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I. PERIODIC SOLUTIONS OF THE TIME-DEPENDENT HARTREE-FOCK

EQUATIONS
A. INTRODUCTION

Functional integrals provide a fundamental framework to describe the microscopic behav-

ior of a quantum system systematically and consistently. In the stationary-phase approxi-
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mation (SPA) to an exact functional integral, the energy levels of collective states and fission
decay widths can be obtained through‘the actions over periodic orbits of the time-dependent
Hartree-Fock (TDHF') equations in real and imaginary time.

It has been known for some time that in the SPA bound state energies of a many-body
system can be found from the periodic solutions of the time-dependent Hartree-Fock (TDHF)

equations through a requantization rule [1]
T P
Wy = / dt < P |id T >=2m , (1)
0

where |4 > is a periodic solution and n is an integer. The stationary solution gives the
ground state energy, and the periodic solutions lead to collective excitations.

However, numerical success in generating periodic solutions had not reached such a level
that the requantization rules could be applied until a series of recent publications [3-5]. In
the last a few years we developed a numerical algorithm to calculate periodic orbits of the
TDHF equations. The crucial point for such success is to preserve conservation laws exactly
(not approximately) in the time evolution through an appropriate discretization scheme. The
algorithm we developed has been proved to be effective in bound state problems [4-5]. We
have applied this approach to determine the monopole excitations for the spherical nuclei of
“He and %0. This research has resulted in a publication. We used the nucleus of * He as an
example to demonstrate the algorithm which leads a converging sequence to a quasi-periodic
solution. The applications to other nuclei, especially, the algorithm to determine nuclear

collective states using periodic orbits, will be discussed in a series of future publications.

B. The Key to Periodic Orbits

As explained by the ref. [3], the crucial point in the algorithm of construct periodic
orbits is to preserve the conservation laws in the time evolution exactly (not approximately)
through an appropriate discretization scheme. It can be easily proved that the TDHF

equation for an isolated system preserves the particle numbers and the total energy. However,




most numerical schemes for time-dependent equations can only preserve the conservation
laws approximately. Just an approximation is not good enough for a periodic orbit. The
‘reason for the requirement on the exact conservation is as follows. Periodic solutions from the
discretized equations if they exist appear as a family of infinite solutions on the same orbit
for a certain energy (or a certain period). Any point on the orbit could be a starting point
for a solution. The key for building the family of periodic solutions on the same orbit is that
the number of independent equations must be less than the number of independent variables.
The exact energy conservation plus the periodicity will play the role in reducing the number
of equations by one. If the numerical scheme for discretization could preserve the energy
conservation exactly, one of the equations in the set of equations for one-step time evolution
can be replaced by the equation of energy conservation, i.e. £, = E,;1,n =1,2,.... When
we impose the periodic condition after N time steps, the last time step gives an equation
En = E;. However, this equation can be derived from energy conservation for previous time
steps since By = Ey = ... = E. Therefore, the number of independent equations is actually
reduced by one. The exact energy conservation in the time evolution paves the way to the
numerical success.

We will choose the reduced unit system where A = ¢ = m = 1 throughout the discussion.

C. The Numerical Algorithm for Exact Energy Conservation

Consider the one-body TDHF equations

£ = —1 /290 + w(p) Y (2)

where w(p) is the one-body potential, assumed to be dependent only on the local density

p . We write the time—discretized form of these equations as

[att) — ) = —ie H(n +1/2) (I¥2) + [427)/2 (3)

where n is the index for the n®® time step, whose size is ¢ and the indices for space—

discretization are suppressed. The one-body Hamiltonian H, assigned the time n + 1/2, has
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to be determined. One condition on H is that it be hermitian, which insures unitarity. This

is obvious if one writes (3) as

[9a™) = Uln+1/2) [3) | (4)

with

l1—2ieH(n+3) <
1+%2.6H(TL+%). (5)

[

Un+1/2) =

Therefore the total particle number Y (¢%|4%) is conserved.
To determine H(n+ 1/2), we invoke the time-discretized version of energy conservation.
The conserved energy £, which should be independent of n, is
E = 3 (451K +V(pa)l3) (6)
where K is the kinetic energy operator.

According to (2), the one-body Hamiltonian must have the form
Hn+1/2) = K + w(n+1/2).

Even though energy conservation is a global condition, it can be proved by adopting a simple

local relation, namely

w(n+ 1/2) — pn+1V(Zn:i)_—ppnv(pn) , (7)

that the total energy is conserved. Actually, it canbe proved that the energy conservation

can be preserved exactly by any unitary transformation
[t >=U(n + 1/2)|" >

for the time evolution, where U(n + 1/2) commutes with H(n + 1/2).
In a test of 10%-step run with double precision the total particle number can be exactly
preserved and the total energy can be preserved from 10712 up to 107*. The periodicity of

the orbits resulting from such a time evolution showed the stability of the iterative procedure.
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D. The Periodic Orbits for ‘He

The solutions %, that we seek for eq.(2) are quasi—periodic [3]. Truly periodic functions
¢ can be defined by

Vo(r,t) = e et (r,1) ,
with
Go(r,t +T) = Po(r,t) .
The quantity A, is known as the chemical potential. The equation satisfied by ¢, is

ioba=(H-Ado. ®

As a test to the algorithm, we consider the monopole vibrations of *He, using a simple

version of the Skyrme force, and we neglect the Coulomb interaction between protons. This

definiteness leads to some simplifications in describing our algorithm since the remaining
wave function is a one~dimensional s-wave radial equation with four—fold degeneracy.

In searching for the numerical solutions we first discretize this equation in space and

time. With ne denoting the time, the time evolution takes the form
)y — Jut) = —ie [K +w(n +1/2) = A] (Ju") + [u"") /2, 9)

where n = 1,2...IN and the space index is again suppressed. The potential operator w is
diagonal in space and given by eq. (7) . The iterative procedure we use to reach the periodic

solution is quite general and can be summarized as follows.

e Initialization. We obtain an initial guess for the period Ty and the parameter Ao from
a trial wave function |u3), which has a large component of an oscillating mode. We
examine the trajectory of <r%> in time with A = 0, and we determine an approximate
period Ty ~ Ne. From the phase angle 8 = arg (u) *!|ul) ~ ATy , we determine an

initial value Aq .




o In the k* iteration of the procedure, we follow the time evolution of the trial wave
function [u}) using eqs. (9) and (7). At the end of the time evolution we obtain a
wave function |uj T'). The perodicity condition should require |u}) = [ul’ 1y but

this condition is not satisfied until we have reached a periodic solution. At each step

of the iterations we use 8}, = arg (ul *!|ul) = AX; T} to correct the value of A; with
Ak+1 - )‘k + A)\k .
For the intermediate steps, equations (9) and (7) are exactly satisfied.

e For a periodic solution there is one more equation to satisfy exactly,
uk) = Jup) = —ie (K +wp(N +1/2) = Xe) () + [ud))/2 - (10)

We use this equation to correct the trial Wave‘function |u;) and obtain a new wave
function for the next iteration, |uj,,). We first solve equation (10) for the wave
function |u})’ from the given |u}) and the potential wi(N + 1/2), and then take a
linear combination of |ug) and |u;)’ as the new trial wave function |u} ,). Again we

analyze < r? > and obtain a new estimate for the period Ty, .

We repeat the procedure given above until the desired precisioﬁ for the periodic solution is
reached.

Our calculations show that this procedure is stable, and the convergence can be reached
consistently. The convergence of the periodicity is measured by the disﬁance between |ui >

and |ujy *! > defined as

1 . )

1= Jﬁzluw) G,
J

This value of o4 could reach the level of 10~*%, while the laregest component of the wave

function is about 0.1. Fig.1 shows the convergence sequence for o5 which was stopped at

the desired precision level o3 < 5 x 107°.

For heavier nuclei we may need more than one wave function to describe its collective

states. We have extended the above formulation for spherical nuclei from *He to 10 and
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*0Ca. For the case of **Ca we had four wave functions including a second S-wave function at a
higher energy. Except for the Gramm-Schmidt orthonormalization procedure for the second
S-wave function used at the end of each iteration for the case of **Ca, the above approach
can be simply generalized to the system with multiple wave functions. The preliminary

results also showed success for heavier nuclei like 180 and 4°Ca.

E. Requantization

Periodic orbits of the TDHF equation provide us an over-completed basis made up of
time-dependent Hartree-Fock wave functions. This basis includes static Hartree-Fock solu-
tions as special cases. At low energies its description coincides with the linear response theory
or the random phase approxima‘pion (RPA). It can also describe large amplitude collective
motion. However, it is still a classical description. Comparison with the experimentally
observed spectra of nuclear collective excitations can only be made through requantization.
The requantization rule, analogous to Bohr-Sommerfeld quantization rule, has been derived
by many authors in different ways[1] and given by Eq. (1). A static Hartree-Fock solution
corresponds to the case m = 0.

The first periodic solution at certain period is most difficult since the approximate period
is not known. It may take thousands of iterations to reach a periodic solution. Once the
first solution is reached, we may use it as a trial solution for a neighboring period, and
force the solution to change its energy. In this way we can move the solution from one
energy to another until the the quantization condition is satisfied. For the nuclei of *He and
180, we have obtained the quantized states at excitation energies Fx, = 26.491 MeV and

Eo = 29.493 MeV [5].

F. Future Development for This Approach

There are several important directions for future development of this approach in nuclear

physics.




o Coulomb Force. The Skyrme force introduced in the last section represents the short
range nature of the strong interaction. The future research includes the long range
force in nuclei. This is essential, especially when we would like to extend this approach
to spontaneous fission. Since the evolution operator contains the dependence on the
wave function in the next time step, we have to solve the Coulomb Potential in each
iteration for every time step. The introduction of a long range force into the problem

will increase the computation immensely.

e Full Skyrme Force. The future research includes an extension of the algorithm to a full
Skyrme Hamiltonian for heavy nuclei, where the numerical algorithm preserving the
exact energy conservation is still a major issue. It is the momentum dependence of the
Skyrme force which needs to be reconsidered since it introduces non-local interactions
to the picture. Once the form for single-particle evolution operator h,(n + 1/2) is
derived the iterative procedure will be straight forward. However, the non-diagonal
matrix elements in h,(n+1/2) will complicate its dependence on [¢2*! > tremendously,
especially when the momentum operator is a non-sparse matrix as seen in the B-spline

collocation method.

e Higher Dimensional Problems. Spherical symmetry only works for spherical nuclei and
monopole excitations. Monopole excitations mainly serve as a test ground for the al-
gorithm. More interesting physics lies in giant resonances and quadrupole excitations.
In these cases we have to reduce the space symmetry to a rotational symmetry and
describe the nuclear system in two space dimensions. It is the goal of our proposed

research to solve realistic problems in higher space dimensions.

In higher space dimensions, even though the algorithm may not change much, the
increase in number of variables by a dimension factor (i.e. the number of mesh points in
one-dimension) will cause a dramatic increase in computational resources. Therefore,
we have to be very cautious in moving up in space dimensions, and will not do that

until we could optimize the convergence of the algorithm in one dimension.
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e Important Physics To be Addressed.

A huge amount of nuclear data has been accumulated in nuclear multipole moments,
and transition densities. Great success has been achieved in various models to decribe
these data. Our reseach is an approache capable of calculating these quantities mi-
croscopically. The success of this approach may have tremendous impact on nuclear
physics. The extension to multiple resonances has to be carried out in higher space

dimensions. This is a challenge we have to face evantually.
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II. PARTICLE PRODUCTION IN HEAVY-ION COLLISIONS
A. Schwinger Mechanism for Particle-Production in a Finite Flux Tube

The particle production mechanism studied by Schwinger [1] was originally used to cal-
culate the probability for the production of particle-antiparticle pairs in a constant Abelian
electric field in the whole infinite configuration space. A previous work [2] in this mechanism
extended Schwinger’s work to the case where the constant electric field exists only between
two parallel condenser plates at a finite longitudinal separation but infinite in the transverse

dimensions. Subsequently, this mechanism was further extended to an infinite flux tube with




the confinement of a scalar field m(r) in the transverse direction [3]. In this publication we
investigate the case of a finite length flux tube with transverse confinement.

For the production of fermion-antifermion pairs in a flux tube we consider the motion
of a fermion in a linear Abelian gauge field and a transverse confining scalar potential. We
use a transformation to convert the Dirac equation for the fermion in cylindrical coordinates
to a scalar equation, and the transmission amplitude can be obtained explicitly from the
10ngitudinal equation by matching the wave function at the boundaries.

In the flux tube due to the confinement in the transverse direction the transverse mass
assumes discrete values. Therefore, in evaluating the pair production rate the phase space
integral in the transverse direction is replaced by a summation over the finite number of
transverse states. For each transverse state the integral in the longitudinal momentum 1s
restricted by the finite length of the flux tube. The finite size in the transverse direction will

affect the rate of pair production a great deal at the production threshold.
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B. The Screening Effect of Pair Production in Ultra-Relativistic Nucleus- Atom

Collisions -

The main goal of the Relativistic Heavy-Ion Collider (RHIC). currently under construc-
tion at Brookhaven National Laboratory is to create the quark gluon plasma phase of matter
in central collisions. One of the promising signals of quark-gluon plasma phase transition
is the hadronic production of lepton pairs. However,there are other fundamental processes
resulting in lepton pair productions, in particular, the pair production in periphereral colli-

sions, which produces the dominant background. Most of theoretical calculations are based
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on two-photon processes for pair production [1], or an approximation to the perturbation
theory of QED to the second order. The validity of the second-order perturbation theory was
experimentally tested at the CERN [2] in the beam-target experiments at 200 GeV /amu.
The results suggested that theory overestimated the pair production, especially, in the high
momentum spectrum. One of the sources of the reduction was pointed out [3] by the cosmic
ray group in Marshall Space Flight Center (MSFC), i.e. the screening effect in the target
atom could reduce the production significantly.

In the collaboration with MSFC, we considered the screening effect due to the Thomas-
Fermi distribution of the electron density, which results in an atomic form factor in terms
of an incomplete I function [4]. Since the nuclear form factor and the atomic form factor
cover different ranges of momentum, factorization of the form factors provide us a good
approximation. Preliminary calculations with the additional atomic form factor confirm
that the reduction of the total cross section for the elctron-positron pairs is at 20% level
for the experiments at CERN. The research is in progress. More calculations will reveal
the reduction in the monetum distribution. The results could be compared with the CERN
experimental data in detail. These results are very useful to the design of the pairmeter for
cosmic ray experiment, where the collisions are indeed between cosmic ray nuclei and ta,r.get

atoms.
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