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The motivation for this work is to understand in more detail certain subtleties of

the zeta-function regularization procedure1'3 with application to the computation of

the gravitational Casimir energy in non-Abelian Kaluza-Klein theories.3'6 This Casimir

energy has been ofinterest recently in the literature; it is expected to play an important

role in the dynamics of spontaneous compactification.7

The problem to be addressed arises in the following way. We begin with the action

for quantum gravity in an m + JV-dimensional space, which we shall take to be the direct

product of m-dimensional Euclidean space with coordinates xa and the JV-sphere 5 jV with

coordinates y*. (Following the prescription of Hawking,8 we define the theory in Euclidean

space; physical quantities are then obtained by analytic continuation back to Minkowski

space.) The action is then

g.f. + gh.), (1)

where "p./." stands for the gauge-fixing terms, and ugh." is the ghost action. We expand
o

ff/u/ = 9fttf + hiun (2)

0

where g^, is the metric of the above-mentioned background, and hm is the quantum

fluctuation. Greek indices run over the entire m + N dimensional manifold. To compute

the Casimir energy, or equivalently the one-loop effective potential, we keep only the

quadratic pieces in h^,,:

m J | » (^ ) (3)
and similarly we compute the matrix Sch " the quadratic piece in the ghost fields. The

one-loop effective action is then

IW = Sd + j to D e t S ~la D e t "̂Gh W

where 5ci is the classical action evaluated at S. Explicitly, for a convenient gauge choice

the matrix 5 is given by

S& [gfl=j

- hh>») R^ + hfhfRj^ (5)



Here indices on h^ are raised with W* and h = gi^h^; R,* and Rx^,,, are respectively
o

the Ricci tensor and Riemann tensor associated with 9^

It is useful to write

where

v-(J 4) m
and ifcy is the metric on S1*, and where Py*, is traceless on both SN and on the full manifold,

i.e.,

The determinant of S can be obtained by solving the eigenvalue problem

khju,. (9)

The traceless part of hap (i.e. pap) is relatively straightforward although not simple to

handle. The problem comes when one studies the trace modes p and \. As a consequence

of Eq. (9), they satisfy the coupled equations

and

- A x - A J5 'X - ~2 & ~ X*'

where r is the radius of 5 jV and A is the operator

A = J 2 - 2 A - V 2 ; V2 = V ^ + i v | . (12)

After some computations involving the spectrum of the laplacian V | on the unit TV-sphere,

one arrives at the formal expression3

* X=0 (13)
2(JV-2)a(jy-2)(m-2) 1 * W

r*
1



where the product on k comes from Vj^ (the laplacian on m-dimensional Euclidean space},

the product on / comes from Vj, and

is the degeneracy of scalar eigenvalues of Vj, and k2 is of course kaka. By contrast, the

traceless modes p^, give rise to formal determinants whose factors are only quadratic in k

and I:

De, w..=nn n
t = l k 1=1,);

where the product on i is finite and comes from the various kinds of eigenmodes of Vj that

are present. The determinants in Eq. (13) and (15) are ill-defined, since they correspond

to products over infinitely many eigenvalues. A standard technique to handle this is the

zeta-function method. Given an operator 0 with an increasing set of eigenvalues {A,}, one

defines the associated zeta-function

For J sufficiently large, this sum will converge. In the region where the right-hand side does

not converge one can define £(a) by analytic continuation, and one then takes advantage

of the formal equation

da t=0 ~ *-* """• ^

to define

lnDetO = — -r- . (181

Thus for the traceless case, one has to evaluate a zeta-function of the form

1=10 i T

whereas for the coupled scalars the analogous expression is

^ / * (20)

The values of c\ and e2 can be read off from Eq. (13).



For the traceleu case, when m + N is odd, there are techniques available, which we

shall review below, for performing the analytic continuation and thereby obtaining a well-

defined expression for the determinant. In order to take advantage of this knowledge in

the coupled case, the procedure that has been adopted in the literature3'5-6 is as follows:

one first makes the observation that

, (21)
L2 [ j2 + ( j y - i y + C l + tC21L2 1 P + jN-iy + ci-icj-l

and one uses the "theorem" that

In Det MN = la. Det M + In Det N (22)

to define two "surrogate" zeta-functions

and to assert that, as a consequence of Eq. (22),

f+(0) + f_(O). (24)

The surrogate zeta-functions i±{s) can be handled by exactly the same techniques as in

the traceless case. Thus if the above theorem is true, as it surely is for finite matrices,

this factorization trick will lead to an evaluation of $'coupit)i(Q). It is perhaps worth noting,

however, that the two "eigenvalues" into which the coupled determinant has been factorized

are not the eigenvalues of the pair of equations Eqs. (10) and (11). (The true eigenvalues

are real.) Rather, they correspond to a different factorization which is more convenient for

the present analysis. Another point is that for the Euclidean background that we are using,

it can be shown that ?_{*) = ?+{•»), so that the full answer for the coupled zeta-function

is

C * w ( 0 ) = 2Ref+(0). (25)

The same Kaluza-Klein Casimir energy has also been studied by others5 using techniques

that enable them to perform the computation in a Minkowski background. They use the
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same surrogate zeta-function trick, but the difference between Euclidean and Minkowski

space manifests itself in a crucial phase difference:

M*) = -? ;w (26)

so that for them

0 ) , (27)

(the function ?+{«) is the same in the two methods.) Thus these two apparently equally

valid ways of calculating the same physically measurable quantity give different results.

We shall return to this point later.

We turn now to the central question of this paper: is Eq. (24) true for the case at

hand? As we mentioned above, the answer is undoubtedly yes for finite matrices, although

even in that case it is not a relation among the zeta-functions themselves,

W « * 0 » ) * f + M + ?-(*), (28)

but only among their derivatives at the origin, which correspond to the relevant determi-

nants. Also, as shown by an example due to Allen,9 Eq. (24) is not true in general for

infinitematrices. Allen considers an operator with an infinite discrete spectrum:

(29)
= (»+a/2) 2 + 7

and a degeneracy at the nth level of

gn = (n + a/2)3 + c, (n + a/2)2 + e2 {n + a/2) + c3. (30)

Thus the zeta-function to be evaluated is

f (31)
n=0

Now

An = (» + a/2 + i^y) (n + a/2 - »\/l) (32)

so that we can define the surrogate zeta-functions
00

*J ~ y 9n ln "t" <*/2 i ixfw - (33)
n=0



Using Allen's techniques to obtain the analytic continuation of ${a) gives

f (0) = f+ (0) + f_ (0) + <jc2 - | 7 2 . (34)

indicating the failure of Eq. (24) in this case.

We now present a quick review of how we perform the analytic continuation in the

traceless (i.e. quadratic) case. A fuller discussion may be found in Ref. 4. We use

/ <Tk ft* + C?) - a r ( V , T / 2 ) W J («*) -+m/i (35)

where a > m/2, to write Eq. (19) as

/ r (3 _ m /2) « 17 / JV - 1 V\ 2 J m / 2 " , _ ,

where /32 = |(iV — I)2 — e. We then use the Laplace transform

where z = I + £(JV — 1), v = a — m/2 > 0, and lv is the modified Bessel function. We

perform the sum on / using

The result is

s inh t ftY*r tMjt fmX^ w (39)

where K, is an overall degeneracy factor that depends upon the modes being considered

(e.g., scalar, vector, e tc . ) . A complete list of the vaiues of the K^ are given in Ref. 4; for

the surrogate zeta functions in Eq. (24) K = Ax2.

The reason that Eq. (39) is not valid for small a is that near * = 0 the integrand

behaves as t**-*1*-1*-*-^ s o an defined ?(a) is singular for Re (a) < m + JV. To improve the

situation, one notes that the integrand can be written as tpf(t2), vith p = 2a — m—N — 1,

and that hence ^
1 = / dtt*f(t2)

Jo
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where 0 < A < 2it. (The upper bound on A arises because f[t2) has a pole at t = 2x1).

Now that the contour of integration no longer passes through t = 0, it is safe to continue s

to a neighborhood of a — 0. In fact, for the purpose of computing £'(0) we note that ?(a)

is of the form £(*) = ?(*)/r(«) where ?(*) is regular at a - 0. Thus ?'(0) = f (0), and we

have, explicitly,

** sinht

where now p = — (m + JV + 1). It should be noted that this method fails when tn-j- N

is even, because then t*™p — — 1. We shall henceforth restrict the discussion to the case

m + N odd, although the the m + N even case has also been treated in Ref. 10.We now

return to the coupled zeta-function, Eq. (20), which we shall rewrite as

(42)

where aj and -7 can be read off from Eq. (20). From Eq. (13) we see that aj2 depends on

the cosmological constant A, and that there will exist a range of A for which

12<(*» + *,2 )2 (43)

for all values of k2 and i. {This is only true in Euclidean space. If we work in Minkowski

space, where k2 can be negative, it will always be possible to have (k2 + on2)2 = Q.J

Assuming A is such that the inequality (43) holds, we can employ the binomial expan-

sion:

where

(«2 + at*)'
Using Eq. (35) we can perform the k2 integral, and using

we arrive at

4

i=o



We can now apply the same analysis as in Eqs. (37) - (41) to the sum on /, with s replaced

by (2« + 2g). Defining

(c is the analogue of j3 in the quadratic case), and v0 = —\{m -f 1) we arrive, by much the

same route as in the quadratic case, at the expression

-ooii'A

where

At this point the form for $cOupittl{ty looks vaguely like the quadratic case, except that we

have an infinite sum, given by S{t), instead of the pair of terms we were hoping for, [cf.

Eq. (24)|. To remedy this situation we first express S{t) as

•«•*£[(#)'*(*)'««« m

and then use the multiplication formula for modified Bessel functions:
00 S 14 « \ t £

0- (52)

The first term in Eq. (51) is of the appropriate form to apply Eq. (52) with

A = /?_ s=(&-ii)* (53)

and likewise the second term with

A = /?+ = (c2 + i 7 ) 5 . (54)

One then obtains

—ooiiA

sinht
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In obtaining this result it was assumed that A was restricted to a range for which inequality

(43) was satisfied, but by analytic continuation in A the result should hold for all A. Thus

Eq. (24) holds, and the use of the zeta-function method to compute the gravitational

Casimir energy on a Euclidian background has been explicitly justified.

It is clear that the methods used here cannot be applied directly to the same kind

of calculation performed in a Minkowski space background. It is to be hoped that some

means of analytically continuing the Minkowski space equivalent of Eq. (20) can be found,

so that we may know if the surrogate method also holds in Minkowski space. If it does

hold then there is a real difference between the Casimir energy computed in Euclidian

space and that computed in Minkowski space. On the other hand, if the surrogate method

breaks down in Minkowski space we might expect to obtain the Euclidian result from

the exact (i.e. non-surrogate) calculation, although this is by no means guaranteed. In

either case the difference between the results of the two methods cf calculation (eitlier the

Euclidian/Minkowski difference or the surrogate/non-surxogate difference) will need to be

understood further.

One of us (E.M.) would like to thank Bruce Allen for a useful discussion.
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