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Formal System Specifications- A Case Study of Three Diverse Representations

by

G. H. Chisholm, B. T. Smith, and A. S. Wojcik

Abstract

The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness. But
one should not first make the program and then prove its correct-
ness, because then the requirement of providing the proof would
only increase the poor programmer's burden. On the contrary:
the programmer should let correctness proof and program grow
hand in hand. [Dijkstra 1972]

Increasingly, computers are being used to control life-critical systems. This trend is based
on perceived cost advantages gained from the flexibility assured by programmability. However,
this flexibility is often impacted by an increase in complexity that often results in unexpected
perfoIxnance m performance that has life-critical implications.

How does one raise the confidence level of a computer to that acceptable for life-critical
applications? Extending Dijkstra's nssertion to encompass the entirety of the implementation,
i.e., including hardware and operating system software, we conceive an approach that results in
designs that are correct with respect to critical performance requirements.

This approach may be described by a mathematician as a constructive proof of correctness
in contrast to traditional methods for proving correctness, e.g., analysis (probabilistic risk
assessment or failure modes and effects), simulation, or testing.

The concept of constructive proof of correctness or formal system specification is found
in an area of research referred to as Formal Methods [1]. Formal Methods describes a broad

area that spans formalization of VLSI designs, communication protocols, software functionality,
microprocessors, and security systems.

A review of the literature was conducted to investigate the application of Formal Methods to
formal system specification. The result of this review was the identification of three categories of

methods that potentially applied. A case study was devised to compare representative methods
from each category to ascertain their respective merits. The case study was based on an actual

system intended for use in the control of an operating nuclear reactor. However, the specification
defines an algorithm generalized for diverse control systems. This paper describes the case study.



I Introduction

Actually, the designer of a computer-based, life-critical system has two worries:

• The system is not operating as specified, and

• the system is operating as specified. [Chisholm 1988]

The initial aspect of this study concentrated on identifying Folznal Methods (FM) that may

apply to system specification. A review of the literature was conducted, and a number of articles
were selected for a detailed review. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

One result of the detailed review was the understanding that there are as many FM's as
there are Formal Methodists. One way of classifying FM's is by their approach or underlying
philosophy, i.e.,

1. analytical or correctness proving approach, e.g., Boyer-Moore logic, traces, formal software
documentation, and Floyd-Hoare induction assertion method;

2. synthetic or specification approach, e.g., Z, VDM, FAM, and STATEMATE; and

3: process approach, e.g., Cleanroom.

The analytical or correctness-proving approach may be typified by proving that an im-
plementation is commutable to its specification. This requires a complete and unambiguous
specification, details respective to the implementation, and a formalism to establish commutation
between specification and implementation. Commutation in this context implies a mathematical
system of functions that maps one entity to another. The domain of the system of functions is

the specification and the range is the implementation.

The decision to label the second approach as synthetical was based on the need to describe

the orthogonality of the approaches. The synthetical approach concentrates on the specification
phase of system design. 11aat is, the objective is to provide a formalism for the development
of complete and unambiguous specifications. These specifications may be defined at a level of
abstraction that is removed from the concrete or implementation level.

The analytical approach requires that there be an implementation prior to initiation of the
formal application. The synthetical approach facilitates multiple levels of abstraction. However,

the decomposition between levels of the specification and its completeness complicates this
approach.

Examples from the analytical approach demonstrate commutativity between a level of
abstraction that is a level of refinement above the implementation. The primary difference
between 1 and 2 is philosophical. Examples from the synthetical approach are typically high-
level abstractions of the system, from either a property or a model standpoint.

Extensions of these approaches provide departures from this generalization. However, a
review of the literature provided no evidence of the application of either category 1 or 2 to the
problem of total system. That is, examples exist of application to hardware [12, 10] or software
[4, 5, 2] but not to their composition.



The traditional methods that fit in the analytical category are applied to determine whether
the design implementation conforms with a specification. The burden associated with application
of these methods is twofold: the effort associated with the verification, and that associated with

correcting errors discovered during verification. An insidious aspect is that the corrected system
must then be verified, resulting in subsequent verification and correction, ad nauseum.

The process approach, e.g., IBM's Cleanroom, encompasses multiple disciplines and ad-

dresses the totality of the design process. This approach is directed toward large organizations
that may commit the resources required to support diverse expertise, e.g., statistics, verification,
and functional specification. This approach involves the synthesis of approaches to various as-

pects of the design process. For example, statistical analysis is applied to verification of software
design. Two difficulties arise: first, the organizational commitment is large in that expertise in
multiple disciplines is required and, second, the interfaces between the analysis resulting from
the application of diverse methods provides additional complexity.

Two questions thus arise. First, is there adequate synergism when multiple methods are
applied to the analysis of designs? Second, how does one assure that the system implements the
specification properly? This, of course, applies to a system where correct operation is always
required, say, for control of a nuclear reactor or some comparable life-critical system.

As stated above, the intent of the preliminary literature review to identify FM's that applied
to the specification of systems. The analytical and process approaches were judged inadequate
and overly complex respectively. A more detailed review of the literature concentrated on the
synthetical approach to FM's.

A result of this detailed review was the understanding that the essence of an FM is the
representation: How does one generate a specification within the framework of the formalism?

The following is a list of classifications determined by representation:

1. Formal Languate, e.g., Z and VDM;
2. Visual, e.g., STATEMATE and 001; and

3. First Order Logic, e.g., FAM and B-M Logic.

The remainder of this paper describes the comparison of representatives from each category.
This comparison is based upon using a single, well-understood (by the author) specification, and
representing this specification by three methods. The intent of this comparison is to provide
an understanding of the nature of each method. The organization of the description of this
comparison consists of background information related to the system being specified followed
by an informal description of the specification for the subsystem. This description introduces an

abstraction for specifying the essential property of the system, The subsequent sections present
three specifications. Each specification is preceded by a brief introduction to each method. The
paper is concluded by a discussion of results of this case study into FM's.

II Background

Formal Methods:

• Methods that add mathematical rigor to the development, analysis, and operation
of computer systems and to applications based thereon, [Neumann]



• A form of applied mathematics, wherein one models the behavior of a physical
device that is controlled by a computer program, [Craigen]

• A combination of deductive reasoning (mathematical thought) and inductive rea-

soning (deductive thought) applied to a determination of the validity of a formal
description. [Andrews]

II.A Description of a reactor control subsystem for flow protection
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Figure 1 Block Diagram of Reactor Cona'ol Subsystem

Figure 1 is a block diagram of the reactor control subsystem that is the basis for this case
study. The function of this subsystem is to monitor reactor coolant flow and, should the flow
rate decrease below a predetermined level, provide a rapid reduction in reactor power, This
rapid reduction in power is called a "TRIP"; that is, the nuclear reaction rate in the reactor core
is reduced to a low level.

This reduction protects the reactor from overheating. Monitoring coolant flow is one of
multiple system signals that provide similar protection for safe reactor operation. However,



operation of this subsystem is essential to safe reactor operation. As such, the system is required
to be available 100% of the time that the reactor is operating. In addition, the system is required
to perform its function with ultra-high reliability; the probability of failure is stated as 10-_
failures over a 10(X)-hour mission.

The pumps that propel the coolant around the reactor system are depicted in Figure 1 in
the left half of the diagram. Two pumps are depicted in the diagram. Each pump motor (Pump
#1 Motor, Pump #2 Motor) has been instrumented with three sensors. These sensors detect the
revolution rate tor the motors. Information about pump performance is used to correlate the
number of revolutions to the coolant flow rates.

Three signals from each pump (e.g., 1-1, 1-2, 1-3) are connected to a multiplexor (MUX).

Three separate multiplexors are used so that failure of one multiplexor affects a single signal only.

The multiplexor is an integral part of a fault-tolerant processoi' (FTP). For this subsystem,
the FTP was designed by the Charles Stark Draper Laboratory (CSDL). The FTP consists of four
identical channels that operate in very tight synchronization. Each channel of the FTP consists
of a microprocessor (labeled Chan A, B, C, D), a multiplexor, an interstage/communicator (I/C),
and an output (A out, B out, and C out).

This subsystem monitors reactor coolant flow. Upon detecting that the flow is below a

predetermined level, the system generates a TRIP signal. An abstract description of this function
is as follows:

1. Acquire data from six sensors,

2. Distribute date among the four channels,

3. Execute the application program, and
4. Output the required control.

The specification for :he application program is the basis for this case study and will beclescribed
and formally stated in the latter sections of this paper.

iI.B Overview of a fault-tolerant processor

The essence of fault-tolerant processors 4 is failure detection, isolation, and reconfiguration
(FDIR). Ali failures must be detected to be tolerated. Toleration of detected failures requires that
failures be isolated by the system and that the system reconfigure to a non-faulted configuIation.
Real time (i.e., cycles less than 100 millisecotds) restricts the amount of processing available
for FDIR. The FTP design implements the mechanism for detecting and isolating failures in
hardware. A brief description of this design follows.

Figure 2 illustrates the data flow for the FTP of Figure 1. The correlation between the FTP
depicted in Figures 1 and 2, for Chan A, is

1. Chan A = Proc_a, Versa_a, Mem_a, l/O_a and VME_a

2. I/C A = Inter_a and Com_a.

4 This section has been excerpted from I131.
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Figure 2 Data Flow in the Four-Processor CSDL FTP

The FTP [14] consists of four identical nodes connected through their communicators
(Comm) and interstagc registers (Inter) in an identical manner. The nodes are composed
of off-the-shelf components and are identical, except for switches which identify each processor

in a unique way. The software in each node is identical, including both the application software
and operating system, and executes in synchrony in each node. Provided that every component
in each node is fault-free and the clocks in each node remain synchronized, the nodes can be
considered to be identical at ali times, except for the setting of the identifier switches. Thus,
from the viewpoint of the operation and programming of the application, the machine appears

to be, and is, programmed as if it were a simplex system.

Although the FTP is designed to remain in synchrony, it is subject to failures which
potentially invalidate this design claim. To tolerate such failures, the operating system schedules



tests at regular intervals to check that the data in the memory of each node is the same and
that the behavior of the communication mechanisms between the nodes are operating correctly.
Since the communicators vote on the data, bit by bit, a fault in a node can be detected. The

voting is performed on a best two-out-of-three basis, with one of the four nodes masked from the
voting process. The fourth (spare) processor is participating in ali of the operations in synchrony
with the three active nodes. Hence, at any given time it is known whether or not the spare is
operational and that it has the same data as the other nodes. Provided that the spare is fault-free,
it is ready to assume the role of any faulted node. The operating system in conjunction with

the hardware will reconfigure the FTP so that the faulted node is masked out and replaced by
the spare processor. Finally, synchrony of the node clocks is maintained at the hardware level
by a special fault-tolerant clock.

Figure 2 shows the interconnection of four nodes, referred to as Node_A, NOde_B, Node_C,
and Node_D, with each node comprising a cluster of units, including a processor unit (Proc_)
which is a Motorola 68000. The function of each component is discussed in [15, 16, 17, 14].

Figure 3 simplifies Figure 2 in the sense that the communicator in each node is merged with
its processor, and only the data flow among the four nodes is represented. (The boxes represent
the partition of the FTP into eight fault-containment regions (FCR's).

The focus of the design of the FTP is its ability to provide congruent data to a majority
of the processors. Congruent means that the majority of the processors are guaranteed to be
operating on the san,e data value if that data value has been distributed through the data network
connecting the four nodes of the system. Congruent does not mean correct. In Figure 3, if
Proc A distributes a data value to the other three nodes, the hardware voting elements that are
built into the communicator units guarantee that the same voted data value will be stored by
each processor. It may be that due to errors, the transmitted data value is corrupted so that the
process of voting results in a wrong data value being accepted by each of the processors; but in
this case, the data values accepted by the majority of the processors are congruent. Because a
bit-by-bit vote occurs, they are the same values, although they may be incorrect. If a majority
of the voted data is identical to the data that was initially sent by Proc A, the voted data is
said to be consistent.

The claim of fault-tolerance for the FTP is linked to the manner in which the FTP operates.
Each of the four processors is assumed to be executing the identical program. Further, ali
processors are executing the same instructions in lock step synchrony with one another. Data
is transmitted bit serialy in the FTP. When a data value is computed by each of the processors,
each distributes its value to the others via the data distribution network, referred to as a voted

exchange. In this situation, the voting mechanism not only guarantees congruent data being
stored by each processor, it results in identical data being stored even in the presence of a single
failure in the system.



Figure 3 Simplified Representation of the Data Flow in the Four Processor CSDL FTP

The fact that single failures are tolerated by the system is dependent on the physical design of
the FTP. Fault tolerance in the system means that, if the hardware in a single FCR malfunctions,
at most a single error is generated out of the FCR. The single error could be the result of several

failures within the faulted region. However, the failures still only result in the propagation of a
single error to the other regions. This error is voted out, or masked, by the correctly functioning
units in the system. The error is detected during the voting process, and the malfunctioning
region is masked out of further voting until repair is accomplished.

II.C Hardware verification of fault tolerance

This section summarizes work reported in [15, 16, 17]. Specifically, this section identifies

an abstraction used for analysis of the fault-tolerant properties of the FTP and presents the
conclusions of the analysis.

The decision to use the data flow between FCR's for fault detection resulted in a very
regular design. That is, there are two types of FCR's, Inter and Proc as shown in Figure 3. Fault



detection is based on a bit-by-bit comparison of data on initiation and receipt of a transmission.
This comparison provides a dual function: 1) detection of faults and 2) assurance that each
processor has exactly the same data as a result of the transmission. As fault detection is the
result of data comparison, and data is generated from computation at each node, replicated data
must reside at each node.

As mentioned above, 'fault tolerance is dependent on the detection of failures and on a
sequential occurrence of failures. This design dependence led to an absn'action that allowed
analysis of the FTP.

This abstraction, referred to as a dependency list (DL) [17] analysis, reduced uhe analytical
burden significantly over that for traditional case analysis. A DI, consists of the set of elements
that make up an FCR. That is, the interstage FCR is a state machine ihat handles various aspects
of the data flow. Its DL is a set that consists of each element shown on the schematic for this

component. A determination of fault tolerance becomes a set theoretic solution: the intersection

of a pairwise comparison of DL's results in emt,ty lists. The interpretation of these empty
sets is that there are no common elements between channels of the FTP. This implies that no
single failure in one FCR will disrupt service in another FCR. Independence between channels
is preserved, and fault tolerance holds.

II.D Software specification

Earlier the application program was briefly outlined. This section provides a more detailed

description. This description will provide the basis for comparing three FM's from a represen-
tation standpoint.

The following sections describe individual modules that make up the application program.
Each module performs a specific function and is described with an informal description of that
function accompanied by an abstract interpretation [18] of that function.

That is; "An approximation to a value, such as the sign of an integer, is called an abstraction,
and a computation over such abstract values is called an abstract interpretation". 5

The abstract interpretation part of the specification is based on the DL abstraction and

captures the essence of independence, lt is a specification for a programming paradigm that
preserves the fault tolerance of the underlying FTP and thus of the overall function of providing
a flow trip signal for the reactor. For the purposes of this paper, the level of abstraction for

the DL specification will be at a high level, and functionality refers to data manipulation in
contrast to function.

A module may represent a large computational element. As in the hardware abstraction, an

element is associated with an FCR. Only the comptJtational FCR's are applicable to the software
specification. Communication between elements is directed by data flow and coordinated by
control flow. The essential property preserved by the specification is the independence establish'_.d
by the hardware proof.

From the viewpoint of FCR's, a module that performs computation on multiple parameters
is interpreted in this abstraction as forming the union of the components associated with each

S Extracted from 1181

9



parameter. That is, a correct result depends on the fact that the components associated with
each parameter being free of fault_. This abstract interpretation ignores the functionality of
the module. That is, irrespective of the correctness of the function, the data dependence has
hardware depen,4.,ence. Once this is established as being free of hardware induced failures, the
issue of functionality may be addressed. This issue is the subject of another paper.

That is, a computational module '_at is initiated with data from two FCR's performs the
equivalent of taking the union of the DL's associated with each data. Jn contrast, a module that
compares two data, and makes a decision based on this comparison, performs the equivalent of
forming the intersection of the associated DL's,

The next sections present a software specification that identifies modules by functionality
and abstract interpretation.

II.D.I Background

As noted in Section II, each processor executes identical software in synchrony with the
other processors. The following description refers to execution on processor A exclusively, but
implies identical operation on the others.

The FTP operating system is a single rate group (in contrast to other real-time systems having
the ability to service jobs at multiple rates), multitasking environment. Foreground tasks are

assumed to run to completion, and each executes within a predetermined time. These assumptions
are essential to preserve tight synchrony between channels. A foreground manager provides
context switching among foreground tasks. The application program runs as a foreground task.

II.D.2 Starting point

Upon a context switch to the al;plication r agram, the operating systerr, has provided an
environment fc,r continued execution. This environment assures that congruent data from each
sensor resides in the memory of each microprocessor.

ll.D.2.a Function specification The main program establishes three distinct data flow part
for the following modules. In addition, a data structure is created and maintained to be consistent

with the abstract notion of data independence. That is, data is passed to the application code
and maintained in compliance with the following abstract interpretation.

II.D.2.b Abstract interpretation The DL for the individual data elements consists of the

union of the DL associated with each element. The data flow within the application environment

emulates that of the hardware, configuration. That is, there are three distinct data-flow paths
within the application environment, one associated with the three sensor channels in Figure, 1.
Prior to the call to the initial module, the three DLs are

1. Data Path A w {Chan A]

2. Data Path B- {Chan A, Chan BI and

3. Data Path C w {Chan A, Chan C}.

i0



The interpretation ,.ssociated with the DL representation is that at this point in the calculation
the data corresponding to the data path A calculation is dependent on Chan A. This models the
physical system in that the sensor for channel A is connected to processor A. The proof of
fault tolerance for the hardware established that, following a fault-tolerant exchange, i.e., before

plac/ng congruent data in each channel, the dependencies within an FCR are limited to the
components of that FCR.

II.D.3 Signal validation

H.D.3.a Function specification The function of the first module is to validate the signals.

Typical signal validatic- algorithms areba,_edon a statistical hypothesis test, a test that determines
whether two signals, emanating from sensors of the same type and monitoring the same

parameter, come from the same distribution. For the purposes of this specification, the module
will perform a pairwise test for the three combinations of signals available for each pump.

1. Input m two integers, each representing flow in one data path,

2. Output -- a Boolean value stating whether the two values are within the same distribution.

II.D.3.b Abstract interpretation This module provides a pairwise comparison for the three
combinations of data flow paths. From an abstract function perspective, a comparison is modeled
as the union of the DL's associated with each data path. That is,

1. Path A -- {Chan_A} U {Chan_A, Chan_E,'}

2. Path B -- {Ch an_A, Chan_B} U {Chan_A, Chan_C}

3. Path C _ {Chart_A} U {Chart_A, Chan_C}

For example, the interpretation of item 2 is that the DL following a call to the signal
validation module with values from Chan_B and Chan_C is {Chan_A, Chart_B, Chart_C}.

II.D.4 Sensor validation

lI.D.4.a Function specification The previous module determined whether two parameters
were from the same distribution. The function of this module is to validate sensors using

the information gained from this determination. Respective to a data path, if the sensor in that
path is valid respective to a signal from either of the other paths, then that signal represents
valid sensor information. That is, if signal A agrees with either B or C, then sensor A data
is said to be valid.

1. Input n Agree(A,B) and Agree(A,C)

2. Output-- Is_ok(A)

11
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II.D.4.b Abstract interpretation This module performs a logical or of the output from the

previous module. The abstract functionality for this module is derived from the effect of this
data combination upon the DL abstraction. This function is modeled as the intersection of the

DL's associated with the inputs, i.e., DLag,ee(a,b) N DLa_ree(a,c)

The interpretation of this abstraction is that the dependencies of the valid sensor data are
only those that are common to the inputs to the module. This models the independence between
channels in the data flow specification. If there is an error resulting from a hardware fault in
either input data, it affects only one datum. The result is free of faults, as the faulted channel
has been masked from the calculation.

II.D.5 Generate trip

ILD.5.a Function specification If a data path contains valid data, then it is used to determine
whether flow is adequate. That is, actual flow as determined by each data path is compared to
an absolute value. For each path, a determination for appropriate action is made.

The function of this module is to determine a consensus of two data paths for an ultimate
decision on action, i.e., whether to trip the reactor or not. A consensus results from the
comparison of data from neighboring data paths to an absolute value. A consensus agreement
results in setting the output to True.

1. Input -- Sensor data and Is_ok, for pairwise combinations of data paths, i.e.,

a. A and B,
b. BandC

c. A and C.

2. Output m Trip determination for data path

II.D.5.b Abstract interpretation The logical construction of this module is the and of two
data flow paths. This results in the union of their respective DL's.

II.D.6 Vote on trip

H.D.6.a Function specification A vote is taken among the data paths to find a consensus of
action to execute.

1. Input- Trip determinations from each data path
2. Output- A consensus for trip action

II.D.6.b Abstract interpretation The logical construction of this module is the or of three
data flow pa_s. This results in taking the intersection of ali DL's.

A physical interpretation of this abstraction is that this module combined with the generate
trip module forms a two-out-of-three vote on the decision to trip. The generate trip module

took the consensus of two decisions, i.e., A&B, A&C, and B&C. This was a pure logical
consensus in that if A&B were true than path A is true. The result of this module is the
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logical or of ali three data paths. The logical interpretation of these two modules is stated:
(A A B) V (A A C) V (B A C). The abstract interpretation of these modules _ombined is
(A U B) n (A tj C) n (B u C). That a pairwise union of DL's is formed in the generate trip
module and the intersection of the three resultant DL's is formed in the vote on trip module.

II.D.7 Conclusion

Following a symbolic execution of the abstract interpretation defined for the software
specification, a determination that the dependencies for each FCR holds. That is, the FCR
for processor A, with the application program considered, is independent of the other processor
FCR's. If the property of independence holds, then the system is tolerant of single failures au
shown in [16, 17]

III FAM Specification

III.A Introduction to FAM

This section introduces the first representation of the specification. This representation has
been developed at Argonne National Laboratory over the past five years [16].

Figure 4 is a visual representationspecification for the application software. The FAM

approach consists of creating a visual model of the system being specified, representing this
net in form accepted by an automated theorem prover, and performing symbolic execution using
an automated theorem prover. The intent of this section is to describe the visual representation
of the specification described above. Details respective to representing the specification in the
language of a theorem prover and subsequent symbolic execution are beyond the scope of this
paper. The following is an introduction to the constructs used in this description.

Figure 4 depicts a "Flow Net" representation of the subject specification. Flow nets use
the basic components of Petri nets but have several additional features that make them more
versatile. A Petri net comprises two nodes;

1. Places (circles) and

2. Transitions (horizontal bars).

Nodes are connected by directed arcs and multiple arcs are permitted from one node to another.
Another primitive concept for Petri nets are Tokens. "Iokens reside in Places and are used to

define execution of a Petri net, A marking of a Petri net consists of a number of Places being
assigned tokens. The firing of a Transition occurs when all input places are assigned token(s).
In this sense, a Petri net may be used to model state and execution to model system operation.
See [19] for further discussion on Petri net theory and modeling.

We have developed a discipline for the annotation of flow nets and have provided extensions

to the classic Petri net model in order to define the functional capability that is required for
representation of software and hardware. Two of these extensions are of key importance:
Tokens are allowed to be symbolic expressions which can contain information representing
properties of the system, and Places and Transitions can have a type property associated with
them. The firing of a flow net will represent the action of the symbolic function assoc,iated with
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a Transition operating on the symbolic expressions which are the tokens. For software, Places

typically represent the status of the actual program counters; a Token, if present, is the state of
the processor at this point; and Transitions represent one or more program statements.

Figure 4 is a flow net description of the specification. A flow net comprises the following
entities: 1. Places (circles) 2. Transitions (horizontal bars), and 3. 1bkens (sets). ' Each Place
and Transition is identified by a unique name. On Figure 4 these names are placed to the right of

the entity: i.e., Ready to Perform SigVal_ab identifies the first-level Place, and Calculate SigVal
identifies the second-level Transition. The arrows represent data flow. To the left of each Place
is listed an abstract data type that represents the state. This state is based on the representation of
an abstract function. The functionality depicted by this figure is dependency list manipulation.

Figure 4 depicts the marking as assigned during execution of the specification being modeled.
That is, the tokens assigned to the Ready to Perform SigVal or first level of the net, depict the
initial marking for the net. Subsequent firing of the first level transitions (Calculate Sig Va.l_),
move tokens to the next level of Places. When a Transition is fired, Tokens are removed from

the input Places and assigned to the output from the Transition. Control flow is modeled by
firing of Transitions and data flow is modeled by token assignment.

III.B Details of specification

The first Transition represents the separation of the data flow into three paths. The
• abstract functionality associated with the first Transition represents the data spreading into three

independent data flow paths.

The next level of Places depicts the state of the program prior to execution of the first module
and the respective dependencies for data at this state. That is, S(a) is dependent on FCR Pa,
represented by {Pa}, S(b) on FCR's Pa and Pb. The interpretation of this representation is that
the data in data path B was initially dependent on Pb (the FCR that acquired the data) and that
the data currently resides in FCR Pa.

The firing of the second-level Transitions, e.g., Calculate SigVal ab, represents execution of
a module that has the abstract functionality of forming the union of the DL's associated with the
input parameters. That is, for data path A, SigVal performs the union of {Pa} and {Pa,Pb}, and
the state depicted by the result resides in the subsequent Place, "R._ady to Validate Sensor a".

In this fashion, the representation of Figure 4 details the abstract interpretation of the
specification.

IV Z Specification

IV.A Introduction to Z

Z is a language based on typed set theory that provides a syntax for expressing mathematical
notations. That is, Z provides a language for presenting the mathematical notation that describes
in a precise way the properties of a system. The elements of the mathematical notation expressed
by Z are:

1. mathematical data types, and
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Genetic Model for

Sensor Validation Software

Ready to Perform
P(Sa,Sb,Sc)

DataFlowPathA

Ready to Ready to Ready to
Perform Perform

S(a) {Pa} S(b) {Pa,Ph} SigVal be S(c) {Pa,Pc} SigVal ca

ON Cah UNION Cal_l UNION Calculate'_

{Sa,Sb } SigVa]_ab {Sb,Sc} SigVal_bc {Sc,Sa} SigVal_ca

Ready to Ready to Ready to
VMidate Validate Validate

{Pa,PO} Agree(b,c)l{Pa,PO,Pc} Sensorb Agree(a,c) {Pa,Pc} St sorc

SCTN{ Validate Validate INTRSCTN{ Validate
/_gree(a,b), Sensora _gree(b,c), Sensorb Agree(b,c), Sensorc

Ready To ,,ree(a,b}) Ready To Agme(c,a}) Ready To
Generate _Generate Generate

{Pa}
Trip a {Pa,Pb} '{Tripb {Pa,Pc} Trip c

UNION Generate UNION Generate UNION Generate

Cls Ok_a, Trip a (Is_Ok_b, Tripb (Is_Ok_a, Trip c
Is_Ok_b} Is_Ok_c} Is_Ok._e}

Ready to Ready to Ready to
Voteon Voteon Voteon

{Pa,PO,Pc}Trip b {Pa,Pc}{Pa,Po} Tripa Tripc

Trip_a Trip_b Trip..c

INTRSCTN( Voteon

{Trip_a, Trip

Trip_h,

Trip_c} Ready to Distribute
{Pa} andStore Remit

RF.,SULT_a

Figure 4 Abstract Specification for the Application Program -- FAM

2. schemas.

: Mathematical data types are an abstract representation of data in the system and a collection

of laws, expressed in predicate logic, describing sys:em properties. Schemas are mathematical
expressions that are used to describe aspects of the system, e.g., state, invariant relationships,

" operations, and functions.
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The following consists of a brief introduction to the Z representation for the subject case
study. This introduction describes the Z notation used in subsequent specification and is consists
of paraphrasing and extracts from [6, 20].

IV.B Objects and Types

Every mathematical expression in Z is given a type The idea behind this approach is to
provide a way to automatically check that ali expressions make sense from a type standpoint. For
example, the equation(a, b) = {a, b, c} is nonsense in Z. However, a specification written without
type errors could be inadequate respective to the functionality of the system being specified.

Each Z specification begins with a determination of atomic objects, i.e., objects that are
essential to the specification but whose internal structure is of no interest. For the example
included here, the atomic objects represent abstract data types that require further refinement to
form an unambiguous specification. For the purposes of this paper, the atomic objects require
no further refinement, since completeness is not the objective.

From the atomic objects, composite objects are constructed. Z restricts composition to three
composite types: set types, Cartesian product types, and schema types. Type constructors may
be applied repeatedly.

IV.B.1 Sets and set types

"Any '_et of objects of the same type t is itself an object with the set

type P t." 116] Examples: {1,2,4,8,16} has type P Z and is a set of integers;
{data: DATAlupperlimit(data ) < 550} has type P DATA and is the set whose members
are exactly those objects of the basic type DATA for which the function upperlimi t has value
at most 550. Equality of sets occurs when sets have the same members.

IV.B.2 Tuples and Cartesian product types

"If x and y are two objects of types t and u respectively, then the ordered pair (x, y)
is an object with Cartesian product type t×u. More generally, if zl,...,z, are n

objects of types _.i,... ,t,, respectively, then the ordered n'tuple (xi,..., x,) is an object of type
t_ × ... × tn."x_,...,x,:t_,... ,tri ---_(x_,... ,x,): t_ X "" x tri[6]."

The subsequent discussion describes the use of tuples for passing multiple inputs to a
function. A specific type used in the Z specification for the case study is a sequence. A
sequence is the Cartesian product between the natural numbers and another element, i.e.,
{f:N -_ Xldom f - 1..#f} : N × t, where x is of type t.

IV.B.3 Bindings and schema types

"If p and q are distinct identifiers, and x and y are objects of type t and u respectively, then
there is a binding z with the components z.p equal to x and z.q equal to y. This binding is an
object with the schema type (pl : _1;. .. ;Ph : in) [6]".
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IV.B.4 Relations and functions

The atomic objects that make up the type system for Z are sets - P; tuples - x; and bindings

l) All other objects are modeled by formulating a combination of atomic objects.

"Among the most important mathematical objects are binary relations and functions, and
both are modelled in Z 1,ytheir graphs. The graph of a binary relation is the set of ordered pairs
for which it holds. Mathematical functions are considered as a special kind of relation: those
which relate each object on the left to at most one object on the fight" [6].

In Z a function is a mathematical entity. This contrasts with the "algorithmic" view of
functions inherent in program construction. A mathematical function establishes static relations
between arguments and results. An algorithmic view regards a function as a method of
computation; i.e., the result is computed from the argument.

Consistent with the previous statements about types and automatic type checking, types
for functions and relations are identical: that is, if two variables f and g are declared by

f : A _ B;g : A _ B then they have the same type, namely, P(A x B), i.e., a set type
with objects being Cartesian product types.

IV.B.5 Properties and schemas

Consistent with mathematical notation, the Z notation uses schemas to describe a specifi-
cation. A schema groups variable declarations (the signature of the expression) with a list of
Schema

I III

a' Z Signature (declaration)

b'PZ
III II

a E b Property (predicate)

predicates ithe properties that hold over the signaturei. Each schema has a name, e.g., Schema.
Instantiations of variables that characterize truth of a property over the signature satisfies that
property. Propositional logic connectives may be used to combine predicates and to express
more complicated properties.

IV.B.6 Decorations

There are t_.ee standard decorations in the Z notation, i.e.,

1. _ for labelling the final state of an operation;

2. ? for labelling its inputs; and

3. ! for labeling its outputs.
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IV.B.7 Combining schemas

If D is a declaration, P is a predicate and S is a schema, then VDIP. S is a ,¢hema. The
schema S must have as components all the variables introduced by D, and they must have the
same types. The signature of the result contains all the components of S except those introduced
by D, and they have the same types as in S. The property of the result is derived as follows:
for any situation for the signature of the result, consider all its extensions to the signature of S.
If every such extension that satisfies both the constraint of D and the predicate P also satisfies
the property of S, then the original situation satisfies the property of VD[P • S. For example:
Vn : NIr > 3 • square, where square is described by Figure 5 [6].. The result is described

square
_ III I I I II

y'Z; n ' 1..10
i ii ii i

y=n 2

Figure 5 Schema - square

by Figure 6.

square _
iii

y:Z

Vn: Zln > 3•

zE 1..10Ay=n 2

.......'i, i , ,| i

Figure6 Schema- squarC

IV.B.8 Conclusion

ThisbriefintroductiontotheZ notationwas providedtofacilitateunderstandingofthe

followingspecification.The levelofdescriptionforthespecificationallowsuseofa subsetof

therichnotation.Forexample,genericconstructions,nestedvariablescopes,andcombinationsof

schemaswerenotnecessaryforthecasestudy.Notethatthespecificationpertainstotheabstract

interpretationofthespecificationand thatfunctionsareidentifiedbutnotdefined.Definitions

wouldbe viaschemasthatwoulddescribethefunctionstobealgorithmicallyimplementedby
themodules.

IV.C Details of specification

Figure 8 depicts the Z specffication for the case study. This specification provides a state

description for the state of the system being controlled, i.e., reactor operation. Most examples
of Z specifications [6] describe software systems. This specification represents a departure
from that approach. The decision to compare specifications resulted in additional effort in that
the representation could have been mathematically elegant, yet the meaning more obtuse. The

primary difficulty in developing this specification was gaining assurance that the specification
was complete. For reasons of clarity, the mathematicai representation was chosen for explicit
description versus an elegant yet obtuse representation.
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This specification will be described by first concentrating on the specification for the module
that determines signal agreement (Figure 7). Let DL and AGREE be the basic types.

[DL,AGREE].

The name of this schema is Determine Sensor Agreement. The signature for this schema

identifies three entities: 1) a data type that is input (sensor_data?) with a type sequence that is a

Cartesian product of the natural numbers and basic type DL; 2) sensors_agree, another sequence
that is the Cartesian product of basic types AGREE and DL. The last part of the signature
describes a function named SigVal.

The first part of the property description states that the cardinality of sensor_data is three. The
intent of this property is tO limit the length of the sequences to three elements. The interpretation
of the sequences is that each element applies to a data flow path; i.e., the first applies to A, the
second to B, and the third to C. The decision to adopt this representation limits thegenerality

of the specification, but facilitates readability.

The second part of the signature states that the input to the SigVal function is data.

The third property states that the sequence "sensors_agree" is a sequence formed as follows
for ali n & nl in sensor_data, the first element in each tuple is determined by input n and nl to

function SigVal. The Second element is formed by the union of the second element of n with
that of ni. and n is less than nl. This results in the sequence a,b, a,c and b,c.

As in the other instances of the specification, this representation lists the functions but does
not describe them.

The remainder of the specification is described in Figure 8. The substitution of = for A
denotes that the reactor state is altered by this specification. For this specification the atomic

objects are

[DL,AGREE,VALID,TRIP,RESULT].

Determine Sensor Agreement
ii i im

_Reactor Operation

sensor_data? : seq(N × DL)

, sensors_agree" seq(AGREE × DL)

SigYal ' ((N × N × DL) × (N × N × DL)) _ AGREE
i i ill,

#sensor data, sensors_agree = 3

sensor_data = dom SigVal

sensors_agree = (Vn, ni'sensor_data I

((tri(sensor_agree(n)) = SigVal(n, ni)),
(Tr2(sensors_agree(n)) = (rr2(sen_or 'data(n))LJ

7r2(sensor_data(nl))) A (n < nl)} "i i i

Figure 7 Z Specification for Determine Sensor Agreement
n..
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Generate a Reactor Trip Sigt_l on
Detection of Low Primary Coolant Flow 6
I I II I I

AReactor Operation

sensor_data?" seq(N x DL)

sensors_agree : seq(AGREE × DL)

is_ok: seq(VALID × DL)

trip' seq(TRIP × DL)

SigYal : ((N × N × DL) × (N × N × DL)) _ AGREE

Validate :((N × N × BL) × (N × N × DL)) --, VALID

Gen_Trip' (N × N × DL) --, TRIP

Vote' (N × N × DL) _ RESULT
I I I I

#sensor_data, sensors_agree, is_ok, trip = 3

sensor_data = dora SigVal

sensors agree = dom Valid

is ok = dora True
w

trip = dom Vote

sensors_agree = (Vn, ni'sensor_data]

((rl(sensor_agree(n)) = SigYal(n, nl)),
(Tr2(sensor s_agree(n)) = (r2(sensor_data(n))tJ

7r2(scnsor.data(nl))) A (n < hl)}

is_ok = (Vn'sensors_agree I

((tri(is_ok(n)) = Validate(n, nl)) A (n < ni)A (n, nl) _ (nl,n)),
((Tr2(is_ok( 1)) = (rr2(sensors_agree( 1))f'l
_2(,,_o__aa_( 3))))^

(_2(i_.ok(_))= (_2(_._o___g_( 1))n
7r2(sensors_agree(Z))))A

(_2(i__ok(3))= (_2(,,,_o__agr__(2))n
7r2(sensors..agr'ee (3))))))

• trip = (Vn ' is_ok; sensor_data I
o Tri(trip(n)) = (((tri(sensor_data(n)) <. 88%fullflow)A

Gen_Trip(_rl(is_ok(n))),

Tri(result) = Vote(trip)
7r2(result) = ((rr2(trip(1)) t2 7r2(trip(2)))N

(r2(trip(1)) tj rr2(trip(3)))n
(Tr2(trip(2)) LIr2(trip(3))))

III . i i

Figure 8 Z Specification for Genetic Algorithm

6 The intent of this specification is to assure that the essential property of independence holds, This property is in abstntction of system.wide

fault-tolerance. 20



V STATEMATE® 7 Specification

V.A Introduction to STATEMATE

V.A.1 Background

STATEMATE [21] is comprised of a set of tools that provide an environment for rnodeling
systems. This environment uses a graphic input language called statecharts [8, 9]. Statecharts
are based on an extension of state-transition diagrams and are used as a graphical representation

of complex systems. Using the STATEMATE environment, this representation may be used to
design and analyze models of a system. TheSe models are based on a set-theoretic formalism,
the elements that were essential to the subject specification are described below. This description

uses the statechart representation. STATEMATE was unavailable for this case study.

V.A.2 Higraphs

Roundtangles enclose blobs. A blob denotes a set, with the nesting of curves denoting set
inclusion, not set membership. Figure 9 shows the requirement that every set of interest be

represented by a unique blob. That is, the two large intersecting blobs in Figure 9 are labled
A and D, the intersection A N D is labeled C, and the difference A - D is called B. The only
identifiable sets are the atomic sets, i.e., those represented by the blobs residing at the bottom
levels of the diagram (containing no wholly enclosed blobs within). The atomic blobs in Figure
9 are B, C,E, G, H, I, K, L,' M, N, O, Q, S and T. Note that T n R, and T-/t have nomeaning.

Q
T

j/

),
Figure 9 Simple blobs and unique contours describe ali identifiable sets

7 STATEMATEis a registered trademarkof i.Logix, Inc,
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V.A.3 Hyperedges

Hyperedges are edges that are attached to the contour of any blobs. Edge_ may be directed
or undirected, labeled or unlabeled, of one type or of several, etc, Within this context arity
refers to the number of blobs being connected.

V.A.4 Discussion

Consistent with the previous two examples, the STATEMATE specification represents the
abstract interpretation of the case study. In this example, set manipulation is the exclusive func-

tionality being depicted. STATEMATE provides a natural representation for this specification.
As in the preceding examples, the concrete functionality is not represented. In addition, the
function between sets has been excluded. Annotation of the abstract interpretation would natu-
rally be ascribed to the arc between sets. This has also been omitted since the diagrams became
complex and difficult to read. It was felt that inserting the function names was a simple exercise
based on the previous specification descriptions.

V.B Details of specification

The representation chosen is to use the atomic DL as the basic type (Sa, Sb, Sc in Figure
10). That is, Sa depicts the initial dependencies at the context switch to this module, i.e., {Pa}.

Figure 10 STATEMATE specification -- Level 1 -- DL's associated with sensors

Figure 11 depicts the union of sets S(a) and S(b) by the blob labeled Agree(a,b). This
represents the abstract interpretation of the module SigVal.

Figure 12 depicts the intersection of the Agree sets; i.e., the blob IsOk(a) is the intersection
of sets Agree(a,c) and Agree(a,b).
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FigureII STATEMATE specification-- Level2

Figure 13 represents the union of sets to emulate the functionality of module Trip; i.e., S(a)
unioned with IsOk(A) forms Trip(a).

Figure 14 depicts the union of Trip sets; i.e., Trip(a,b) is the union of Trip(a) and Trip(b).

The Result is determined by the intersection of three sets.

VI Summary and Conclusion

The logical basis for this paper was rooted in the observation that computers were increas-
ingly being used for the control of life-critical systems. From this observation, an argument
was given for the adoption of a methodology for system design that was based in formal system
specification. A literature review defined an area of research called Formal Methods. A subset of

FM's were discovered to be applicable to specification development, and representative methods
, from this subset were selected to conduct a case study.

The case study selected was the specification of a control subsystem for an operating nuclear
reactor. For the purposes of this case study, an abstract interpretation for the functionality of the

software being specified was developed. This abstract interpretation is consistent with previous
abstractions applied to the analysis of the fault-tolerant processor on which this system operates.

The reader should note that the selection of abstract interpretations and their representation

are a subjective exercise. The following comparison information should be viewed as being
biased by the author's view of conceiving specifications and the relative match between this

model and those underlying the three specifications presented. Stated differently, creating a
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Figure 12 STATEMATEspecification m Level 3

specificatior, at this level of abstraction may be more of an art than a formal exercise. The
expressive nature of one specification notation differs from others and may be mismatched with
that of the specifier. Recognition of these limitations suggests that a specification system may
be adequate for one designers conceptualization of a total system, but may be inadequate for
another's.

The abstract interpretation approach to high-level specifications provided sufficient insight
into the functionality of the design that work is currently pursuing the completion of a formal
specification of functionality. The pattern is that of the approach to abstract data structures. That
is, the abstract interpretation defines the data and control structure for the application software.

. Following a formal understanding of this structure, the functionality is understood and subject
to formalization.

The intent of the case study was to compare the representations of three different FM's
to determine their respective merits. In the introduction, it was postulated that completeness

and unambiguity were properties of specifications used for correctness proofs. Construction
of designs that are correct with respect to essential properties should result in a hierarchical
structure that is complete and unambiguous. Therefore, the first comparison of the three FM's

- was on their respective merit in producing complete and unambiguous specifications. However,
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Figure13 STATEMATE specificationm Level 4

any comparison based on completeness was inconclusive. Since the abstract interpretation was
based in set theory, a precise statement was possible in each representation.

A comparison of three specifications with the figure of merit being ambiguity is difficult,
and is often the subject of critiques and theses. This difficulty is further compounded by the fact
that the creator of ali three specifications and the reviewer are the same person. Therefore, the

comparison will be based on the experience gained from creating three specifications for a single
design. That is, the comparison will be a subjective conclusion drawn from the experience of
transforming an abstract interpretation of a design into three diverse representations. Figure 1
summarizes the conclusions drawn from this experience.

The invention of an absu'act interpretation raised the level of abstraction to an intuitive

level that was more easily expressed by the visual languages. However, the decision to use
sequences to associate channels with objects in a sequence, complicated theZ specification.
The complication was created by the necessity of using decomposition functions to select
sequence elements. Though the choice of representation was unfortunate, it also indicates that
the representation for a Z specification is less intuitive.
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Figure 14 STATEMATE specification -- Level 5

Table 1 Summary of Comparison

Formal Method Comments Observations

FAM A combination of visual and Explicitly depicts data and
textual representations control flow.
(Though only the visual is
presented as part of the case
study)
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Figure 15 STATEMATE specification w Complete

Table 1 (Continued) Summary of Comparison

Formal Method Comments Observations

Flow nets are executable

when represented in a clausal
form and submitted to an

automated theorem prover.
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Table 1 (Continued) SummaO, of Comparison

Formal Method Comments Observations

Z Mathematical Notation Difficult to confirm

Elegant and precise compelteness, i.e. Choice
between concise elegance and
detailed description

Originally conceived for A difficult notatior_ to
specification of software represent hardware

specifications, especially
timing and control.

STATEMATE® Visual representation is very Functionality for the abstract
intuitive, especially for the interpretation very direct.
abstract interpretation of this
case study

Higraph become very
complex very easily.
Extensions to the formalism

are required to simplify
complex specifications, Flow
of control provides a further
complication

The conclusion of this case study is to identify properties with which to judge the relative
merits of a represe_',tation to be used in the specification of a total system. This list of properties
is based on a philosophy that the creation of a specifica,tion is cumulative effort of a number of
individuals. Each individual has a unique concept of the system being specified and each concept
is based on the expertise of that individual. A superior specification is one that captures the

essence of each discipline concerned with the correct operation of the system, lt is postulated
that the single most essential property is the ability of this document to convey information

between the group of specifiers to assure that what is being specified is consistent with each
expert view. Once this consensus'is complete at a high level of abstraction, then decomposition
to a level of specification where ambiguity a_ completeness may be measured is possible.
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