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SLMM ARY AND CONCLUSIONS 

The oxidation-reduction (redox) electrode studies a t  Pacif ic  Northwest 
Laboratory ( P N L )  were completed w i t h  the examination of the sulfide-sulfate 
system. 
electrode would s t i l l  respond to the entry of  oxygen even though sulf ide is an 
oxygen get ter .  
mined a t  250'C. 
f i t s  a mixed potential model. 

T h i s  system is extremely reducing, and i t  was concluded tha t  the redox 

The corrosion r a t e  of  p l a t i n u m  i n  oxygenated brine was deter- 
I t  was concluded tha t  the mechanism of response to oxygen 

Work began on the improved corrosion r a t e  meter (ICR). A potent iostat  
and programmer were constructed and successfully tested. Corrosion t e s t s  were 
carried out in 25°C brine with and without oxygen, and the ICR response was 
very good when compared to  corrosion ra tes  determined by weight  loss.  
work will involve autoclave t e s t s  and  development of microprocessor control of 
the electronics t o  simplify the measurements. 

Future 

i i i  
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I NTRODUCT ION 

Any system used t o  control scaling or corrosion i n  a geothermal power 
plant must include provisions for  monitoring and verifying the f lu id  chemistry. 
Current methods (for example, sampling for  l a t e r  analysis)  are  not en t i re ly  
sat isfactory;  a bet ter  method would involve inser t ing in-line or down-hole 
chemical sensor probes. Using such sensors, continuous on-line data could be 
produced without the problems associated w i t h  sampling, such as infrequency, 
contamination, or chemistry changes caused by cooling. In-1 ine probes for  
high-temperature geothermal environments are beyond the  current commercial 
s t a t e  of the a r t ;  however, technological advances have occurred i n  recent 
years largely because of the need for  such probes i n  high-pressure nuclear 
power plants. 

The laboratory development of the redox electrode has been completed, and 
In ear- the development of the improved corrosion r a t e  meter (ICR) has begun. 

l i e r  work,(') i t  was discovered tha t  the entry of oxygen into geothermal 
brines results in enhanced corrosion r a t e s  and tha t  commercial corrosion ra te  
meters could no t  recognize these conditions. There were two apparent tasks: 
t o  develop the redox electrode t o  recognize oxygen intrusions and t o  develop 
an ICR. 

Pacific Northwest Laboratory ( P N L )  ( a )  proposed to  accompl ish b o t h  tasks 
since i t  was or ig ina l ly  thought t ha t  the redox electrode could provide i n s i g h t  

on the redox electrode indicated tha t  i t  does not respond to  the general redox 
environment in any kind of thermodynamic response although i t  i s  extremely sen- 
s i t i v e  to  oxygen entry. ICR development was undertaken because i t  is important 
to  have accurate, on-line corrosion information to  warn o f  any chemistry per- 
turbations tha t  could r e s u l t  i n  catastrophic corrosion ra tes .  Further, under 
varying conditions, comnercial equipment can both underestimate and overesti-  
mate actual corrosion rates .  The objective of this work is  to  develop a more 
f lex ib le  instrument tha t  would respond w i t h  correct corrosion ra tes  under a 
wider range of  conditions. 

into solution chemistry as well as oxygen intrusions. An e a r l i e r  report  (2 )  

( a )  Operated for  the U.S. Department o f  Energy ( D O E )  by Bat te l le  Memorial 
In s t i t u t e .  
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The remainder o f  this report discusses the progress t h a t  has been made on 
the redox electrode and the I C R .  Work t h a t  i s  t o  be done i n  the future i s  
also described. 

. 
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RE DOX E LE CTRODE 

I n  previous redox electrode work,(') the sulf ide system was not investi-  
However, the redox electrode i n  a sul f i  de-sul f a t e  system was examined gated. 

in the current work for  completeness and because sulf ides  are important com- 
ponents of geothermal brines. 

T h e  chemistry used was the same as i n  ea r l i e r  work:(') 2.5% NaC1, 450-ppm 
Si02, 400-ppm S042-, C02 = 1 atm, and pH = 5.7 a t  25°C. 
sodium su l f ide  was added to  make a su l f ide  concentration of 24 ppm. 
sparged out of the solution before the sulf ide was added, the tank was sealed, 
and a posit ive pressure of C02 was maintained to  exclude a i r .  
shown i n  Figure 1. 

I n  one experiment, 
Oxygen was 

The data are  

In another experiment, the su l fa te  was removed and a similar experiment 
was r u n  w i t h  only sulf ide (see Figure 1). The presence or absence of su l f a t e  
had l i t t l e  to no e f fec t  on the redox potent ia l ,  which implies t ha t  there i s  no 
redox couple between su l f ide  and su l fa te .  The potential regime for  the su l f ide  
system is i n  the strongly reducing region as would be expected. 
the redox electrode wil l  s t i l l  respond to  oxygen intrusions i f  f r ee  oxygen i s  
present a t  the electrode surface. 
temperatures; and by mixed potential theory, the potential will  be displaced 
into the anodic region i f  su l f ide  and oxygen react  a t  the electrode. 

In general, 

S u l f i d e  is an oxygen get ter  a t  elevated 

The mechanism of the redox electrode 's  responses was examined i n  e a r l i e r  
work. ( l )  
dynamic, 
in which  platinum ( P t )  was slowly corroding. To tes t  this hypothesis, the 
corrosion r a t e  of P t  f o i l  was determined by w e i g h t  loss a t  250°C i n  the usual 
solution w i t h  4.0-ppm oxygen. T h e  w e i g h t  loss for  the three coupons a f t e r  
13 days was 3.0 - +0.4 x 
4.1 +0.5 x l o4  mm/yr (0.016 - +0.002 mils /yr)  or a corrosion current of 2 x 
10 A/cm for  P t  assuming a valence s t a t e  of four. 

I n  ea l i e r  work,(') attempts were made to measure the exchange current 

T h e  response to oxygen indicated tha t  the behavior was not thermo- 
I t  was hypothesized tha t  the response was a mixed potential response 

2 g/cm , which corresponds to a corrosion r a t e  of 

-8- 2 

(current a t  open c i r c u i t ) .  Unfortunately, the t rue  steady-state current could 
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FIGURE 1. Selected Theoretical and Experimental Redox Potentials on a P t - P t  
Electrode 

not be obtained from polarization measurements even a f t e r  45 m i n  o f  observa- 
t ion  (absolute value of the currents was always decreasing). As a r e su l t ,  
a l l  calculated exchange currents were too h i g h .  An average AI/AE value, which 
was calculated from the three polarization data points (30 t o  45 m i n  before 
each data point was taken), can be converted into an exchange current by mul -  
t i p ly ing  i t  by a Tafel slope parameter (estimated t o  be 20 m V ) .  
0.022 pA/mV f o r  P t  fo i l  a t  250'C and a geometric area of 2.8 cm , the  
exchange current equals 1.6 x A/cm . T h i s  calculation considerably 
overestimated the exchange currents since many hours(3) would be needed to  
achieve a t rue  steady-state current. The calculated exchange current would 

Using A I / A E  = 
2 

2 
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probably be close t o  the current measured from weight loss i f  t rue steady-state 
currents were available,  which implies tha t  the response of the P t  redox elec- 
trode to the environment is due to  a mixed potential response w i t h  P t  corro- 
sion being the anodic reaction. 
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IMPROVED CORROSION RATE METER 

I n  e a r l i e r  work,(') comnercial equipment t h a t  measures cor ros ion  ra tes  

was invest igated;  and i t  was discovered t h a t  commercial equipment i s  adequate 
when the  b r i n e  system i s  deoxygenated. However, when oxygen i s  present ( the  

worst  case s ince ca tas t roph ic  cor ros ion  can r e s u l t ) ,  commercial equipment can 
s i g n i f i c a n t l y  underestimate the  cor ros ion  r a t e .  

develop a cor ros ion  measuring system t h a t  would be f r e e  o f  t h i s  l i m i t a t i o n .  

BACK GROUND 

The dec is ion was made t o  

A b r i e f  rev iew o f  how comnercial equipment operates and a poss ib le  so lu-  
t i o n  t o  i t s  l i m i t a t i o n s  are o u t l i n e d  i n  t h i s  sect ion.  The bas i c  k i n e t i c  equa- 
t i o n ( 4 )  descr ib ing  many electrochemical  processes i s :  

I = I c o r r  [exp (y E) - exp (- 
E)] 

where I = measured cu r ren t  

= cor ros ion  cu r ren t  (a lso  c a l l e d  exchange cu r ren t )  I c o r r  
bc = anodic and cathodic  Ta fe l  parameters bas 

E -  = p o t e n t i a l  pe r tu rba t i on  f rom the  open - Eapp l ied  - 
c i r c u i t  cor ros ion  p o t e n t i a l .  

By t a k i n g  a p a r t i a l  d e r i v a t i v e  of Equation (1) w i t h  respect  t o  E and then 
s e t t i n g  i t  equal t o  zero a t  E = 0, the  bas i c  equat ion under which commercial 

equipment operates i s  der ived as: 

- -  AI . B  
' co r r  - BE 
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B i s  a constant t h a t  i s  dependent upon the  Tafe l  s lope parameters and 
genera l l y  f a l l s  between 10 t o  45 mV f o r  i r on . (5 )  

has a B value o f  about 30 mV hard-wired i n  place, b u t  a problem ar ises  a t  
e levated temperature when oxygen enters  the  system and the  cathodic r e a c t i o n  

(oxygen consumption) becomes mass t ranspor t -cont ro l  l e d  (independent o f  poten- 
t i a l  so t h a t  bc-=). Equation (2) then becomes: 

Some comnercial equipment 

I f  t h e  i r o n  i s  p a r t i a l l y  

A I  (ba ) 
I c o r r  = x ZT 

assive, t h e  anodi Ta fe l  v l u e  (b,) can be 
r e l a t i v e l y  l a rge  (considerably  l a r g e r  than the  30-mV value used i n  commercial 

equipment). I n  e a r l i e r  work,(') one case a t  150°C i n  oxygenated b r i n e  r e s u l t e d  
i n  the  ac tua l  cor ros ion  r a t e  be ing s i x  t imes greater  than the  r a t e  measured by 

comnercial equipment. 
exposure, and chemical environment, the commercial equipment cannot recognize 
t h e  new cond i t ions  when B changes. 

determining a B va lue a t  t he  same t ime the cor ros ion  r a t e  i s  measured. There 

Since B i s  a func t i on  o f  t h e  cor rod ing  metal,  t ime o f  

The I C R  w i l l  overcome these l i m i t a t i o n s  b y  

a re  th ree  unknowns i n  the  fundamental k i n e t i c  equat ion (ba, bc, and IC,,, ) t h a t  

r e q u i r e  a minimum o f  t h ree  data po in ts  f o r  s o l u t i o n  o f  t h e  unknown. 
has i nves t i ga ted  t h i s  technique and c a l l s  i t  the " three-point  method." 

found a closed-form s o l u t i o n  f o r  Equat ion (1) when the  pe r tu rb ing  p o t e n t i a l s  

have a c e r t a i n  r e l a t i o n s h i p  t o  each other :  I A E ~  , ~ I A E I  , and - 2 1 ~ E l  (AE i s  some 
p o t e n t i a l  pe r tu rba t i on  t y p i c a l l y  i n  the  range o f  5 t o  30 mV). The cor ros ion  

r a t e  f rom B a r n a r t t ' s ( 6 )  work i s :  

(6 1 Ba rna r t t  

He 

8 



i 
I .  

Tafel slope parameters can a l so  be calculated; b u t  the major e f fec t  of 
this method is t h a t  the corrosion rate can be calculated even when B values 
are no t  constant, w h i c h  results i n  a more flexible corrosion r a t e  meter. The  
potential perturbation pattern i s  not 1 imi ted t o  Barnartt's; several others 
are shown i n  Appendix A. 

PNL-DES I GNE D E QUI RJl ENT 

T h e  PNL-designed potentiostat and programner board are  shown i n  Figures 2 
and 3.  The potentiostat maintains a constant potential between the reference 
electrode and  the corrosion specimen (working electrode) and measures the 
current u s i n g  a zero current ammeter. The programmer steps the potentiostat 
t h r o u g h  a potential  sequence t h a t  i s  set by the operator. The potential incre- 
ment (AE) is  set  a t  the potentiostat; b u t  the programmer steps th rough  the 
various values of the control potential (such as - 2 ! ~ E t ,  - l h E I ,  IaEl,  o r  ~ ( A E I  ) 
and determines the time spent a t  each potential increment for the current t o  
reach a steady state. Programmer times are steps of 2n m i n  when n is  permit- 
ted t o  vary from zero t o  seven i n  whole numbers. I n  other words, 1, 2,  4 ,  8, 
etc., minute cycle times are available. 

T h e  potentiostat can control the potential between reference and working 
electrodes within - +0.1 mV for  24 h.  The maximum voltage between counter and 
working electrode was - +10 V with a maximum current of 10 mA. 
control response was approximately 1 Hz, which  i s  more than adequate for  the 
iron systems studied t o  date. All inputs t o  the potentiostat were isolated 
from earth ground. The potentiostat was designed t o  be used w i t h  the elec- 
trodes o f  a commercial corrosion rate meter (which uses three electrodes of 
the same material), b u t  there i s  enough i n p u t  offset t o  use other types of 
reference electrodes. I n p u t  impedance between reference and working el ec- 
trodes was 1 megohm; and three current o u t p u t  ranges were used: 10, 100, and 

The speed of the 

1000 pA/V. 

The present model is  s t i l l  i n  the design stage and is  rather complicated 
t o  use. 
electrodes (by adding an input offset voltage), determine the AE increment 

The operator must zero the voltage between working and reference 

9 
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(and the direction of polar izat ion) ,  s e t  the time increment for which each 
potential wil l  be applied, and then s t a r t  the programmer cycle. In futilre 
edit ions , microprocessor control. will be used to simp1 i fy  the operation so 
that  f i e l d  personnel can push  one button and read the answer. 

The potent iostat  and the general three-point procedure were tested i n  the 
laboratory. Equipment  included a 1-a. polypropylene bo t t l e ,  a s e t  of mild s tee l  
electrodes (1018 s teel  ) for  polarization, and three m i l d  s tee l  electrodes t o  
be used as weight loss coupons. 
450-ppm Si02, and 400-ppm S042-) were investigated. 
under 1-atm C02 and under 0.5-atm C02/0.5-atm a i r  (02 i n  solution = 4 ppm). 
The s i ze  of the BE increment and which three polarizations from the group 
available (21aE1, I h E l ,  - I A E I ,  -21hE1, and -3IhEI) gave the most useful 
r e su l t s  were also studied. 

Sulfur ic  acid and brine solutions (2.5% NaCl, 
The brine was studied 

I n i t i a l  studies were carried o u t  in 0.04744 H2S04 under nitrogen because 
th i s  system is  well characterized. Weight loss measurements gave corrosion 
r a t e s  over 300 mpy, and the commercial corrosion r a t e  measuring system also 
measured around 300 mpy. 

There were some problems w i t h  applying the  three-point method. 
t i a l  increment of 10 mV ( I A E I  = 10 mV) was chosen and w i t h  most experiments 
the corrosion current was indeterminate (imaginary so lu t ion) .  Equation (4 )  
indicates t ha t  a square root  of the difference between two numbers must be 
taken, and i t  is  possible to take the square root of a negative number i f  rl 
or r2 is incorrect.  
Appendix A )  require the square r o o t  of the difference between two numbers and 
can be prone to this problem. However, the  three-point method d i d  not work i n  
this case because of the h i g h  corrosion r a t e s  and the poor geometric relation- 
s h i p  of the commercial probes to eliminate I R ( a )  d r o p  (voltage d r o p  through 
the solution between the working and reference electrodes).  
keeps the potential between the work n g  and reference electrodes constant, and 
the potential drop across the double layer a t  the working electrode (which 
drives the electrochemical react ion)  as well as the potential drop through the 

A poten- 

All the various forms of the three-point method (see 

The potent iostat  

( a )  Current times resistance.  
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solution contributes to the potential difference measured between the two elec- 
trodes. Generally, the IR d r o p  is  negligible and any potential changes are 
a t t r ibuted to  changes across the double layer; b u t  when the IR drop becomes 
important, less  polarization takes place across the double layer (experimen- 
t a l l y ,  the electrochemical reaction is not driven as hard). I t  i s  not always 
easy to  determine the actual polarization across the d o u b l e  layer; and i n  the 
case of the three-point method, i t  was less  than required so that  the d r i v i n g  
potent ia ls  were not i n  the f i x e d  re la t ionship required by this method. There 
are  two extremes when IR drop can be a problem: i n  solutions of low conductiv- 
i t y  when corrosion ra tes  are low and i n  solutions of high conductivity when 
corrosion ra tes  are  h i g h .  The experiment was repeated i n  1 . 0 4  H2S04 with the 
reasoning tha t  the improved conductivity would reduce the IR problem; b u t ,  
unfortunately, the corrosion r a t e  also increased and canceled this e f fec t .  
The three-point method d i d  not give many real  values for the corrosion r a t e  i n  
the  1.0-N H2S04. 

In these ear ly  experiments, the effect  of  the s i ze  o f  the potential incre- 
ment ( A E )  was examined. I t  was discovered tha t  when AE became larger ( I A E ~  = 

20 m V ) ,  the  experimental po in t s  were more l i ke ly  to give a real  solution t o  
the corrosion ra te .  A theoretical  analysis of this problem is  discussed i n  

Appendix B. I n  general, the  larger AE becomes, the fa r ther  the measured cur- 
rents  can be from the i r  correct value and s t i l l  give a real  solution. All sub- 
sequent work was carried o u t  a t  IAEI  = 20 mV. There a re  two balancing forces 
a t  work: 
employing a large AE and the need to  minimize AE t o  prevent d r i v i n g  the elec- 
trode too f a r  away from the f r ee ly  corroding potential and changing the elec- 
trode surface so tha t  l a t e r  measurements may not accurately represent the way 
unperturbed portions of the system are- reacting. 

the attempt t o  minimize the error  i n  using the three-point method by 

In the next experiments, the corrosion medium was brine w i t h  and without 
a i r  a t  25OC. These experiments are of i n t e re s t  because the three-point method 
was shown to be superior t o  the comnercial techniques and because the chemistry 
i s  similar t o  the shutdown conditions of the Magma Elec t r ic  binary system a t  
East Mesa, California. The experiment us ing  brine and C02 (zero 02) i s  
shown in Figure 4. Weight loss measurements gave a corrosion rate of 16 .2  

13 
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FIGURE 4. Corrosion Rate Measurements i n  a Simulated Geothermal 
Brine (oxygen = 0 ppm) a t  25°C 

- +1.2 mpy, and integration of ra tes  determined by a comnercial corrosion r a t e  
meter resulted i n  a r a t e  of 44 mpy. Several methods were used to  evaluate the 
three-point method using the equations i n  Appendix A. 
~ ~ A E I ,  I A E I ,  and - I A E I  r a re ly  gave a real  solution and are not shown i n  Fig- 
ure 4; calculations using I A E ~ ,  -IAEI ¶ and - 2 1 ~ E l  resulted in an average 
corrosion r a t e  of  30 mpy and are  shown i n  Figure 4. Two days a f t e r  the 
experiment s t a r t ed ,  calculations using - ~ A E I ,  - 2 1 ~ E 1 ,  and -3(d j  were t r ied ;  
the r e su l t s  were superior since the data almost always gave a real  solution. 
The  average corrosion r a t e  for  these data was 10 mpy, b u t  e a r l i e r  data would 
probably have been higher and resulted in an average even closer t o  tha t  
determined by weight loss.  

Calculations u s i n g  

14 



I n  the  next  experiment, b r i n e  was used under a 1:l r a t i o  o f  C02:air 
(02 = 4 ppm) (see F igure 5) .  The average corros ion r a t e  by  weight loss  was 
33 - +5 mpy wh i l e  the  average r a t e  from the  commercial r a t e  meter was 72 mpy. 

The three-point  method us ing  21~E1,  I A ~ ,  and - I A E I  i s  no t  shown because i t  

never gave a r e a l  so lu t ion .  Ca lcu la t ions  based on IAEI, - I A E I  , and -2thEI are 
shown and genera l l y  gave e i t h e r  imaginary so lu t i ons  o r  extremely l a rge  values; 
no average i s  reported. Ca lcu la t ions  us ing the  a l l -ca thod ic  data (-IAEI , 
-21hEI , - 3 1 ~ E 1  ) were much more successful  and gave an average cor ros ion  r a t e  
o f  28 mpy. I n  t h i s  experiment, dup l i ca te  ca l cu la t i ons  were made; and the  

three-point  method r e s u l t s  us ing a1 1-cathodic data reproduced ve ry  we1 1. I n  
both b r i n e  experiments, the  three-point  method c a l c u l a t i o n  based on a l l -  
cathodic  data i s  q u i t e  c lose  t o  the  weight l o s s  data and i s  a marked improve- 
ment t o  the  commercial data o r  o ther  types o f  three-point  method ca l cu la t i ons  

us ing  anodic data. 

I 1 

I 
t m RATE METER 

100 m 3 PT = AE,  -A€, -2AE 308 mPY 174 mpy 114 mpyl 

t m t Fe - C02 - A I R  0 COMMERCIAL CORROSION 

m IAEI = 20 mV 

60 

40 

20 

0 I I I 1 I I I 
I 

2 4 6 a 10 0 

DAY 

FIGURE 5. Corrosion Rate Measuretents i n  a Simulated Geothermal Br ine 
(oxygen = 4 ppm) a t  25 C 
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A f u r t h e r  problem i n  us ing  t h e  three-point  method i s  d e f i n i n g  steady s t a t e  

f o r  the currents .  
steady-state value even a f t e r  30 min; however, cathodic  values o f  cu r ren t  reach 
a steady s t a t e  w i t h i n  a few minutes. An 8-min cyc le  on the programmer was used 

fo r  these experiments. 
a r e a l  s o l u t i o n  i nd i ca tes  t h a t  the  anodic cur ren ts  were always l ess  than the 
co r rec t  va lue (assuming t h e  cathodic  cur ren ts  were co r rec t  and agreement w i t h  

weight l oss  would make t h i s  reasonable).  Th is  experimenter does n o t  have an 

During anodic po la r i za t i ons ,  the cu r ren t  does n o t  reach a 

An i n v e s t i g a t i o n  o f  why the  anodic data d i d  n o t  permi t  

explanat ion f o r  t h e  anodic behavior o f  i r on ,  which prevents i t  from being used 
for  the three-point  method. 

The cor ros ion  r a t e  n e a r l y  doubled (based on weight l o s s )  when oxygen 

entered the  b r i n e  system; t h i s  i s  an e x c e l l e n t  reason t o  ma in ta in  zero oxygen 

dur ing  shutdown condi t ions.  The commercial cor ros ion  measuring instruments 

overestimated cor ros ion  r a t e s  under these condi t ions.  A t  e levated tempera- 
tures, entry o f  oxygen will result i n  even higher corrosion rates and then the 
commercial instruments w i l l  underestimate these h igh  cor ros ion  ra tes .  

16 



~ FUTURE WORK 

Future work c a l l s  for  a f ield test  of the ICR a t  Magma Electr ic ,  East 
Mesa, California,  further laboratory tests i n  autoclaves, and development o f  
microprocessor control of the ICR. 
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APPENDIX A 

THE THREE-POINT METHOD FOR OTHER P O T E N T I A L  SEQUENCES 

B a r n a r t t ( 6 )  der ived  t h e  three-point  method f o r  t h e  use o f  Z ~ A E I  IAEI 
and -2 I A E I  p o t e n t i a l  increments. 
several are shown below. A d i f f e r e n t  example from B a r n a r t t ' s  w i l l  be der ived 

and the o thers  s imp ly  shown. 

However, o ther  sequences are poss ib le  and 

For the  case o f  Z ~ A E I ,  I A E I ,  - I A E I :  

AE -AE 
exp (r) - exp (+ = u - v I IAEI  

I c o r r  a C 
- =  

~ E I  ZAE -26E 2 2  I- = exp (+ - exp (~7) = u - v 
c o r r  a C 

-AE BE -1 -1 
= exp (b-) - exp (b) = u - v I- IAEI  

I c o r r  a C 

u - v  = -uv - I LEI 
= = "-1 v 1 

By s u b s t i t u t i n g  Equation (A.4)  i n t o  ( A . 5 )  t o  e l i m i n a t e  v or u, t h e  f o l l o w i n g  
expressions can be derived: 

+ (r12 + 4 r 2 )  112 
rl 

2 u -  

A. 1 



2 rl - (rl + 4 r 2 ) 1 / 2  
v =- 

S u b s t i t u t i n g  Equations (A.6) and (A.7) i n t o  (A . l )  r e s u l t s  i n :  

For the case 

ba(base 10) = 2.30( I A E I  ) 

-2.30( I A E I  ) 
bc(base 10) = I n  ( v )  

A E I ,  - 1 ~ ~ 1 ,  - 2 1 ~ ~ 1 :  

- 2 . 3 (  I A E I  ) bc(base 10) = 
-rlr2 - [ ( r1 r2 )2  + 4 r 1 P 2  

In' 
\ 2 

' IAEI  

I I-AEI 
rl = 

(A. 10) 

( A . l l )  

(A.12) 

(A.13) 

(A.14) 

(A.15) 

A. 2 



-2.30( IAEI ) 

b,(base 10) = 
(4r2 - 3rl 1 
2 

'-3 LEI 
- I A E I  

r =  

I '  
I 
i 

A. 3 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A. 20) 
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A P P E N D I X  B 

THE EFFECT OF THE POTENTIAL INCREMENT ( A E )  ON THE ACCURACY OF THE 
THREE-POINT METHOD 

This analysis is carried out on calculated currents taken a t  I A E I ,  - 1 ~ E 1 ,  
and -21bEI .  The conclusions will  be similar for other potential perturbation 
combinations, b u t  the exact solution will d i f f e r  w i t h  each system. This error 
analysis i s  based on the ef fec t  of  some inaccuracy in I - , A E l  because the cur- 
ren t  d i d  not reach a correct steady s t a t e  before the measurement was taken or 
due to an instrument error  i n  reading the current.  
because i t  has the smallest value o f  the three currents and is most subject t o  
inaccuracies. 
correct value for a *50% error i n  calculating the corrosion r a t e  as a function 
o f  AE (over a range of ba  and bc values).  

I - lAE l  was examined 

This analysis will examine how f a r  I - l A E l  can vary from the 

Using Equation ( B . l ) ,  current values for the various polarizations are 
calculated assuming certain values for ba and  bc. 

1 = Icorr [ exp ( AE) - exp (y A$ 
From Appendix A ,  the actual corrosion r a t e  i s  given as: 

b u t  upon assuming tha t  the value for  I - lAE1 is i n  error (called i - l A E l ) ,  a 
different  corrosion r a t e  would be calculated: 

B. 1 



For a 50% overestimation of the actual corrosion ra te :  

( Icorr) 
= 0.667 ( I corr) =1.5 

and for  a 50% underestimation of the actual corrosion r a t e :  

The calculation will be demonstrated using Equation (B.4). Making use of Equa- 
t ions (B.2), (B.3), and (8.4): 

0.667A = [(r1r2)* + 4rl] 112 . 
2 

where A = [(rlr2)2 + 4r1I1 112 

From Appendix A, the expression fo r  the currents is substi tuted into 
Equation (B.6): 

I I A E I  rl = - 
- I A E ~  1 

- I-P I A E I  
r2 -7 - 1 ~ ~ 1  

e 

and rearranged t o  give: 

B.2 



4 

Equation (6.9) can be solved numerically; and the i can be used in - IAEI 
which 1-AE I Equation (6.10) to calculate the percent difference from I 

results in a *50% error in corrosion rate. 

x 100% 
- I4 = percent error in I - I A E I  - 'I-AEI i 

II-AEI 
(6.10) 

These results are shown in Figures B . l ,  6.2, and 6.3, where the measure- 
is explored as a function of AE. In general, the larger ment error in I 

the BE, the greater ~ 1 - 1 ~ ~ 1  can be from the correct value and still be within 
*50%. However, good electrochemical practice requires BE to be as small as 
possible to minimize the effects of each potential perturbation on the next 
measurement; AE = 20 mV was chosen to be an acceptable compromise. It is not 
surprising that a large AE gives a more accurate answer. The three-point 
method depends upon the nonlinear portions o f  Equation (6.1) to dominate. 
smal 1 perturbations, the exponentials in Equation (6.1) can be accurately 
expressed in linear form; and under these conditions the three-point method 
will fail (in fact, the equation will reduce down to the form used by commer- 
cial corrosion rate meters). 

- I  A E l  

For 

6.3 
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FIGURE B. l .  E r r o r  i n  1 - 1 ~ ~ 1  That Resul ts i n  a 250% E r r o r  i n  the  
Calcu lated Corrosion Rate When IAEI = 10 mV 
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