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FLUCTUATIONS AND FREEZING IN A ONE^DIMENSIONAL LIQUID:

J. D. Axe

Physics Department
Brookhaven National Laboratory
Upton, N.Y. 11973

INTRODUCTION

Many of the papers of this conference deal quite properly with
systems at their critical dimensionality, d*. (See, for example,
the contributions of Young, Villain, Als-Nielsen, Litster, and
Weeks.) In such systems the competing forces between organization
and disorder are nearly equally balanced and the analysis of the re-
sulting situation requires some subtelty. Not surprisingly, the
situation is somewhat simplified when the dimensionality falls below
d*. For ordinary translational ordering of fluids (i.e. crystalli-
zation) , d*=2. In this paper we explore the properties of certain
quasi-one-dimensional systems, which since they are effectively
below d*, resist the conventional crystalline order until abnormally
low temperatures, and assume instead a state which we liken to a
1-dimensional liquid.

The circumstances which promote this unusual state arise in
solids composed of two Cor more) interpretating sublattices with
spacings which are incommensurate one with another. The reason to
suspect something out of the ordinary is shown by the following
simple considerations. Imagine the two sublattices to be perfectly
periodic and write their interaction energy as a product of the
charge density, a.(r), of one times the potential, $_(r), of the
other, A B
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This shows that the two sublattices interact only by virtue of
common reciprocal lattice vectors. Suppose that both, sublattices
can be thought of as two-dimensional arrays of chains arranged on a
common rectangular lattice, but with different and incommensurate
interatomic spacings along the common chain direction, z. It then
follows trivially that the only common reciprocal lattice vectors
have Gz - Gj » 0 and the resulting forces, while constraining the
chains in the x,y plane, do not fix the relative positions of the
two sublattices along z. (In fact, the system can gain additional
interaction energy by a mutual modulation of the natural period of
one chain type with the period of the other, But this is a small
effect and does not change the qualitative conclusion that the
forces which act to localize the atoms on their chains are, at best,
abnormally weak.)

Perhaps the best studied example to date of the
type of structure we have in mind is the mercury chain compound
Hg3_^AsFg. It consists of an ordered body-centered tetragonal (bet)
lattice of AsFg anions (the host lattice) through which pass linear
chains of polymercury cations arranged in two identical perpendicu-
lar nonintersection arrays, one parallel to a^, the other to D^.
See Fig. 1. These will be referred to as the x- and y-arrays, re-
spectively. Room temperature diffraction studies have shown in
addition to the expected Bragg reflections, strong diffuse scattering
arranged into series of thin sheets in reciprocal space [1-3]. Fig.
2 is a sketch of the (HKO) scattering plane. It is established that
the diffuse sheets arise from the Hg-atoms and the narrow width of
the sheets shows that the intrachain Hg-Hg distance, d, is well de-
fined, and the nearly uniform distribution of intensity within a
sheet shows that there is little or no interference between scatter-
ing from different chains [3,4]. Thus positions of the atoms along
the chains are virtually uncorrelated from one chain to the next.
Finally, from the spacing of the diffuse sheets, the interchain Hg
distance,d = 2.67 i, which is incommensurate with aj, » 7.53 %. This
results from a non-stoichiometric composition Hg3-£AsFg with
3-5 - (aj/d) - 2.82. (A puzzling fact is that chemical analyses
consistently find 5 * 0 . Whether this is due to "pools" of excess
Hg, to random vacancies on the host lattice, or neither, is at
present unresolved.)
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Fig. 1. Structure of Hg3_$AsFg. The octahedral AsFg groups carry
one negative charge. The Hg-atoms on the chains are shown schemati-
cally. Above Tc * 120 K the average Hg density is uniform along
the chains. After A. J. Schultz et al. (Ref. 3).

Further work by Hastings et al. [4] extended the diffraction
study to low temperatures and concentrated on the behavior of the
diffuse scattering in the m = 1 sheets. Fig. 3 shows that what is
essentially a uniform distribution of intensity within a sheet at
room temperature evolves into a pronounced modulation at 180 K.
The modulation was interpreted as arising from short range correla-
tions between the position of Hg atoms on nearby parallel chains.
In the vicinity of Tc = 120 K sharp Bragg peaks grow out of the
sheet of diffuse scattering with a temperature dependence typical of
a continuous second order transformation (see inset, Fig. 3) and
which must be associated with interchain ordering. Very peculiar,
however, is the fact that the Bragg peaks do not develop at the posi-
tions on the sheets where the modulated diffuse intensity is strong-
est, but grow instead from regions of low intensity, i.e. the Bragg
peaks are preceded by little or no "critical" scattering. The nature
of the resulting ordering was deduced by Hastings et al. by noting
that the positions of the Bragg peaks on the sheets were such that
a reciprocal lattice vector from the x-array coincided with one from
the y-array (at a point on the intsrsectionof the two m = 1 sheets).
This fact, in conjunction with the theorem of the first paragraph,
strongly implicates interactions between perpendicular chains as the
dominant factor in the ordering. Unexplained, however, was the
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Fig. 2. A schematic representation of the diffraction pattern of
Hg3-6AsFg at room temperature. The straight lines represent the
intersection of sheets of diffuse scattering lying perpendicular
to the figure with the HKO scattering plane.
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Fig. 3. Temperature dependent evolution of short and long range
order as seen by the modulation of the m=l diffuse sheet. Parallel
chain interactions are responsible for the broad peaks at h % ± 0.4.
The long range order appears in the sharp Bragg peaks at h - (1-6)
% 0.82. The inset shows the temperature dependent growth of the
Bragg scattering below Tc. After J. M. Hastings et al. (Ref. 4).



apparent sudden reversal of the relative importance of the parallel
chain interactions, responsible for the short range order, and per-
pendicular chain interactions responsible for the long range order.

At high temperatures Hastings et al. also found that emanating
from all points of the diffuse scattering sheets are inelastic
scattering surfaces with linear dispersion depending only upon the
component, Q, of momentum along the chain direction. That is
u • ± v |Q-Qm| and Qm * 27rm/d specifies the position of the m'th
diffuse sheet. They ascribed this scattering to 1-d longitudinal
phonons propagating along the independent Hg chains and found that
v » 4.4 x 10^ cm/sec.

The remainder of this talk is devoted to a discussion of a
simple model developed and analyzed by Emery and Axe [5] for
H83-(SAsF6 (although with little modification it should be useful in
thinking about other linear incommensurate phases as well). It in-
corporates competing parallel and perpendicular chain interactions,
predicts correctly the long range order and clarifies the apparent
failure of the system to anticipate this ordering in the fluctuations
above Tc. In addition, it treats carefully the effects of one-
dimensional fluctuations, and predicts that the Hg chains at high
temperatures behave as a one-dimensional liquid. The subsequent
phase transformation can be thought of as a freezing of the 1-d Hg
liquid, and can be discussed in terms of self-consistent solutions
of the sine-Gordon Hamiltonian.

THE MODEL HAMILTONIAN

The Hamiltonian is the sum of intra- and inter-chain contribu-
tions, ^intra assumes harmonic interactions, 2Cin«-ra •* Z K|. where
for example " H x

° 1 £ " tt«> - xUx,a)-d)
2 (2)K . £ xi + K<xUx,a+l) - xUx

where (H(J.x,a), x(Ax,a)) are the components of the momentum and
position vectors of the ct'th particle on the £xth chain. (The sub-
script i « x,y is to be used to specify the x- or y-array of chains.)
The effective near-neighbor stiffness constant K * mv^/d* is chosen
to give the measured 1-d phonon velocity, m is the bare Hg atom
mass.

The configuration of the *-x'th chain is specified by the
particle density operators, for example

PS,X<X> -Z^GwtOJsc.cO). (3)



In the disordered (high temperature) phase the Hg density is uni-
formly distributed along the chains, i.e. the. thermodynamic averages

<P. (x)> « <p. (y)> " constant. In terms of the Fourier transformed

variables, ^oj-CQ)* • <?, (P)> * 0 except for 3? • Q • 0. The quan-

t i t i e s (<PAx(Qm)>> < PPy^P
m)> f O r ^ F

m ' ^ " 2 7 m / d ~ a n b e t a k e t t a S *
complete set of order parameters specifying the chain ordering trans-
formation. We will see that the instability is associated with the
primary order parameters (<pp (Q.)>, <p. (P.,)>). Note that tee have

retained the notion of a local chain variable by Fourier transform-
ing only the position along the chain direction. Although it is
useful in what follows to introduce wave vector components perpen-
dicular to the chain directions as well, it is still important to
distinguish between parallel and perpendicular components, as the
latter are conjugate to discrete chain positions and can be restric-
ted to the first Brillouin zone, whereas the former is associated
with a continuous distribution along the chains and are thus unre-
stricted.

We introduce coupling between chains of the form

Kinter * 'Sex + Kyy + "̂ xy where

\ ̂ / ^ i y K y K ^ t e W ^ W (4b)

These equations can be rewritten in terms of their Fourier trans-
forms, e.g.

and for example

| 2 x ( - Q ) (4c)

where N is the number of atoms per chain.

1. Range of Interactions. We find that only rather near-
neighbor coupling is necessary to explain the observed behavior of
Hg3_gAsFg. The short range of the interchain coupling is under-
standable. If we associate a charge density, a^x(x) * e*f>£X(x) vith



the atomic density and calculate the Coulomb coupling between two
parallel chains (Jlx.Jlx1) separated by a distance R, we find

d x - — K- ( Q R ) ( 5 a )

[(x-x'r+R^i

- 1 / 2 -OR
e y K (QR » 1) (5b)

where K (z) is a Bessel function. This shows that the coupling be-
tween charge modulations on parallel chains is exponentially small
if the wave vector of the modulation is large compared to the in-
verse interchain spacing, R""1. The coupling between perpendicular
chains shows similar behavior. The important charge fluctuations
are at multiples of Qx = (2tr/d) and for near-neighbor parallel chains
Q^R » 2ir(aL/d) * 27r(3-<S). Although neighbor perpendicular chains are
closer, we are justified not only in neglecting interactions between
widely separated chains, but also in neglecting interactions involv-
ing harmonics of the fundamental chain spacing even on nearby chains.
That is, the secondary order parameters <PsLX(Qm)>, etc. with m > 1
play a vanishingly small role in the interchain, coupling.

HIGH TEMPERATURE PROPERTIES (T > T£)

We discuss the thermodynamics using a generalized mean field
theory in which the interchain coupling is approximated by a mean
field but the resulting one-dimensional chain problem is solved
exactly [6]. At low temperatures, where the full nonlinear response
of the chains is important, this formulation leads to a sine-Gordon
Hamiltonian, and thus is of most direct relevance for this confer-
ence. It is worthwhile, however, to sketch some results for T > Tc

since they display several unusual features of this system and es-
tablish much of the necessary justification for the model itself.
For T > Tc we need only the linear response, x°» of the harmonic

(6a)

> _ 2 vl(-q fp) A(p-q)<p (p)> (6b)

P y

where we have now introduced Fourier components perpendicular to
the chain directions, so that for the x-array q = (Q,qy,qz) and for
the y-array j? = (px,P,p2). The notation emphasizes the mixed nature
of the momentum variables, with the components represented by lower

chain, so that

<px(q)> -

heff(q-) =

X°(q)1

h°tf)

iSff(q)

- v««(q)<p
X



case symbols being defined modulo a reciprocal lattice vector and
thus reducible to the first Brillouin zone. This mixed momentum
representation is also in evidence through the function

A(p-q) 2 1 if p"x - q(mod<!);qy - PGnodS
1);^ - q

z'

•= 0 otherwise,

where <£(<*•) is a reciprocal lattice vector of the x(y)-array.

Eq. (6), together with a similar set defining <py(p)> are to
be solved for the cou^ed response xOl) = ^ x ^ ) * ^ 0 ^ * °r equiva-
lently the pair correlation functions <Px(q)px(~^> * kTx($)- (We
will justify shortly the use of the classical form of the fluctua-
tion-dissipation theorem.) Because of the umklapp momentum terms,
the solutions can only be developed perturbatively. Their character
depends upon the relationship of the momenta components along the
two chain directions.

1. Uncoupled Solutions. In regions of reciprocal space such
that P and Q are not approximately equal the two chain arrays are
effective.'y decoupled, and for the x-array

<Px(q)Px(-qT « f ^ 0 (7)
X X l+Sv«(q)S°(Q)

where 6 = (kT) and a similar expression holds for the y-array.
S°(Q) * kTx°(Q) is the pair correlation function for an independent
one-dimensional harmonic chain. It is given by

2
and <(u -u ) > may be evaluated as an ensemble average over the
single chain Hamiltonian, 3CQ

/

-•nr/a

2 kT 2
vhare a = — r d is the mean square fluctuation in nearest neighbor
distance. As is well known, even though there is a well-defined
average spacing, ad, for a'th neighbors, the harmonic 1-d chain
lacks long range order since the mean square fluctuation about ad
increases linearly with |a|. Substituting (9) into (8) yields a
geometric series which can easily be summed to give
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This is a typical liquid-like scattering function Csee Fig. 4}.
Using the measured phonon velocity, we find for Hg3_$AsFg,
(a/a)2 - 6.4 x 10~* at room temperature, which justifies the use of
the harmonic approximation within the chain.

In the high temperature limit (somewhat above room temperature
for Hg3_5AsFg) that we may rst the denominator of (7) to unity and
we recover the independent chain limit. For Qd » (a/d)2 which is
easily fulfilled in this case, S°(Q) consists of a series of nearly
Lorentzian peaks (the sheets of scattering) centered at Qm » 2ira/d
with a half width at half maximum, <m, given by «md • 2ir2(<j/<i)2m2.

The above prediction, one of several made by this model, was
put to the test in a second series of neutron scattering experiments
by Heilmann, et al. [7]. Figure 5, taken from their paper, shows
that the measured linewidth <m does increase as m2. Furthermore,
the absolute value of <m is quite close to that calculated in the
preceding paragraph. (Much of the <v 20% discrepancy arises from a
downward revision of v from 4.4 to 3.6 x 10^ cm/sec, based upon
more careful measurements and resolution corrections. But consider-
ing the residual uncertainty in v,it is by no means clear that the
apparent discrepancy is to be taken seriously. Measurements of the
temperature dependence of icm for m=3 also verify the predicted linear
behavior for 120 K < T < 300 K. It thus appears that to a very good
approximation, the high temperature thermal behavior of the Hg-chains
is that of a 1-d harmonic liquid.

As the temperature is lowered, the form of (7) and (8) shows
that the effect of parallel chain interaction is first evidenced
near Q = Q]_ since sueeessive maxima in S°(Qm) = S°(Qi)/m2. (This
explains the failure to observe modulation on the m-2 sheet at
temperatures where such modulation was pronounced at m=l.) The
modulation along the sheet is determined by v"(q") and the existing
data can be fit semiquantitatively with contributions from near
neighbor and next near neighbor chains only, with vnnn % -2vnn
% 0.14 K. (The interaction seems other than direct Coulomb as vnn

is the wrong sign and both are ̂  50 too large.) Although the inter-
actions are weak, they are sufficiently enchanced by the long coher-
ence length within a chain as to tend toward an ordered state only a
few degrees below Tc•• 120 K.

2. Coupled Solutions. The character of the solutions of (6),
together with the corresponding ones for py(p) are of a different
character if the momenta along the two chains are nearly equal,
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Fig. 4. The scattering function, S (Q), for a 1-d harmonic model
(see Eq. (10) shows a typical liquid-like pattern. For this case,
a/d « 1/10, the correlations are weak.

10.0

5.0 T*300 K

Fig. 5. Q width (icm • rm/v) of successive planes of 1-d scattering
in Hg3u$AsFg. The solid line represents the -theoretical value based
upon the independently measured phonon velocity, v.



P • Q. For these momenta, the x- and y-arrays are strongly coupled, 11
giving rise to new fluctuation modes, p± (q) • [px(<D - PyCq)J and
the fluctuation scattering is proportional to

l+8(v»(q)+vL(q))S°(Q)

which for reasons discussed above is enhanced for Q - Qm, that is
along the line of intersection of the m'th sheets (a reflection of
the simple physics of (1)) and most enhanced for m=l. Whether an
instability first arises on the m»l sheet at (Qi,Qi,q2) due to per-
pendicular chain coupling or at a more general position (Qlrqy,qz)
due to parallel chain coupling depends upon whether the denominator
is smaller in (11) or (7); the former is the case for Hg3_£AsFg.
We believe that the apparent failure to observe critical scattering
above T c is the result of the fact that the region of enhanced
scattering is restricted to a linear dimension of order 2<i in the
(aT,bT) plane. Since this width is below the existing experimental
resolution, the basal plane scans should have the appearance of weak
Bragg scattering persisting abov;s Tc. Just such scattering has been
observed, and it should be possible to establish its true character
by determining whether the scattering is broad or narrow in the z
direction, perpendicular to both chain arrays. In both sense (repul-
sive) and magnitude v" seems roughly consistent with Coulombic in-
teractions.

The fact that the instability occurs exclusively on the m=l
sheet means that the long range order first appears as a weak purely
sinusoidal modulation of the otherwise uniform average mass density
of a Hg-chain, <pgx(x)>. A similar sinusoidal mass density wave
o.lso breaks the continuous translation symmetry of a liquid crystal
in the nematic-smectic transformation, as discussed by Litster in
this conference. Indeed much of the physics is the same, although
there are also differences connected with the fact that the liquid
crystal system is at its critical dimensionality, d*=3.

LONG RANGE ORDER

As usual, we associate the order parameter with the mode giving
rise to the divergent fluctuations (i.e. with the coupled mode
solutions discussed above) and thus define a complex order parameter,
niei* - <Px(qc)> * ±

 <Py(q"c)
>. The arbitrary phase factor e** plays

no role in determining the energetics of the system and is associated
with a zero energy "sliding mode," familiar in incommensurate systems.
For convenience, we set ty = 0. m specifies the amplitude of the
sinusoidal modulation of the mean atomic density on a chain, e.g.

<pj (Q-,)> * n,e 2x, where <j>, is a phase associated with the per-

qpendicular components of q. and can be made to vanish by an appro-
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priate choice of origin for each chain. Using this convention the 12
mean field potential v, obtained by replacing one of the density
operators in (4) by its mean value, is identical for each chain.
This allows us in what follows to suppress the chain index l^, and
we are left with the problem of a 1-d harmonic chain in a (commen-
surate) staggered field,

Va|n l h c 0 8

where h • 2(vu(qc) + vl(qc)). To discuss the evolution of the low
temperature phase we must calculate the growth of all of the Fourier
components of the atomic density on a chain. This can be done
classically using transfer matrix techniques [8] since except at very
low temperatures the effect of zero point fluctuations are negligible.
The long intrachain coherence length, K J 1 % 200 d, allows us to pass
to the continuum limit ((ua+i-uo) •*• d(3u(x)/3x)) and (12) reduces to
the classical sine-Gordon potential and we must calculate

) e" 6 V ( 1 3 a )

- <$ IcosOu|$ >/<$ |« > (13b)
o TH o o o

where * = ce (q,v) is the lowest eigen vector of the transfer matrix
and satisfies0the Mathieu equation.

r,2 -i
p-r + (a -2qcos2v) * (v) - 0 (14a)
|_dv2 ° J °

4K32hn1

g
(14b)

where 2v » Qju. The transformation temperature T c » (k6c)~
 m

[-2131]^'^/^^ ^ obtained by setting the denominator of (9) to zero
for q • qc. Note that Te^ is the geometric mean of the harmonic
stiffness, K, and the ordering field, h.

Eq. (13) can be readily evaluated by developing $0(.v) in a
Fourier series. Wnen m«l (13) must be solved self-consistently
with (14b). The temperature dependence of the first three Fourier
components of the atomic density are shown in Fig. 6. For small
n, (T %• T )
X C
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Fig. 6. Self-consistent solutions of the sine-Gordon Hamiltonian
for the order parameter, r^, associated with the first three density
wave components.

16 [1 - —] (15)

and n is proportional to n,m, while near T • 0

As I + 0, the density distribution on the chain approaches that of
a sum of Gaussians centered at XQ » nd with a mean square flucuta-
tion <(x-x )2> « (T/VS Q?TC).

The temperature dependence of the Bragg scattering associated
with Qi as studied by Hastings et al. (see inset Fig. 3), rises
much more quickly than predicted by (15). We believe that the rea-
son for this is that the fluctuations associated with v» may not be
neglected for T ifc Tc because they are divergent at T » Tj a few
degrees below Tc. The coupling of the two types of order parameters
not only has the effect of promoting a more rapid growth in ni(T)
but also in suppressing the v» fluctuations below Tc, a feature
which is very noticeable in Fig. 3. As this aspect of the theory
is specialized to Hg3_$AsFg we will not pursue it further .here.
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We conclude with a brief discussion of the dynamical properties
that are to be expected in a system of loosely coupled harmonic
chains. The dynamics are readily susceptible to calculation and
contain several novel features which one can compare with neutron
scattering experiments in progress.

In the high temperature limit, it is possible to redo the cal-
culations summarized in (8) and (9) for the time dependent pair
correlations

«

The result, in the vicinity of the m'th diffuse sheet (i.e.

m m

Eq. (16) deserves several comments.

1. The unusual product-of-Lorentzian form is characteristic
of correlation functions of one-dimensional problems [9].

2. In deriving (16) one cannot proceed through the familiar
separation into a product of a time dependent and time independent
parts, as the latter (Debye-Waller) term vanishes while the time
dependent fluctuations diverge. Similarly, there is no separation
into one- and multiphonon terms. Eq. (16) represents the total
density response.

3. When (16) is integrated over frequency one recovers (10),
and,as with a 3-d liquid, there is no truly elastic scattering (i.e.
no term proportional to £(&>)).

It is possible to extend the above results to include interchain
coupling in the random phase approximation. The dynamical analogs
of (7) and (11) are obtained by replacing <p.(q)p.(q)> by

and S°(Q) by S°(Q,u) in those expressions.



Below Tc the dynamics can be discussed in terms of weakly 15
coupled sine-Gordoa systems. For an individual chain there are two
sorts of excitations to consider IlOj. The first are free solitons
for which

1 6 *" hnl2 2

At low temperatures, the minimum energy necessary to create a
soliton is so large (ftAs/k <v 700 K) that these are not important
thermal excitations, but the gap vanishes as nj. ' near Tc. It may
be possible to directly excite these soliton defect pairs with
neutrons, or at least to observe the scattering from the thermally
excited pairs near Tc. This latter experiment would be directly
analogous to the experiments described by Steiner in this volume on
the 1-d ferromagnetic system CsNiF,. The second kind of excitations
can be described as bound soliton-antisoliton pairs or doublets for
which

where v * 1,2,...8~ and 9 • (wfi/2mvd). The maximum value of v is
the boundary of stability for breakup into a free soliton-antisoliton

pair, whereas for small v, oi % ir(—-i) v and the excitations can
v md*

be thought of as ordinary phonons near the bottom of the sinusoidal
potential. These single-chain excitations form the basis for coupled
collective modes which satisfy the lattice translational symmetry.
(In particular there will still be a collective gapless Goldstone
mode representing motion of the chains without change of the rela-
tive phase relation between them.) The appearance of a gap in the
1-d phonon spectrum below Tc has been recently observed [11]. As
shown in Figure 7, the gap drops rapidly as I + T., in at least
qualitative agreement with the prediction, A * m*'2. Further
inelastic neutron scattering experiments are planned.
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Fig. 7. Temperature dependence of energy gap in Hĝ -chain spectrum
induced by long range order. The dashed curve is merely a guide to
the eye.
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