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The motivation for this work is to understand in more detail certain subtleties of
the zeta-function regularization procedure!~? with application to the computation of
the gravitational Casimir energy in non-Abelian Kaluza-Klein theories.3-® This Casimir
energy has been ofinterest recently in the literature; it is expected to play an important
role in the dynamics of spontaneous compactification.’

The problem to be addressed arises in the following way. We begin with the action
for quantum gravity in an m + V-dimensional space, which we shall take to be the direct
product of m-dimensional Euclidean space with coordinates z® and the N-sphere SV with
coordinates y*. (Following the prescription of Hawking,® we define the theory in Euclidean

space; physical quantities are then obtained by analytic continuation back to Minkowski

space.) The action is then
-1 : P
Sl = r5rey f dzd¥ /g (R - 28 + 9. + gh.), ()
where “g.f.” stands for the gauge-fixing terms, and “gh.” is the ghost action. We expand
-]
where 5,“. is the metric of the above-mentioned background, and k,, is the quantum
fluctuation. Greek indices run over the entire m + N dimensional manifold. To compute

the Casimir energy, or equivalently the one-loop effective potential, we keep only the
quadratic pieces in A, :
1 ,
st =1 f a7z 4 (h 50 g 1), @)
and similarly we compute the matrix Sgy as the quadratic piece in the ghost fields. The
one-loop effective action is then
Teg = Sq + %lnDetS ~InDet Sgy 4)

where S is the classical action evaiuated at ; Explicitly, for a convenient gauge choice

the matrix S is given by
S@gf] = f d™zdNy ||g|{ | ;5""!; - wﬂ ;%’h,,,
~ (R — hh*) Ry + b h R, (3)
~ 1 (h* - }4°%hap) (R —24) }



Here indices on h,, are raised with g ,and A= g hyys fz,.., and 1%;,.,,, are respectively
the Ricei tensor and Riemann tensor associated with 3,“,.

It is useful to write
-] 4
hyy = Py + 09, + xkuy (8)

i = (g '2:') &

and k;; is the metric on S¥, and where Puv is traceless on both S¥ and on the full manifold,

where

ie.,
7 Dy = k¥ Py, = 0. (8)

The determinant of S can be obtained by solving the eigenvalue problem

The traceless part of hop (i.e. pag) is relatively straightforward although not simple to
handle. The problem comes when one studies the trace modes  and x. As a consequence

of Eq. (9], they satisfy the coupled equations

- N
-;—(N+m—2)Ap—m——}p+—NA : U:r 1) (10)
and

- N-1([N-4 (N-1)(N+m-—1] .
"AX"( 3‘2( ])X"'[ )(;2 m ):,9=Ax. (11)

where r is the radius of SV and A is the operator
- , 1._. !
A=R-24-V? ; V:=vi 4+ ;ivg. (12)

After some computations involving the spectrum of the laplacian V% on the unit N-sphere,

one arrives at the formal expression?

Detsm.,u-]'[]'[{(N+m 2)[12+(N-1H1+N ]_m+k,]z

r2
[ (13)

2(N-2)3(N - 2) (m — 2) (1)
+ = }



where the product on k comes from V}l {the laplacian on m-dimensional Euclidean space},

the product on { comes from V3, and
N+ {N+1-2
d,(!):( ; )- - ) (14)
is the degeneracy of scalar eigenvalues of Vg, and k2 is of course k%k,. By contrast, the
traceless modes p,, give rise to formal determinants whose factors are only quadratic in k

and I:
, (15)

4{)
Det Stracelell = H H H [!z = {(N ;; 1) = . sz

i=1 & I=ly,
where the product on i is finite and comes from the various kinds of eigenmodes of V2 that
are present. The determinants in Eq. (13) and (15) are ill-defined, since they correspond
to products over infinitely many eigenvalues. A standard technique to handle this is the
zeta-function method. Given an operator { with an increasing set of eigenvalues {);}, one

defines the associated zeta-function

1\*
¢(s) = E (}—) . (16)
i

For s sufficiently large, this sum will converge. In the region where the right-hand side does
not converge one can define ${s) by analytic continuation, and one then takes advantage

of the formal equation

ds
- = =) ln); (17)
ds|,_, Z.: *
to define
InDet 0 = — @ . (18)
ds =0
Thus for the traceless case, one has to evaluate a zeta-function of the form
241 N +e -t
Straceless (3) (2 )m Z d; ( } { { ) + kz] s (19)
=l

whereas for the coupled scalars the analogous expression is

2 -8
Scoupled (8) = f(ﬂ_)mzd,m{{ +(N—1)l+c +k"] +¢r‘i} . (20)

The values of ¢; and ¢; can be read off from Eq. (13).




For the traceless case, when m + N is odd, there are techniques available, which we
shall review below, for performing the analytic continuation and thereby obtaining a well-
defined expression for the determinant. In order to take advantage of this knowledge in
the coupled case, the procedure that has been adopted in the literature®5% is as follows:

one first makes the observation that

[z’+(N—1}l+c1 +k']z+f3:

r? rt ’ (21)
[k, + 24+ (N- 1321+c, +ic,] {k, + 4+ (N- 1,)2’+c1 - iczjl
and one uses the “theorem” that
InDet MN = InDet M + InDet N 122)
to define two “surrogate” zeta-functions
alo) = ('-%Eﬁgd offrE-titario pl” g
and to assert that, as a consequence of Eq. (22),
¢! (0) = ¢, (0) + s (0). (29

The surrogate zeta-functions $..{s) can be handled by exactly the same techniques as in
the traceless case. Thus if the above theorem is true, as it surely is for finite matrices,
this factorization trick will lead to an evaluation of $(,,,.4(0). It is perhaps worth noting,
however, that the two “eigenvalues” into which the coupled determinant has been factorized
are not the eigenvalues of the pair of equations Eqgs. (10) and (11). {The true eigenvalues
are real.} Rather, they correspond to a different factorization which is more convenient for
the present analysis. Another point is that for the Euclidean background that we are using,
it can be shown that ¢_{s) = ¢5.{s), so that the full answer for the coupled zeta-function
is

$eoupted {0) = 2Re¢, (0). {25)
The same Kaluza-Klein Casimir energy has also been studied by others® using techniques
that enable them to perform the computation in a Minkowski background. They use the



same surrogate zeta-function trick, but the difference between Euclidean and Minkowski

space manifests itself in a crucial phase difference:
¢ () = —¢4 (o) (26)

so that for them
$toupled (0) = 2{Im <, (0), (27)
{the function ¢.(s) is the same in the two methods.) Thus these two apparently equally
valid ways of calculating the same physically measurable quantity give different results.
We shall return to this point later.
We turn now to the central question of this paper: is Eq. (24) true for the case at
hand? As we mentioned above, the answer is undoubtediy yes for finite matrices, although

even in that case it is not a relation among the zeta-functions themselves,

Scoupled (8) # S+ () +¢-(s), (28)

but only among their derivatives at the origin, which correspond to the reievant determi-
nants. Also, as shown by an example due to Allen,? Eq. (24) is not true in general for

infinitematrices. Allen considers an operator with an infinite discrete spectrum:

dp=nlsan+

, (29)
={n+af2)’+~
and a degeneracy at the nt? level of
gn=(n+0f2)° + 1 (n+ af2)? + 3 (n+ f2) + 3. (30)
Thus the zeta-function to be evaluated is
20
$(s) = zgn n' (31)
n=0
Now
An = (n+af2+i7) (n+af2-i7) (32)

so that we can define the surrogate zeta-functions

$+(8) = i gn (n+af2xi/F)7". (33)
n=0



Using Allen’s techniques to obtain the analytic continuation of $(s) gives
¢’ (0) = ¢% (0) + L (0) + ve2 — 3. (34)
indicating the failure of Eq. (24) in this case.

We now present a quick review of how we perform the analytic continuation in the

traceless {i.e. quadratic) case. A fuller discussion may be found in Ref, 4. We use

f ™k (k’ 4 a‘l) - E.(."?_i%’_z_) ™2 ( a'z) —-s4+m/2 (35)

where 3 > m/2, to write Eq. (19) as

aM{2020 T (g —m s N = 2 ] m/2-2
$(s) = (2,")? (81‘ = /2) gd, () {(! + ( - 1)) _ ﬂ’} ’ (36)

where 32 = 1(N — 1) — c. We then use the Laplace transform
1
1 2N i A B Y
@@=y T /o ““\zm) L1809 (7)
where 2 =1 4+ }(N — 1), v = s — m/2 > 0, and I, is the modified Bessel function. We

perform the sum on { using

o0

N+1) — 1

e = —— (38

;o( i ll - e...g]N-d-II. ( D
The result is

1

1 g /7 [  sinht ¢ \"3 3 ‘

$ (3) =3 (21",)111 T (8) A |(23inh ;—t)N+l -fz; Iy-;- (ﬂt} dt ’(39)

where x; is an overall degeneracy factor that depends upon the modes being considered

{e.g., scalar, vector, etc...). A complete list of the vaiues of the x; are given in Ref. 4; for
the surrogate zeta functions in Eq. (24) x = 422,

The reason that Eq. (39) is not valid for small s is that near ¢ = 0 the integrand
behaves as $24-m-N-1_ 35 ag defined $(s) is singular for Re(s) < m + N. To improve the
situation, one notes that the integrand can be written as tPf{?), with p = 2s—-m—- N ~1,

and that hence o
I= f dti? f (%)
0

l [« -]
“1term j:ood:ie s (¢) (40)

ootid
1 [ dtePf (%),

14657 Jooia



where 0 < A < 2x. (The upper bonnd on A arises because f(t2) has a pole at ¢ = 2xij.
Now that the contour of integration no longer passes through ¢ = 0, it is safe to continue s
toa neiéhborhood of s = 0. In fact, for the purpose of computing $'(0) we note that ¢(s)
is of the form $(s) = $(s)/T(s) where $(s) is regular at s = 0. Thus $'(0) = §(0), and we
have, explicitly,
coxiA : ~(m+1)/2

R e T ~—-=1 () I P LT

where now p = —(m + N + 1). It should be noted that this method fails when m 4+ N

is even, because then ¢¥*? = —1. We shall henceforth restrict the discussion to the case

m + N odd, although the the m + N aven case has also been treated in Ref. 10.We now

return to the coupled zeta-function, Eq. (20), which we shall rewrite as
-8
Seoupiea () = [ 13- ),.Ed 0 [ + ) +7] (42)

where o; and 4 can be read off from Eq. (20). From Eq. {13) we see that a;* depends on

the cosmological constant A, and that there will exist a range of A for which
< (B + cq"j2 (43)
for all values of &2 and I. [This is only true in Euclidean space. If we work in Minkowski
space, where k? can be negative, it will always be possible to have (k? + ;2)2 = 0.]
Assuming A is such that the inequality {43) holds, we can employ the binomial expan-

sion:

i a2, 2] T(1-s)
[+ ar®)’ +42] _qgol'(q-'}- ONri-g-9" (44)
where
=7 < (45)
o= e <t ‘
Using Eq. {35) we can perform the k? integral, and using
T{1-3) T{s+q)
Mi-s-g -V 1w (s6)

we arrive at

xm/2 (-1)' T'(s+q)T (28 + 29 — m/2)
Scoupled (8) = @n)™T [a) Z ™ qr (28 + 29) ]
(47

x {§" () a2y .



We can now apply the same analysis as in Eqs. (37} - (41} to the sum on I, with s replaced
by (28 + 2g). Defining

B=l+i(N=-1)P-a? (48)
(€ is the analogue of 3 in the quadratic case}, and vy = —}(m + 1) we arrive, by much the

same route as in the quadratic case, at the expression

+ ookiA (m+1)/2 :
ot 0) = gy G [ @ (7)) s )
=gokid ‘
where . iy 2 | am
s@=) (—ET) 2ot (-2—) Tyor2q (E2) . (50)

q=0
At this point the form for ¢7,,.4(0) looks vaguely like the quadratic case, except that we
have an infinite sum, given by S(t), instead of the pair of terms we were hoping for, [cf.

Eq. (24)]. To remedy this situation we first express S(t) as

S“’",_o[(-w) 2 (3) Bovete ‘ »
()30 et

and then use the multiplication formula for modified Bessel functions:

AL () = Z ) ETF (52)
The first term in Eq. (51) is of the approprnate form to apply Eq. (52) with
A=po=(@-iv)t (53)
and likewise the second term with
A=8, =2+ i'y)% . (54)
One then obtains
cokid -
$'(0) = 2—;:1- %*.;)# dt{ ('27%_') i I_(m+1)72 (B+1)
—cokiA ] (55)
4 ( .2;_— ) {m+1)/2 Lemsay (ﬁ_t}] (ﬁt_ﬁf

=<', (0) +5"(0).
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In obtaining this result it was assumed that A was restricted to a range for which inequality
{43) was satisfied, but by analytic continuation in A the result should hold for all A. Thus
Eq. (24) holds, and the use of the zeta-function method to compute the gravitational
Casimir energy on a Euclidian background has been explicitly justified.

It is clear that the methods used here cannot be applicd directly to the same kind
of calculation performed in a Minkowski space background. It is to be hoped that some
means of analytically continuing the Minkowski space equivalent of Eq. {20) can be found,
so that we may know if the surrogate method also holds in Minkowski space. If it does
hold then there is a real difference between the Casimir energy computed in Euclidian
space and that computed in Minkowski space. On the other hand, if the surrogate method
breaks down in Minkowski space we might expect to obtain the Euclidian result from
the exact (i.e. non-surrogate) calculation, although this is by no means guaranteed. In
either case the difference between the results of the two metheds of caleulation {either the
Euclidian/Minkowski difference or the surrogate/non-surrogate difference) will need to be
understood further.

One of us (E.M.) would like to thank Bruce Allen for a useful discussion.

References
1. S.W. Hawking, Comm. Math. Phys. 55, 133 (1979).
2. J.5. Dowker and R. Critchley, Phys. Rev. D 13, 3324 (1976).
3. A, Chodos and E. Myers, Ann. Phys. (N.Y.) 156, 412 (1984).

4.  A. Chodos and E. Myers, Phys. Rev. D 31, 3064 (1985);
A. Chodos and E. Myers, in Proceedings of the Eighth Johas Hopkins Workshop in
Problems in Particle Theory, edited by G. Domokos and S. Kovesi-Domokos, (World
Scientific, Singapore, 1984).

5. M.A. Rubin and C. Ordéiies, “Graviton Dominance in Kaluza-Klein Theory,” Univ.
of Texas preprint UTTG 18-84 (1984).

8. M.H. Sarmadi, “Spontaneous Compactification in Quantum Kaluza-Klein Theories,”
ICTP (Trieste) preprint IC/84/3/revised (1984).

7.  T. Appelquist and A. Chodos, Phys. Rev. Lett. 50, 141 (1983);



10.

11.

11

P. Candelas and S. Weinberg, Nucl. Phys. B237, 397 {1984).
S.W. Hawking, in General Relativity, an Einstein Centenary Survey, edited by S.W.

Hawking and W. Israel, (Cambridge University Press, 1979).

B. Allen, “Vacuum Energy and General Relativity,” Ph.D. thesis, Cambridge Univer-
sity, 1983 (unpublished).

E. Myers, “The Kaluza-Klein Casimir Energy in Even Dimensions,” BNL preprint
36518,

“Handbook of Mathematical Functions,”{AMS-55), Ed. by M. Abramowitz and I.
Stegun, (U.S. Gov’t Printing Office, 1972), Equation 9.6.51.



