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This talk will address statistical theories that attempt to understand the physics of
heavy-ion collisions at excitation energies near 15 MeV per nucleon. Before 1 begin, I
would like to comment on the title in Fig. 1. The original title was, " What Lies Between
the Mean Field and the Lorentz Desert 7 " . Now the question that is being posed has
changed, and at the bottom of the figure one of the answers is, " the Lorentz Desert " .
Unfortunately, I will not have sufficient time to discuss this issue. This has to do with the
question of measuring the equation of state at high density. G.E. Brown has argued, that
in relativistic heavy ion collisions, we are not viewing nuclear matter at high densities
because of particular Lorentz transformation properties of meson exchange forces!. Hence
the original title. I refer you to the discussion in Ref. 1.

Thermal models, of the type I shall be discussing, have become predominant at
energies more than an order of magnitude higher than those here2, and you shall endeavor
to contrast them with the complex dynamical models based on mean fields with two-body
collision terms3 that we heard about yesterday from Das Gupta. These have been most
successful in understanding the phenomena of fusion and deep inelastic scattering at lower
energies. In this talk I want to discuss the question of the nuclear liquid-gas phase
transition4, and how it might influence heavy ion collisions in this energy domain. It is
fairly well established that continuous nuclear matter undergoes such a transition in this
energy range>, however its realization in violent heavy ion collisions is presently
controversial and must be further studied experimentally.

A menu of the talk is given in Fig. 2. We shall begin by examining very simple
spallation® and percolation? models which yield inclusive mass spectra, and note that a kind
of ergodic 8 process is taking place which I would like to state as follows: All models will
eventually correctly predict the behavior of an average particle in an average event. I shall

then discuss two complex statistical models®-10 which try to deal with the phase
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transition, including the fragmentation of real nuclei and with interactions between the
outgoing fragments. There are two principal assumptions that need to be tested in these
calculations, 1) the existence of an intermediate state, independent of entrance channel
effects, from which the disassembly proceeds, and 2) the role of the entropy in the
expansion and disassembly phase. Thirdly, I will briefly discuss Hanbury-Brown Twiss
correlations from two points of view, as a diagnostic of the gas phase!l, and then also a
possible way to extract the temperature!2. We have already discussed the equation of state
at high densities, and I refer those interested to Ref. 1.

Let us first consider spallation as shown in Fig. 3. These have been discussed at
length by Hiifner®, where he notes this approach is more that 20 years old. Spallation is
generally assumed to be a peripheral process, and thus tells us very little about the nucleus-
nucleus dynamics. As a two step process which we might think of as a cascade-
evaporation mechanism: 1) the nuclei are excited to an energy E*, and the energy loss
cross section, do/dE”, is obtained, and 2) for a given amount of excitation energy, €,
the fragment mass is changed by one unit. In Ref. 6, €is an adjustable parameter, and
the energy loss cross section is computed using Glauber theory. The mass specira have the
power law behavior as shown in Fig. 4. It is interesting to note that, with the simple two-

step process, the integrated cross section has the general form,

A
Ln(c) = -tln(A) + (c)ay.

Unfortunately, as we shall see, other models can exhibit a similar type of behavior.
Percolation calculations have been carried out by several authors7:11 and the lattice
model of Mosel as described in the Fig. 5 is particularly novel. In this model nucleons in a
nucleus are assumed to occupy sites on a regular cubic lattice. The links between the sites
supposedly account for the binding of the nucleons. In the cubic lattice. most nucleons are

linked to six nearest neighbors. A random number generator is used to break the bonds,
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and the location of where the bonds are broken is random. Distributions of lattices having
the same amount of damage are assumed to be equally probable. In this treatment, certain
connected patterns are identified as nuclear fragments, and one observes a type of behavior
which is similar to a phase transition as shown in Fig. 6. Here we have the probability of
percolation, the mean multiplicity, the fluctuation in the multiplicity and the exponent in the
inclusive cross section as a function of the damage concentration. When the damage
concentration becomes sufficiently large, the system undergoes a type of collapse, or
disassembly, note that the exponent goes through 2 minimum at the critical concentration.
In a continuous system, the yield of fragments obeys a power law relation in which the
critical temperature is related to the exponentd. The results from the lattice mode! are
suggestive of a similar type phenomena. In Fig. 7 the results of a percolation calculation
are compared to high-energy, proton-induced inclusive data. These data span an energy
range between 80 and 350 GeV, and as we might have expected, the calculation can be
made to {it the data extremely well.

The above models, although statistical in their foundations, are probably too simple
to fully explain multifragmentation data. Recalling the ergodic hypothesis, stated again in
Fig. 8, the success of a variety of models of this type suggest that more complex
measurements are needed to understand these reactions, and that also necessitates a more
systematic theoretical approach.

Bondorf and co-workers? have built on the participant-spectator model to formulate
a more complete theory of multifragmentation. There are several questions, shown in Fig.
9, that we should keep in mind as we proceed with the discussion. These are as follows:
1) how do we go from a mean-field with 2-body collision terms to a hot, compressed state
of matter, 2) what about equilibrium, and the role of entropy, 3) does the liquid-gas phase
transition play arole? On a more practical level, we shall need to deal with phenomena
displaying a large multiplicity of highiy excited fragments. In Fig. 10 the various stages in

their model are depicted. The most important is the identification of an intermediate or
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transition state. This state is near thermodynamic equilibrium and is supposedly formed by
dynamical processes which compress and heat the nuclei . It is also assumed that all of this
matter, having mass A and total charge Z, is confined within a volume V, and has a total
energy E.  On a short time scale, the system cracks accompanied by expansion and
subsequent decay and evaporation . The probability of obtaining different final states is
determined from the statistical weights for particular fragment configurations. It is highly
unlikely that all of these dynamical processes occur at the same time as indicated here.
However, it is more to the point to ask whether it is possible to measure properties of the
transition state.

Their approach, as summarized in Fig. 11, closely parallels that of a microcanonical
ensemble. The partition n(a,z) is defined so as to count different fragment arrangements,

and determine the mass, charge, and multiplicity of fragments,

Zn(a,z)a = A mass

4,z

Zn(a,z)z = Z charge

4,2

D@y = m multiplicity
a,z

Since this formalism possesses neither a canonical or microcanonical ensemble, a partition
function is constructed by counting arguments, and then the free energy, entropy and
statistical weights are calculated. Note that fragments are constrained to have a mean
energy, and that fluctuations in the fragment energy are not included in this treatment. From

the statistical weights, all the observables of the system can be determined. In Fig. 12 the
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total energy is given as the sum of all of the fragment energies and a global Coulomb

energy,

3 2262

Eo = g ¢t 2 n(a,z) E(a,z)

a,z

Also, they assume that after the breakup that fragments cease to interact, and move freely
throughout the volume V. This limitation is fairly severe and probably affects the final
temperatures and spectral distributions by as much as 50 per cent!3, In particular, it
suppresses the Coulomb interaction between the fragments as during the expansion. We
shall retum to this point later. The fragment energy is composed of several parts. Let us
look at liquid drop bulk and surface terms which contribute to the internal energy of a

fragment. The bulk energy is given as,

T2
Bulk energy = [WO + Eg]

The first term in the above equation is the bulk energy of nuclear matter, and the second
term is the low temperature expansion of a fermi gas. However, the level density
parameter, € is adjusted to fix the mean excitation energy of a fragment. This relation
ignores any change in the energy due to compression of matter in the bulk and is probably
not correct for small fragments and at low excitation energy. Note that fragments with

mass less than four are assumed to comprise the gas phase. The surface energy termis ,

r
Surface energy = I.B - T‘_;% ] A2/3



where the surface free energy is given by,

5/4

([ 12 -7
c t
BA™ = By A
0 T > T,

This is an important term in that the exponent, the critical temperature, and the parameter 3
are intimately connected to the phase transition in the infinite medium. The surface energy
plays a key role in determining the fragment size during the expansion phase, and is
strongly dependent on the liquid-gas phase parameters. In a finite system undergoing such
a transition the surface tensior is proportional to the Gibb's free energy times the
correlation length associated with the fluctuations at the critical temperature. At this point
contributions to the energy from shell effects, deformations and pairing are neglected. In
this model the contribution to the total energy from the kinetic energy of the fragments is
included by introducing a new parameter ¥, so that the effective volume is Ve =% V. Let
us review some of the assumptions: 1) the transition temperature T is a constraint on the
system which is fixed by overall energy conservation, 2) the fragment multiplicities are
constrained by overall charge and mass conservation, 3) assume the system is held in
thermal equilibrium with an external heat bath.

Results of calculations with this model are shown in the Figs. 13,14,15 for a transition
state having 100 particles. The onset of fragmentation begins at an excitation energy of
3.5 MeV per nucleon. Note, there is a corresponding sharp increase in the mean
multiplicity and also a lowering of the temperature as the system expands. The dashed
curve depicts the temperature dependence of a free N-N gas. The cooling occurs because,

as fragments form, there is an increase in the available volume in which they move. Atan
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excitation energy near 16 MeV there is a rapid rise in the multiplicity of emitted fragments
which occurs as the liquid gas phase transition breaks up the fragment’s surface. Here the
temperature of the the system again decreases and eventually increases again. In Fig. 14
we sec that the breakup density has large fluctuations at the onset of fragmentation and
reaches an approximately constant value at about a third of the nuclear matter value. Mass
spectra for this case are shown in Fig. 15. At low excitation energy the mass distribution
is sharply peaked at a small value of the mass; however, at higher excitation energies this
behavior changes dramatically.

I would like to note the following two points. The fragment mass distribution is
sensitive to the Coulomb interaction between the fragments. It stabilizes the production of
heavy fragments and yields a much lower temperature. The spectra are changed by the
interaction between fragments; they are shif*ed to higher energies with much larger widths.

A similar approach has recently been developed by Koonin and Randrup10, as noted in
Figs. 16,17. However, they employ a full microcanonical ensemble which automatically
incorporates interfragment forces. Except for these details, they employ the same general
assumption of a transition state from which they calculate the disassembly. In their studies
they note an important behavior of the fragment level densities. The number of excited
states of the fragments that are included in the ensemble are important in determining the
final mass spectra. Thus they include in thei; description of the fragment density of states a
parameter that tries to accc;hnt for the finite lifetime of these highly excited states. Recall,
in the Bondorf work, that the intrinsic density of states is approximated to be the same as
that of a zero temperature fermi gas. The treatment here assumes that the fermi gas density

of states is modified at high excitation energy by ,

pe) = pge) expl-¢€/1]

and yields an effective temperature,



-1 -1 -1
Toct T + To

In this way the paramieter 1 can be interpreted as the maximum temperature attainable by

the nuclear fragments.

Results of these calculations are shown in Fig. 18. Here we see the mean fragment
mass is not sensitive to the choice of a limiting temperature. All of the other observables,
the mean excitation energy, the specific heat, and the entropy show a sensitivity to this
parameter, and hence to the level density of the fragments. These are calculations with a
grand canonical ensemble, the results with the canonical ensemble are given by the blue
circles, and those for a microcanonical ensemble are the red circles. Figure 19 shows the
effects on the density and the importance of the interaction between the outgoing fragments.
On the left-hand side of the figure, the effects of turning off the semi-empirical Coulomb
energy; again, the blue circles indicate the results for the microcanonical ensemble. On the
right-hand side of the figure the results for three combinations of the interfragment
interaction are compared. As stated in Fig. 20, it is important to also keep in mind that these
calculations are simple simulations which do not include the vapor phase. However, it has
been incorporated in the compression expansion studies in Fig. 21. Even though, there is
no direct parameterization of the phase transition, some of the features of the liquid-gas
transition are apparent. The possible influence of the phase transition on the mean mass and
the mean excitation energy of the fragments are shown for the expansion-compression
cycle.

These models involve two important ideas, (see Fig. 22), which should be further
explored. The first is the question of the transition state. We believe that heavy-ion
reactions at these energies support a large number of separate processes and that is, in part,
why statistical approaches seem sensible. It is assumed that some of these processes go
into the formation of a transition state. Which processes comprise this state, and what is

their space-time structure are questions which might be answerable by further experiment.
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The second point at issue is the temperature of the final fragments. We have observed that
details of the spectra and the temperature depend sensitively on mutual interactions
between the fragments and their excitation spectra. Thus, measurements of the excitation
spectra of the final fragments can yield information on the final temperatures. Both of these
questions have recently been considered employing measurements of two-particle
correlation functions.

It was pointed out nearly 10 years ago, for heavy-ion reactions, that inclusive two-
proton cross sections carry information on the space-time structure of the emitting

sourcel4. From the two-particle cross section, and the inclusive singles cross sections, the

correlation function, R(q), is defined by,

6 37 3
do - d’c do
3 3 = 001 3 3 [R(plipZ) + 1]
d’pydps d’ps d’p;

The notation here is that of Ref. 14, &y is a normalization constant. This function has been

discussed by many authors and typical measurements are shown in Fig. 23. Thesc are
measurements of the proton-proton correlations in the reaction 160 + 197Au at an energy of
25 MeV per nucleon!3. Gaussian source radii are also indicated in the figure. In arecent
preprint16, Pratt and Tsang have shown that this correlation function can be determined
from the phase space distribution function F(p,r) . They note that the emission from a
long lived source will szretch this function along the direction of p, whereas the emission
from an expanding source would not have this characteristic. In their treatment, Pratt and
Tsang obtain a correlation function which differs from that of Ref. 14 in that they integrate
out the time dependence of the source, and obtain a function C(K,q) which is expressed as
a function of the c.m. and relative momenta of the pair, respectively K and q. Information
as to the lifetime and collective motion of the source is determined by measuring the total

and relative momenta of the pair. A typical correlation function deduced frem a prolate
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Gaussian source is shown in Fig. 24 the longitudinal and transverse source sizes are
respectively 12 fm and 3 fm. This illustrates the type of resolution needed to differentiate
between the transverse and longitudinal directions. Figure 25 shows the longitudinal and
transverse spread in F(p,r) for protons emitted from an evaporative source with an initial
temperature of 10 MeV. The sizes are plotted as a function of the total energy of the
emitted protons. The key signal for evaporative cooling is the strong elongation that rapidly
diminishes with increasing particle energy. These results should be contrasted with the
spread in the phase space distribution function from a hot exploding spherical distribution
whose velocities increase linearly from the center of the coordinate system. . The drop in
source size with increasing particle energy depends on the rado of collective (flow) energy
to thermal energy. The source in this figure corresponds to a velocity, = 0.3 and a
temperature of 10 MeV. The difference between this picture and the evaporation picture is
in the degree of elongatior.

Hanbury -Brown Twiss correlation measurements!? between a variety of light
particles in the reaction 32S + Ag at an energy of 22.3 MeV per nucleon are shown in
Figs. 26,27,28 . These are data taken at HHIRF ty Awes, Obenshain, Plasil, Ferguson
and Young all from Oak Ridge, in collaboration with Chen, Pochodzalla, Gelbke, Xu, and
Lynch all from MSU. Here various light particles in coincidence with alpha particles are
shown and exhibit several resonant-like structures in the correlation functions. These
structures probably represent resonances from alpha decays of light nuclei, and if this is
the case, will enable us to obtain fairly accurately the excitation energy of the emitiing
source. In Fig. 28, p-p correlation measurements from the ORNL-MSU group, are
compared to different theoretical source calculations. I would like to note the structure in

the data at large q for the Al and Ag targets. The correlation function, as it is defined here,
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must eventually become one at sufficiently large q. Here we may be seeing evidence that
there is a gas phase in these reactions.

My conclusion that I would like to leave you with is as follows. There is only one
fundamentally new feature in this energy range, and that is the liquid-gas phase transition.
It would be disappointing if we could come to terms with all of this heavy ion data solely as

the dynamics of a mean field with collisions and learn nothing about this transition.
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