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WALL RESISTIVITY EFFECTS IN A TOROIDAL PINCH, FEEDBACK STABILIZATION

by

Guthrle Miller

ABSTRACT

The instability of a toroidal pinch with resistive
walls is calculated. Feedback stabilization is
considered*

I. INTRODUCTION

In this report the stability of a reversed field pinch surrounded by walls

of finite electrical conductivity is investigated. Pfirsch and Tasso have

derived a general theorem stating that a magnetohydrodynamically unstable

configuration cannot be stabilized by the introduction of resistive walls*

Here, the nature of the instability with resistive walls is examined and

feedback stabilization is considered.

A simple sharp-boundary model for the plasma is used. The stability

calculation for thin resistive walls using this model was done long ago.

Although the formulae In Ref. 2 agree with those derived in this report, they

are applied in a different parameter regiite. In Ref. 2 the situation of

interest had Bz » Bg, where Bz and BQ are the magnetic field components at the

plasma surface. However, for Bz » Bg, there is essentially no wall

stabilization, so wall resistivity effects are not of great interest* For the

reversed field pinch, Be » Bz and wall stabilization can be important' Wall

stabilization is, in fact, essential to the stability of the reversed field



pinch. Therefore, the actual nonexlstence of true wall stabilization, as

pointed out by Pfirsch and Tasso, raises interesting questions about how to

deal with the residual wall-resistivity-related instability.

The general ideas and some of the analysis in this report would carry over

to the high-beta stellarator, another configuration dependent on wall

stabilization.

II. PLASMA MOTION WITH A RESISTIVE WALL

In this section the plasma equation of motion is obtained using the

sharp-boundary model and the near-marginal-stability approximation-. Using

these assumptions, the equation of motion in general form for a plasma

displacement £ ~ Re{|(r)exp[i(m9-hz)+Yt]} can be written down immediately,3

' ^ B 5 ^ + t(B7) g]e} a d8 dz , (1)
itapLI (ha)

where £ = ?r(a) with a the plasma radius, p is the plasma density, L is the

total plasma length (over which the z integration is taken), B is the magnetic

field, and u is equal to £ inside the plasma and its analytic continuation

outside. The brackets in Eq. (1) denote the jump in the quantity enclosed at r

• a, that is, outside minus inside.

To evaluate the right-hand side of Eq. (1) it is necessary to know the

plasma displacement and the magnetic field inside and outside the plasma.

These are solutions of the marginal equation of motion and are as follows.

B1 -

2° ' ̂ r ge + Bz ez + Lc . (2)

where the superscripts i and o denote the regions inside or outside the plasma

boundary, and
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Vht>

X - CIm(hr) + DK^hr) . (3)

In Eq. (3) and subsequent expressions, the exponential 8 and z dependence is

not shown for simplicity*

The constant plasma equilibrium pressure p is determined from the magnetic

fields given by Eq. (2) to be p = 6B2/2, where B = (B2, + B 2 ) 1 / 2 .

The coefficients C and D are obtained from the boundary conditions at the

plasma and imperfectly conducting wall surfaces. The boundary condition at the

plasma surface, from B»n = 0, is

X'(ha) = CIm(ha) + DK^ha) = ££ (mBe - haBz) , (4)
rid

where the prime denotes differentiation with respect to the variable hr.

The physical origin of the second boundary condition is discussed in the

next section. If x(ha> is specified together with x'(ha) then the magnetic

field perturbation outside the plasma is determined. The magnetic field

perturbation inside the plasma is completely determined by the plasma surface

deformation £ alone. In terms of x(ha) , Eq. (1) gives the following result.

halm(ha) B | h
2B2(l-B) (mB9-haBz)

2 Im(ha)X(ha)
+Io(ha) a 2 p P +
 a 2 p Im(ha)X'(ha)

It is more natural to express the result in terms of the magnetic field

perturbation at the outer wall, r = b, where the physical boundary condition

occurs* This can be done as follows.

Im(ha)X(ha)

Im(ha)X'(ha)



where

= hbi,;(hb)K1;(hb)g

x(hb)
x'(hb)

The quantity x(hb)/x'(hb) or g is unknown at this stage and merely summarizes

the effect of the outer wall. With a perfectly conducting wall, x' * 0 and g *
00 • With a perfectly insulating wall, or a vacuum, g •*• 0. The suggestive

notation YT used in Eq. (6) is explained by considering the decay of a magnetic

field ~ Re{B(r)exp[i(m6-hz)+Yt]} inside and outside of an imperfectly

conducting cylinder. The eigenvalue equation for Y is

(hb)
Im(hb) X'(hb)

which, from Eq. (6), reduces to the equation YT * -1. Thus the quantity T

(which may depend on Y) is the decay time for the magnetic field.

In Fig. 1 are shown plots of a?- • -Y » obtained from Eq. (5), as a

function of the longitudinal wave number for a perfectly conducting wall with

b/a - 2 and b/a = 10. Note that the limit b/a + « is equivalent to YT + 0.

Only m « 1 is shown because other m values are stable. Figure 1 shows that for

Bz/Bg small (contrary to the situation in a Tokam&k) and 3 small, the m = 1

mode is wall stabilized. For long times however, the resistive wall looks like

a vacuum and this stability is lost.

Toroidal geometry, as a first approximation, merely limits the values of h

to h • n/R. The points plotted in Fig. 1 correspond to R/a - 5, and show that

for fairly small R/a only a few n values are unstable. Figure 2 shows the wall

ratio b/a necessary for marginal stability.



III. DETERMINATION OF g

To obtain g, defined by Eq. (6), the magnetic field in the wall material

must be found by solving the equations V x B « aE, V x E = -3B/3t, and joining

the solution continuously to the vacuum magnetic field solutions. These

equations reduce to the single equation V^B - YOB, solutions of which are

discussed in the Appendix.

If the wall material extends from r = b to r = d, the magnetic field is

given in the region r > d by

Br

B0 - f

Bz - - ihGK^hr) , (8)

and by

3r - k[CIm(kr)+DKm(kr)] --^22 [EIm(kr)+FKm(kr)]
hzr

B6 = ~ lClm(kr)-»K]11(kr)] + ^ ~ [EIra(kr)+FK;(kr)l

k2

B z = i- [CIm(kr)+DKm(kr)] , (9)

for d > r > b, where k* = h + ya. If x is the magnetic scalar potential in

the region r < b and x' denotes its derivative with respect to hr, then the

boundary conditions that insure the continuity of the three components of B at

r = b and R = d are 6 equations in the 6 unknowns C, D, E, F, G, and x'(hb).

By solving these equations x'(hb) is obtained In terms of x(hb) as follows.



CA + 4 oBD
— j | — . ao>

fc3bdAD(AB + J «DC - ; ^ _ DA)

where

k2h2bd

A

B * ) D ( ) ; ( )

C - K^(kb)Im(kd) - i;<kb)Km(kd)

D - Km(kb)Io(kd) - Im(kb)Km(kd)

Equation (10) is too cumbersome to be very useful. There are two limiting

situations in which the problem is greatly simplified. These are (1) an

infinitely thick wall, and (2) a thin wall. For the first case the magnetic

field in the wall is given by Eq. (9) with the coefficients C and E equal to

zero. Continuity of B afc r - b yields 3 equations in the 3 unknowns D, F, &nd

x'(hb). Solving these equations gives the result

X(hb) kKm(kb)
 l

 k2h2b2

For a thin wall, the magnetic field is given by Eq. (8) for r ? b. The

current, wMch is assumed to be uniformly distributed in the wall, is j ? -

[Bg]/A, JQ • hbjz/m from the equations 7 x S " i a n d Y*l * °» respectively,

where A is the wall thickness and the brackets denote the jump in the quantity

enclosed at r • b. The r component of the equation -3B/3t • 7 x E reduces to



to

and the continuity of Br at the inner and outer wall surfaces provides 2

equations in the 2 unknowns G and x(hb), which can be solved for x( h b)•

result is

X(hb) _ Km ( h b ) hYQb2A
x'(bb) - K; (hb) " m 2 + ( h b ) 2

Whether a wall of a given moderately 9mall thickness appears thick or thin

depends on Y- For y small the wall can be considered thin, while for Y large

it appears thick. The large-Y expansion of Eq. (11) is

X(hb) , hb 2(YQ) 1 / 2

X'(hb) " " ffl2+(hb)2

A formula that interpolates between Eq. (13), for large Y» and Eq. (12), for

small y> is as follows:

X(hb) Km ( h b ) , n = hb yobb
X'(hb) " K;(hb) - ^ " " m2 + ( h b )2 (1 + YCTA2)l/2

where ga, defined above, is an approximate formula for g [g is defined by

Eq. (6)].

Somewhat surprisingly, ga is a good approximation for g obtained from the

exact expression, Eq. (10), over a large range of parameters, hb from 0 to 2

and A/b from 0 to 0.5. This is shown in Fig. 3. The agreement is sufficiently

good that for most purposes the exact expression, Eq. (10), can be dispensed

with and Eq. (14) used instead.



The problem of the decay of the magnetic field inside and outside of an

imperfectly conducting cylinder may now be solved. The eigenvalue equation,

Eq« (7), becomes (using the approximate version of g)

Y - _ 1 - (m
2 + (hb)2)(l + YQA 2) 1 / 2

T oAh2b3Im(hb)Km(hb)

which is to be solved for y.

IV. FEEDBACK STABILIZATION THROUGH A THIN RESISTIVE WALL

Hall stabilization results from currents set up by the plasma motion

flowing in the conducting wall. These currents eventually decay, allowing the

pj-r̂ ma to move without constraint. The growth rate is roughly 1/T, where T is

a characteristic time for the decay of the wall currents. This instability

could be stabilized by feedback, and in this section an equation of motion for

a plasma surrounded by a thin resistive wall is derived, where external forcas

are provided by driven windings. The stability with a closed-loop feedback

system is then considered.

The feedback windings are assumed to lie on the surface r « b, presumably

just outside the shell, which is of small thickness A. Placing the windings

further away would reduce their effectiveness. It is most important to have

the shell close to the plasma so that placing the feedback windings inside the

shell is probably not a good idea.

The boundary conJitions at r •> b, which relate the vacuum magnetic fields

inside and outside, are basically those used to derive Eq. (12) with the

exception that in the shell, E = (i-io)/°> where J is the total current and JQA

is the current driven in the feedback windings. As a result, Eq. (12) becomes

(hb) V h b > hYQb2A JQ8
X'(hb) " K£(hb) m2 + ( h b )2 mx'(hb)



For definitness, a helical, 2-wire feedback winding is assumed. If I is

the current in each wire, the m, h Fourier component of the current

distribution is

(17)

Using Eqs. (16) and (17) and returning to Eq. (1), the following plasma

equation of motion is obtained*

l ~
YT(l-x)

where YQ is the growth rate squared for b/a > <» [see Eq. (5)], F is the

quasi-steady force produced by the driven windings,

m
n. ^ ( m Be haBz) I , (19)

tra2p Im ( h a> Km ( h a>

and FR is the toroidal force, which acts only for h = 0, m = 1,

, (20)

with



T S- mm

m2 + (hb)2

The quantity bj is the radial location of a perfectly conducting wall that

would produce marginal stability. It is assumed that b < bj, which implies x >

xj. With a perfectly conducting wall the oscillation frequency is

2Y0
2
 x / xl "
0 —ii

1 - x

obtained by taking the limit Y T •*• <*> in Eq. (18).

An important simplification of Eq. (18) results because YQ » 1/T, which

allows the acceleration term n to be neglected. Use of the word feedback

means that F is dependent on £• A (possibly frequency dependent) gain factor a

is defined by F = -aYg?» which implies

(21)
2 h2abIm(ha)Km(hb)

Ignoring FR, the final equation of motion with feedback is as follows

- a - yx(x/xx - 1 ) ] . (22)

Equation (22) shows that with no feedback (a * 0 ) , the growth rate is given by

Y = - -r-i r • (23)
T X/X, - 1
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The electrical characteristics of the driven winding are obtained by

considering the voltage across the winding terminals. For a 2-wire winding

this is given by V = 2hb3x'(hb)/3t per unit length. Using Eq. (16) and

Eq. (4), x'(hb) can be obtained, and the result for V is given by the

equivalent circuit shown in Fig. 4, with

1 i;(hb)K^(ha)h2ab(l - x)

L = - 8 RTI^(hb)K^,(hb)h
2b2(l - x)

where RIJ. is the major radius of the torus. In practical units £B is a current

in kA equal to 0.8 £(cm) B(kG), and RT is an inductance in uH equal to 1.25

RT(m). Using the resistivity of aluminum (3 10"6 £i-cm), Rj/CoAb) is a

resistance in mfi equal to 3 10"3 RT(m)/fA(cm)b(m)].

It is likely that the source impedance of the ciruit used to drive the

feedback windings would be much larger than the resistance or inductive

impedance (at Y ~ 1/x) given by Eq. (24). With a purely resistive source the

feedback circuit is as shown in Fig. 5, where V is controlled by the plasma

displacement €• The displacement could be detected by means of the voltage

induced on the feedback windings themselves.

The feedback current is given by Eq. (21) or equivalently by I =

OXJ(1-X)/[X(1-XJ)]IQ with IQ defined by Eq. (24). The necessary and sufficient

condition for stability with feedback is a > 1. The power dissipated depends

on the fluctuation level with feedback. Fluctuations are caused either by

noise in the feedback system or by fluctuating external influences, both of

which are unknown. The feedback power is I Rg, with I expressed in terms of

the r. m« s. level of the fluctuations.

Numerical values for the equivalent circuit shown in Fig. 5 are given in

Table I using re?jtor-like parameters. The necessary voltages, currents, and

response timed seem readily attainable using present technology.
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Fig. 1.
The m = I oscillation frequency (or instability growth rate
of a toroidal z pinch vs the longitudinal mode number n =
5ka (corresponding to R/a = 5).
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Fig. 2.
Wall radius to plasma radius ratio for
marginal stability of the ra - 1 mode.
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Fig. 3.

Ratio of the exact value of g to the approximation g as a
function of the growth rate y.
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Fig. 4.
Equivalent circuit of the feedback
winding.

O
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1
Fig. 5.

Equivalent circuit of a feedback system
utilizing a feedback controlled voltage
source V with source resistance R .

s

TABLE 1
NUMERICAL EXAMPLE

Pinch Parameters

RT - 12.7 m

b - 1.5 m

a - 1.2 m

A « 1 cm

B 30 kG

,/Be - 0.2

3-0.2

ha - 0.5

bj = 2.6 m

Equivalent Circuit

L - 25 uH

R - 0.14 mQ

T - L/R - 180 ms

Io - U0 kA

V = 11 Volts R (mfi) a ?(cm)
s
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APPENDIX

SOLUTIONS OF V2B - u2B, 7»g - 0

The equation 7 B = u B is of second order so there are 2 linearly

independent solutions for each vector component, or 6 solutions in all. These

are reduced to 4 by the divergence condition. In terms of scalar functions §

and v with sinusoidal 6 and z dependence, e. g., 4> ~ Re{<Kr)exp[i(m0-hz)] }

satisfying the equations V ^ • ŷ 4>, 7£i(» « \i*ty, the general solution can be

written as

The general solution of V2if> = p-<(, is given by

<Kr) - CIm(kr) + DKm(kr)

with k2 - h2 + w2.
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