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This talk will address statistical theories that attempt to understand the physics of

heavy-ion collisions at excitation energies near 15 MeV per nucleon. Before I begin, I

would like to comment on the title in Fig. 1. The original title was, " What Lies Between

the Mean Field and the Lorentz Desert ? " . Now the question that is being posed has

changed, and at the bottom of the figure one of the answers is, " the Lorentz Desert".

Unfortunately, I will not have sufficient time to discuss this issue. This has to do with the

question of measuring the equation of state at high density. G.E. Brown has argued, that

in relativistic heavy ion collisions, we are not viewing nuclear matter at high densities

because of particular Lorentz transformation properties of meson exchange forces *. Hence

the original title. I refer you to the discussion in Ref. 1.

Thermal models, of the type I shall be discussing, have become predominant at

energies more than an order of magnitude higher than those here2, and you shall endeavor

to contrast them with the complex dynamical models based on mean fields with two-body

collision terms3 that we heard about yesterday from Das Gupta. These have been most

successful in understanding the phenomena of fusion and deep inelastic scattering at lower

energies. In this talk I want to discuss the question of the nuclear liquid-gas phase

transition4, and how it might influence heavy ion collisions in this energy domain. It is

fairly well established that continuous nuclear matter undergoes such a transition in this

energy range5, however its realization in violent heavy ion collisions is presently

controversial and must be further studied experimentally.

A menu of the talk is given in Fig. 2. We shall begin by examining very simple

spallation6 and percolation7 models which yield inclusive mass spectra, and note that a kind

of ergodic 8 process is taking place which I would like to state as follows: AH models will

eventually correctly predict the beliavior of an average particle in an average event. I shall

then discuss two complex statistical models9-10 which try to deal with the phase



transition, including the fragmentation of real nuclei and with interactions between the

outgoing fragments. There are two principal assumptions that need to be tested in these

calculations, 1) the existence of an intermediate state, independent of entrance channel

effects, from which the disassembly proceeds, and 2) the role of the entropy in the

expansion and disassembly phase. Thirdly, I will briefly discuss Hanbury-Brown Twiss

correlations from two points of view, as a diagnostic of the gas phase11, and then also a

possible way to extract the temperature12. We have already discussed the equation of state

at high densities, and I refer those interested to Ref. 1.

Let us first consider spallation as shown in Fig. 3. These have been discussed at

length by Hiifner6, where he notes this approach is more that 20 years old. Spallation is

generally assumed to be a peripheral process, and thus tells us very little about the nucleus-

nucleus dynamics. As a two step process which we might think of as a cascade-

evaporation mechanism: 1) the nuclei are excited to an energy E*, and the energy loss

cross section, doVdE*, is obtained, and 2) for a given amount of excitation energy, e,

the fragment mass is changed by one unit. In Ref. 6, e is an adjustable parameter, and

the energy loss cross section is computed using Glauber theory. The mass spectra have the

power law behavior as shown in Fig. 4. It is interesting to note that, with the simple two-

step process, the integrated cross section has the general form,

A
Ln(o) = - x ln(A) + ^

Unfortunately, as we shall see, other models can exhibit a similar type of behavior.

Percolation calculations have been carried out by several authors7'11 and the lattice

model of Mosel as described in the Fig. 5 is particularly novel. In this model nucleons in a

nucleus are assumed to occupy sites on a regular cubic lattice. The links between the sites

supposedly account for the binding of the nucleons. In the cubic lattice, most nucleons are

linked to six nearest neighbors. A random number generator is used to break the bonds,



and the location of where the bonds are broken is random. Distributions of lattices having

the same amount of damage are assumed to be equally probable. In this treatment, certain

connected patterns are identified as nuclear fragments, and one observes a type of behavior

which is similar to a phase transition as shown in Fig. 6. Here we have the probability of

percolation, the mean multiplicity, the fluctuation in the multiplicity and the exponent in the

inclusive cross section as a function of the damage concentration. When the damage

concentration becomes sufficiently large, the system undergoes a type of collapse, or

disassembly, note that the exponent goes through a minimum at the critical concentration.

In a continuous system, the yield of fragments obeys a power law relation in which the

critical temperature is related to the exponent^. The results from the lattice model are

suggestive of a similar type phenomena. In Fig. 7 the results of a percolation calculation

are compared to high-energy, proton-induced inclusive data. These data span an energy

range between 80 and 350 GeV, and as we might have expected, the calculation can be

made to fit the data extremely well.

The above models, although statistical in their foundations, are probably too simple

to fully explain multifragmentation data. Recalling the ergodic hypothesis, stated again in

Fig. 8, the success of a variety of models of this type suggest that more complex

measurements are needed to understand these reactions, and that also necessitates a more

systematic theoretical approach.

Bondorf and co-workers9 have built on the participant-spectator model to formulate

a more complete theory of mukifragmentation. There are several questions, shown in Fig.

9, that we should keep in mind as we proceed with the discussion. These are as follows:

1) how do we go from a mean-field with 2-body collision terms to a hot, compressed state

of matter, 2) what about equilibrium, and the role of entropy, 3) does the liquid-gas phase

transition play a role? On a more practical level, we shall need to deal with phenomena

displaying a large multiplicity of highiy excited fragments. In Fig. 10 the various stages in

their model are depicted. The most important is the identification of an intermediate or



transition state. This state is near thermodynamic equilibrium and is supposedly formed by

dynamical processes which compress and heat the nuclei. It is also assumed that all of this

matter, having mass A and total charge Z, is confined within a volume V, and has a total

energy E. On a short time scale, the system cracks accompanied by expansion and

subsequent decay and evaporation . The probability of obtaining different final states is

determined from the statistical weights for particular fragment configurations. It is highly

unlikely that all of these dynamical processes occur at the same time as indicated here.

However, it is more to the point to ask whether it is possible to measure properties of the

transition state.

Their approach, as summarized in Fig. 11, closely parallels that of a microcanonical

ensemble. The partition n(a,z) is defined so as to count different fragment arrangements,

and determine the mass, charge, and multiplicity of fragments,

y n(a,z) a = A mass
a,z

y n(a,z) z = Z charge

a,z

2 . n(a»z) = rn multiplicity

a,z

Since this formalism possesses neither a canonical or microcanonical ensemble, a partition

function is constructed by counting arguments, and then the free energy, entropy and

statistical weights are calculated. Note that fragments are constrained to have a mean

energy, and that fluctuations in the fragment energy are not included in this treatment. From

the statistical weights, all the observables of the system can be determined. In Fig. 12 the



total energy is given as the sum of all of the fragment energies and a global Coulomb

energy,

? 2e2 ^
F - "^ + >

a,z
' to t " 5 R

Also, they assume that after the breakup that fragments cease to interact, and move freely

throughout the volume V. This limitation is fairly severe and probably affects the final

temperatures and spectral distributions by as much as 50 per cent13. In particular, it

suppresses the Coulomb interaction between the fragments as during the expansion. We

shall return to this point later. The fragment energy is composed of several parts. Let us

look at liquid drop bulk and surface terms which contribute to the internal energy of a

fragment. The bulk energy is given as,

T
Bulk energy = Wo + —

L So

The first term in the above equation is the bulk energy of nuclear matter, and the second

term is the low temperature expansion of a fermi gas. However, the level density

parameter, EQ is adjusted to fix the mean excitation energy of a fragment. This relation

ignores any change in the energy due to compression of matter in the bulk and is probably

not correct for small fragments and at low excitation energy. Note that fragments with

mass less than four are assumed to comprise the gas phase. The surface energy term is ,

Surface energy = p - T -r= A1 A 2/3-r= A



7

where the surface free energy is given by,

- T2

p 2/3 = Po A
2/3

T? + T2

0

T <

T > TV

This is an imponant term in that the exponent, the critical temperature, and the parameter Po

are intimately connected to the phase transition in the infinite medium. The surface energy

plays a key role in determining the fragment size during the expansion phase, and is

strongly dependent on the liquid-gas phase parameters. In a finite system undergoing such

a transition the surface tension is proportional to the Gibb's free energy times the

correlation length associated with the fluctuations at the critical temperature. At this point

contributions to the energy from shell effects, deformations and pairing are neglected. In

this model the contribution to the total energy from the kinetic energy of the fragments is

included by introducing a new parameter %, so that the effective volume is Veff =%V. Let

us review some of the assumptions: 1) the transition temperature T is a constraint on the

system which is fixed by overall energy conservation, 2) the fragment multiplicities are

constrained by overall charge and mass conservation, 3) assume the system is held in

thermal equilibrium with an external heat bath.

Results of calculations with this model are shown in the Figs. 13,14,15 for a transition

state having 100 particles. The onset of fragmentation begins at an excitation energy of

3.5 MeV per nucleon. Note, there is a corresponding sharp increase in the mean

multiplicity and also a lowering of the temperature as the system expands. The dashed

curve depicts the temperature dependence of a free N-N gas. The cooling occurs because,

as fragments form, there is an increase in the available volume in which they move. At an
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exc'tation energy near 16 MeV there is a rapid rise in the multiplicity of emitted fragments

which occurs as the liquid gas phase transition breaks up the fragment's surface. Here the

temperature of the the system again decreases and eventually increases again. In Fig. 14

we see that the breakup density has large fluctuations at the onset of fragmentation and

reaches an approximately constant value at about a third of the nuclear matter value. Mass

spectra for this case are shown in Fig. 15. At low excitation energy the mass distribution

is sharply peaked at a small value of the mass; however, at higher excitation energies this

behavior changes dramatically.

I would like to note the following two points. The fragment mass distribution is

sensitive to the Coulomb interaction between the fragments. It stabilizes the production of

heavy fragments and yields a much lower temperature. The spectra are changed by the

interaction between fragments; they are shif'ed to higher energies with much larger widths.

A similar approach has recently been developed by Koonin and Randrup10, as noted in

Figs. 16,17. However, they employ a full microcanonical ensemble which automatically

incorporates interfragment forces. Except for these details, they employ the same general

assumption of a transition state from which they calculate the disassembly. In their studies

they note an important behavior of the fragment level densities. The number of excited

states of the fragments that are included in the ensemble arc important in determining the

fin.il mass spectra. Thus they include in their description of the fragment density of states a

parameter that tries to account for the finite lifetime of these highly excited states. Recall,

in the Bondorf work, that the intrinsic density of states is approximated to be the same as

that of a zero temperature fermi gas. The treatment here assumes that the fermi gas density

of states is modified at high excitation energy by ,

p(e) = pfg(e) exp[ -ey t 0 ]

and yields an effective temperature,



In this way the parameter t 0 can be interpreted as the maximum temperature attainable by

the nuclear fragments.

Results of these calculations are shown in Fig. 18. Here we see the mean fragment

mass is not sensitive to the choice of a limiting temperature. All of the other observables,

the mean excitation energy, the specific heat, and the entropy show a sensitivity to this

parameter, and hence to the level density of the fragments. These are calculations with a

grand canonical ensemble, the results with the canonical ensemble are given by the blue

circles, and those for a microcanonical ensemble are the red circles. Figure 19 shows the

effects on the density and the importance of the interaction between the outgoing fragments.

On the left-hand side of the figure, the effects of turning off the semi-empirical Coulomb

energy; again, the blue circles indicate the results for the microcanonical ensemble. On the

right-hand side of the figure the results for three combinations of the interfragment

interaction are compared. As stated in Fig. 20, it is important to also keep in mind that these

calculations are simple simulations which do not include the vapor phase. However, it has

been incorporated in the compression expansion studies in Fig. 21. Even though, there is

no direct parameterization of the phase transition, some of the features of the liquid-gas

transition are apparent. The possible influence of the phase transition on the mean mass and

the mean excitation energy of the fragments are shown for the expansion-compression

cycle.

These models involve two important ideas, (see Fig. 22), which should be further

explored. The first is the question of the transition state. We believe that heavy-ion

reactions at these energies support a large number of separate processes and that is, in part,

why statistical approaches seem sensible. It is assumed that some of these processes go

into the formation of a transition state. Which processes comprise this state, and what is

their space-time structure are questions which might be answerable by further experiment.
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The second point at issue is the temperature of the final fragments. We have observed that

details of the spectra and the temperature depend sensitively on mutual interactions

between the fragments and their excitation spectra. Thus, measurements of the excitation

spectra of the final fragments can yield information on the final temperatures. Both of these

questions have recently been considered employing measurements of two-particle

correlation functions.

It was pointed out nearly 10 years ago, for heavy-ion reactions, that inclusive two-

proton cross sections carry information on the space-time structure of the emitting

source14. From the two-particle cross section, and the inclusive singles cross sections, the

correlation function, R(q), is defined by,

p dd Pid p2

is.
d3pi

d3a
[ R(p!,p2) +

The notation here is that of Ref. 14, GQ is a normalization constant. This function has been

discussed by many authors and typical measurements are shown in Fig. 23. These are

measurements of the proton-proton correlations in the reaction 16O + 197Au at an energy of

25 MeV per nucleon15. Gaussian source radii are also indicated in the figure. In a recent

preprint16, Pratt and Tsang have shown that this correlation function can be determined

from the phase space distribution function F(p,r) . They note that the emission from a

long lived source will stretch this function along the direction of p, whereas the emission

from an expanding source would not have this characteristic. In their treatment, Pratt and

Tsang obtain a correlation function which differs from that of Ref. 14 in that they integrate

out the time dependence of the source, and obtain a function C(K,q) which is expressed as

a function of the cm. and relative momenta of the pair, respectively K and q. Information

as to the lifetime and collective motion of the source is determined by measuring the total

and relative momenta of the pair. A typical correlation function deduced from a prolate
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Gaussian source is shown in Fig. 24 the longitudinal and transverse source sizes are

respectively 12 fm and 3 fm. This illustrates the type of resolution needed to differentiate

between the transverse and longitudinal directions. Figure 25 shows the longitudinal and

transverse spread in F(p,r) for protons emitted from an evaporative source with an initial

temperature of 10 MeV. The sizes are plotted as a function of the total energy of the

emitted protons. The key signal for evaporative cooling is the strong elongation that rapidly

diminishes with increasing particle energy. These results should be contrasted with the

spread in the phase space distribution function from a hot exploding spherical distribution

whose velocities increase linearly from the center of the coordinate system. . The drop in

source size with increasing particle energy depends on the ratio of collective (flow) energy

to thermal energy. The source in this figure corresponds to a velocity, p = 0.3 and a

temperature of 10 MeV. The difference between this picture and the evaporation picture is

in the degree of elongation.

Hanbury -Brown Twiss correlation measurements17 between a variety of light

particles in the reaction 32S + Ag at an energy of 22.3 MeV per nucleon are shown in

Figs. 26,27,28 . These are data taken at HHIRF by Awes, Obenshain, Plasil, Ferguson

and Young all from Oak Ridge, in collaboration with Chen, Pochodzalla, Gelbke, Xu, and

Lynch all from MSU. Here various light particles in coincidence with alpha particles are

shown and exhibit several resonanHike structures in the correlation functions. These

structures probably represent resonances from alpha decays of light nuclei, and if this is

the case, will enable us to obtain fairly accurately the excitation energy of the emitting

source. In Fig. 28, p-p correlation measurements from the ORNL-MSU group, are

compared to different theoretical source calculations. I would like to note the structure in

the data at large q for the Al and Ag targets. The correlation function, as it is defined here,
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must eventually become one at sufficiently large q. Here we may be seeing evidence that

there is a gas phase in these reactions.

My conclusion that I would like to leave you with is as follows. There is only one

fundamentally new feature in this energy range, and that is the liquid-gas phase transition.

It would be disappointing if we could come to terms with all of this heavy ion data solely as

the dynamics of a mean field with collisions and learn nothing about this transition.
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