.

Many properties of interest can be obtained from the time-dependent wave function
either during or after the laser pulse. Induced photoemission rates are calculated from the
time-dependent dipole of the excited syswm.ls This technique has been used Ly several
researchers to obtain harmonic emission rates which will be discussed below. The energy
and angular distributions of emitted electrons can be calculated by projecting the final wave
function onto field-free (scattering) eigenstates of the system.z'll “This requires the
generation of these states, then the calculation of the overlap between the wave function and
this continuum of states. Similarly, transition probabilities to excited states can be
cetermined. We have developed a significantly more efficient method for evaluating these
distributions.*® Because our wave function is time-dependent, it contains results for all
possible energies of the electron. Using an energy “window” operator, we can easily
determine the total probability in the final wave function of the energy of the electron falling
in a narrow range (window) about a particular chosen energy. If the window is narrower
than any significant structure in the energy distribution, we can efficiently map out the
electron energy distributions by performing this analysis at a series of energies separated by
the width of the window. By preceding this analysis with projections onto the spherical
harmonics, which is trivial when using a spherical coordinate system, we can also obtain the
angular distributions.

To be more explicit, we define the operator

WE Y =7 AH -E)P +7). )

H0 is the field-free atomic Hamiltonian. Then the probability within + vy of the energy Ei is
given by

P(El’an) = <\|’f 'W(El,n.'Y)hV‘>~ (8)

This can be evaluated very easily because the operator can be expressed as a product of
operators of the form y/(H, - lE'Ii + iy) operating on a known function which, for a discretized
representation of the Hamiltonian, can by inverted very efficiently. In this way we determine
the energy and angular distributions of the emitted electrons along with the probabilities of
populating excited bound states by the pulse.

This summarizes the techniques currently being used. In the following sections we
present some recent results including electron and photon emission and for suppression of



ionization at high frequency and high intensity.

ABOVE THRESHOLD IONIZATION

Recently a number of theoretical studies of photoelectron energy distributions have
been carried out for realistic (three dimensional) atomic systems. Most of the effort has
focused on hydrogen for which it is possible to perform exact calculations. Chu and
Coopcrlg, Crance?° and Potvliege and Shakeshaft?!?2 have used Floquet methods to
calculate ATI spectra at intensities in the non-perturbative regime. Spectra for hydrogen were
also obtained by LaGattuta!! who prcjected a time-dependent wave function onto Coulomb
continuum states. Using our method described above, we have obtained energy and angular
distributions for a number of wavelengths, intensities and pulse shapes for both hydrogen
and xenon. A representative result of our energy analysis for a trapezoidal pulse which rises
linearly over two optical cycles, is constant at 2x101 W/cmz.for 10 cycles then is ramped
linearly down over a final two cycles is shown in figure 1. The photon energy is 2.33 eV
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Figure 1-Hydrogen ATI spectrum at 532 nm and 2x1013W/cm?2
(532 nm). The peaks for E < 0 correspond to population remaining in bound excited states at
the end of the pulse. The ATI peaks are denoted by s, the number of excess photons which
have been absorbed by the escaping electron. The expected energy of the electron emitted at
the intensity I in peak s is given by



ES(I) = (n+s)‘ﬁu)-Io»Ep(I) )

where 1, is the field-free ionization potential, Ep is the ponderomotive shift given by I/4co2 in

atomic units and n is the minimum number of photons required to ionize the atom. At this
intensity the ponderomotive shift of the ionization potential has caused the lowest peak (s=0)
to fall within the high Rydberg states. As discussed by many authors,23'27 the shift of the
peaks due to the ponderomotive potential can only be observed experimentally with pulse
lengths short compared to the time it takes the emitted electron to exit the focal volume.

The ATI peaks appear exactly at the shifted energies given by equation (9) and are
separated by one photon energy. The widths and shapes of these calculated ATI peaks are
consistent with the Fourier transform of the pulse shape, as would be expected if no
resonance enhancements are involved. Since the rise and fall of the pulse is very rapid, the
systern spends little time on resonance so that their effects are not seen in this energy
distribution. The ionization rate for the separate peaks are obtained by integrating the
probability under the peak and dividing by the time interval for the flat (constant intensity)
part of the pulse. The rates for the lowest ATI peak agree well with the Floquet results of
Potvliege and Shakeshaft. 2 They are not able to obtain results for the higher peaks using
their current method.

The influence of intermediate resonances can be seen in the spectra shown in figure 2,
which compares a trapezoidal pulse to a sin2 pulse at 5x1013 W/cm2. Structure in each ATI
peak correspond to excited states which are Stark shifted into resonance during the rise and
fall of the pulse..?'a'27 ‘The photoelectron is then produced with a ponderomotive shift
particular to that resonant intensity as given by equation (9).

PHOTOEMISSION/HARMONIC GENERATION
- Atoms being excited by a strong laser field can generate a significant amount of

radiation, particularly at frequencies which are odd multiples of the pump frequency. Recent
v:xpcrin'xcmsz&29 have shown that very strong, very high-order harmonics can be produced
provid=d the gas density is high. This is because harmonic conversion is a coherent process
and therefore the output is proportional to the square of the gas density. Up to the thirty-third
harmonic of Nd:YAG has been produced in arg(m.30 Wave lengths as short as 15nm have
been 1repornad‘?'8 using a KrF (248nm) pump and neon as the medium.

The theory of harmonic generation has two pms.31'33 First, the spectrum emitted by
the individual atoms must be calculated for a range of pump intensities in order to take into
account the spatial distribution of intensities in the focal volume. The calculated harmonic
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Figure 2-ATI spectra from a trapezoidal vs. sinZ pulse at 532 nm and

§x1013 W/cm2-
fields will have both a magnitude and a phase relative to the driving field. 3 Second, the
macroscopic harmonic fields due to the coherent emission from all the atoms are found by
solving Maxwell's equations using as a source the single atom polarization fields. This
second part accounts for the phase matching constraints due to the different indices of
refraction for the harmonic and pump fields in the medium. This phase matching contribution
to the overall emitted signal can be very important and will depend on the focal parameters of
the laser, the density, the extent of ionization and the length of the active medium. Further
details of the methods for solving this part of the problem are discussed in another paper in
this volume.>®

The calculation of the single atom emission spectrum can be accomplished by

determining the induced time-dependent dipole of the laser excited atom.'8 This is simply the
expectation value of the electronic coordinate along the axis of polarization:

d(t) =e <y(t) | z 1 y(t)>. (10)



The square of :he Fourier transform of this dipole is proportional to the single atom emission
spectrum. ,

At high intensities, the spectrum of harmonic intensities develops a plateau of
approximately constant emission rates. Generally, the plateau follows a rapid decrease of
intensity for the first few harmonics and is itself followed by an abrupt cutoff. This observed
spectrum, of course, includes the effects of phase matciiing. However, it has been found that
the single atom spectra, for almost any form of potential, one- to three-dimensional, short- or
long-range, all exhibit this overall structure, 3638 Thus, in the non-perturbative regime, the
importance of phase matching is consigerably reduced compared to the weak field case.?
This conclusion is dependent on the laser being weakly focused such taat its confocal
parameter is larger than the propagation distance through the mediun.

We have obtained single-atom harmonic spectra for several ¢ toms, for the hydrogen

- molecule and for a model short-range (but three-dimensional) potential.38 In ﬁgufe 3 we
show a representative result for neon, in a laser field with peak intensity of 1x10' W/cm2 at
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Figure 3-Neon single-atom photoemission spectrum.
a wavelength of 616 nm. The pronounced peaks, which are at the odd harmonics of the
driving frequency lie, on & broad background. The width of the peaks correspond to the
inverse of the pulse width or the ionization rate, whichever is less. The neon calculations are
performed for a single outer shell electron moving in the field of the other atomic electrons,




~ held frozen in their ground state orbitals. The effective potential this electron sees has been

generated from Hartree-Slater calculations on the ground and excited states of the system.
These calculations utilized 2 -dependent pseudopotentials which are superior to those used
previously in our cylindrical coordinates code.® The p(L=1) potential comes from the
ground state of the system and the s(=0) potenrtial from calculations on the 2p53s excited

~state. In these calculations we have adjusted the Slater (Xot) parameter to insure that the

- ground and excited states have excitation energies as accurate as is possible within this single-
electron model. Using these techniques we have found quantitative agreement, once the
phase matching calculations have been carried out, with experimental conversion efficiencies
for a number of atoms.> ‘

In order to better understand the source of harmonic production, we studied several
systems with widely varying potentials to see their effects on the single-atom emission
spectrum. The results are illustrated in figure 4 in which we present harmonic spectra from
the hydrogen atom, from the hydrogen molecule and from a short-range Yukawa potential all
of which have have the same ionization potential. It has been found the the number of
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Figure 4-Single-atom harmonic intensities for the hydrogen atom,
hydrogen molecule and a short range, Yukawa potential.
harmonics obtained for a given wavelength and laser intensity depends strongly on the
ionization potential. The Yukawa potential has only one bound state. The Hy molecule was



stretched from its equilibrium bond distance to 2.04 a, to give the desired ionization
potential. Its bond length was held fixed during the calculation and the axis was oriented
along the direction of polarization. The effective potential for the active electron in the Hy
model was obtained from a Hartree-Fock calculation in the manner previously employed for
helium.4!

As can be seen from figure 4, the emission from H and H; are in quite good
agreement both in magnitude and in the number of plateau harmonics. The emission from the
Yukawa potential is orders of magnitude less intense, but shows a plateau of comparable
width to the oﬂwr systems. The short-range parts of these three potentials are very similar for
the Yukawa and the H-atom, but very different for Hy. Thus, it seems the short-range
behavior of the potential is not terribly crucial to harmonic emission. The H and Hy
potentials are identical at long range, both supporting a Rydberg series converging to the
ionization potential. It is these excited states which affect the conversion efficiency. By
softening the Yukawa potential to introduce additional states in the well while keeping the
ionization potential constant, we found its spectrum converged o the Coulomb results by the
time four excited states were present. Thus, an entire Rydberg series is not necessary to |
obtain the higher results shown in this figure. ‘

The background found in the calculated emission spectra may appear similar to that
observed experimentally.29 However, we found that, in contrast to the harmonic emission,
the background emission carries no constant phase relative to the driving field and therefore
the phase matching of this background will not occur. We expect this emission to be orders
of magnitude weaker than the harmonic peaks so that our calculated background is unlikely to
be responsible for that observed. Other mechanisms must contribute to the experimentally
observed resuit.

TRAPPING/LOCALIZATION

Over the past several years, Gavrila and coworkers$2 have performed an interesting
series of studies on the behavior of atoms in high frequency fields. They found that for
photon energies which exceed the ionization potential of the system, raising the intensity high
enough can cause stabilization of the atom. That is, as the intensity increases the ionization
rate decreases. In fact, they have predicied that the ground state wave function actually
bifurcates, having two maxima at the two turning points of the orbit of a classical electron,
oscillating in the laser field in the absence of the potential. These turning points are given in
terms of the field strength and frequency by (in atomic units)

o = E/w?. 1)
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These results are relevant to cases with @ >> 1. Because these calculations were time
independent, they did not address the effects of the turn on of such a strong, high frequency
laser. The question remained whether the atom could survive to be trapped in this unusual
state. '

Recenily, Su, et al. used their one-dimensional soft Coulomb model to determine the
survivability of the atom in a time-dependent high frequency field.43 Their results clearly
demonstrated that in this 1d case, the electronic state does become stabilized. The frequency
chosen, however, corresponded to 2-photon ionization, so the assumptions made by Gavrila
of high frequency may not have been valid. This was encouraging from an experimental
point of view because it is possible to find strong, short pulse lasers which can cause 2-
photon ionization of many atomi- systems. Additionally, Su, et al. did observe their wave
funcuon having the bimodal structure predicted by Gavrila.

We have repeated the calculations of Su, et al. and find excellent agreement with their
resuits. However, for some wavelengths and intensities the wave function is found to have a
much more complicated structure than the two-peaked structure of Gavrila and Su. Once
rapped, the structure remained stable in shape and oscillated in phase ‘wath the field over a
range of approximately 2c.

These results encouraged us to pursue these calculations for a real three-dimensional
atom. We consider 2 hydrogen atom in a field with a frequency of 1 a.u. (27.21 eV) which is
twice its icnization potential. We present results for the following intensities 4, 16 and
64x10"" W/cmz, corresponding to & of 3.4, 6.8 and 13.5, respectively. We used pulses
which rose linearly over five optical cycles, then the intensity was held constant over the next
ten cycles. Toward the end of these pulses we observed an exponential decay of the orbital
which is due to absorbing boundaries on our grid which are well removed from the nucleus.
(The distance to the boundary was much larger than a.) We believe the flux reaching the
boundary is truly ionized since no mechanism exists to allow it to rerumn to the vicinity of the
atom. The probability remaining near the atom at the end of these pulses was 0.082, 0.310
and 0.515 for the three cases described above, respectively, and the calculated decay rates
were 1.1x10'3, 2.7x10' and 1 1x10™ 1/s. These results definitely corroborate the earlier
predictions, establishing that the 1d results carry over into the real wor'd.

We find, however, that the trapped wave function again did not exhibit the predicted,
bimodal structure. We show in figure 5 eight snap-shots of the evolving wave function
during the 16th optical cycle for the 1.6x10'® W/cm? case. In general, we observe that some
structure is excited during the tum on which, when it stabilizes, oscillates in the vicinity of
the nucleus with an amplitude approximately equal to +¢. This oscillatory motion may not be
centered on the nucleus as predicted by the Gavrila model. Also we found that as in the 1d
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Figure 5-Snapshots of the electron density of a irapped hydrogen
wave function during a single aptical cycle. Tick marks along
buiiom axis are separated by 10 a,, time increases lefi-to-right and
top-to-bottom in increments of 1/8 cycle. Photon energy is 27.21
eV, the intensity is 1.6x1018 W/cm2 corresponding to a = 6.8 a,.

This work was performed under the auspices of the U.S. Department of Energy at
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