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[ j j FUSION ENGINEERING DESIGN CENTER

OVERVIEW

TECHNICAL AREAS TO BE DISCUSSED

• MECHANICAL CONFIGURATION STATUS

• MAGNET ANALYSIS - TEMPERATURE DISTRIBUTION

I STRESS ANALYSIS

I COOLING BETWEEN BURNS

• TF COIL JOINT

• FACILITY/DEVICE LAYOUT OPTIONS

• PARAMETRIC ANALYSIS - PENG (LATER)

• RF SYSTEMS - YUGO/FLANAGAIM (LATER)

• COST VS SIZE - FLANAGAN (LATER)
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SOhE EVENTS SINCE OCTOBER

I TECHNICAL REVIEW SCHEDULED WITH EUROPEAN

DESIGN TEAM

- DECEMBER 5,6

• REVIEW WITH FTU TEAM

- DECEMBER 3

• U.S. TRAVELERS

- BROWN. FLANAGAN, LEE .- FEDC

- COPPI - MIT

- CITROLO - PPPL

- JAMES - OFE

• DESIGN GUIDELINES ISSUED
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MECHANICAL CONFIGURATION

(PRESS CONCEPT)

I WORKABLE SCHEME DEVELOPED FOR MAGNET SYSTEM
- CENTER POST, OH, TF, EF COIL ARRANGEMENT
- TRACTABLE FIT-UP OF MULTIPLE SURFACES

• FOCUS NOW ON

- WORKING PRESS SCHEME (HYDRAULIC/MAGNETIC)

- EXTERNAL TORQUE STRUCTURE



FUSION ENGINEERING DESIGN CENTER

MAGNET

OH:
- HEIGHT, cm

- THICKNESS, cm

- MATERIAL

EF:
- ALL EXTERNAL
- MATERIAL

TF:
- BORE (H-W), cm

- MATERIAL

- RADIAL THICKNESS,

INBOARD LEG

OUTBOARD LEG

SYSTEM

188

20

"CDA155-

"CDA155/CDA10211

165 x 101

"CDA155/CDA102"
cm

20

25
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RAULIC CYLINDER

POSSIBLE CELL
WALL

REACTOR
MODULE

TENSION ROD

External press concept.
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TF/W MODULE

•

r~ THERMAL INSULATION STRUCTURE

• •

OUTBOARD EF COIL

C H ^ ^ " EF SHAPING COILS

COMPRESSION SUPPORT STRUCTURE

Ignitor Reactor Module - exploded view.
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HYDRAULIC CYLINDER

CELL WALL

Plan view (Top of machine)
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RF
Vacuum
Fueling
Inspection
Diagnostics

Allocation of port use in Ignitor.
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IGNITOR TF SYSTEM CONFIGURATION

• i t n rr wiract
. HOCCL

TF COIL
THERMAL ANALYSIS

GEOMETRY

IGNITOR IP CURRENT
O c

i.'.O

• PHYSICS GUIDELINES REQUIRE PLASMA BURN TIME - 10 T£. FOR IGNITOR,
PLASMA BURN TIME = 5 s.



TEMPERATURE DISTRIBUTION IN THE CENTER POST LEG AS A FUNCTION OF PEAK NUCLEAR HEATING

r.DR102 TF-CP QN-O.
C0fll02 Tf-CP QN-20 CDfl 102 Tf-CP ON-100

2.U 1 0 6.0

Tint is)
t.U ID.O u.0 U.u 2.0 VU 6.1)

Tim: i s -
«.o iii.o

(WITH CDA-102 COPPER)

PEAK TEMPERATURE OF 490 K IS ATTAINED WITH A PEAK NUCLEAR HEATING RATE
OF 100 MW/M 3

• PEAK NUCLEAR HEATING A r B c ? ? m c A L IS 200 MW/M 3. THE PLASMA BURN PERIOD
MUST BE REDUCED TO 3.5 s FOR LIMITING PEAK TEMPERATURE TO 500 K.



TEMPERATURE DISTRIBUTION IN THE CENTER POST LEG AS A FUNCTION OF PEAK
NUCLEAR HEATING WITH CDA-155 COPPER

CDfll55 TF-CP ON-0 CDR155 TF-CP QN-20

o.u 1.0 b.O

TIMC IS)
IO.0

CDR155 TF-CP ON-I00

if.O iu.0

PEAK TEMPERATURE OF 690 K IS ATTAINED WITH A PEAK NUCLEAR HEATING
RATE OF 100 MW/M 3.

• PLASMA BURN PERIOD MUST BE REDUCED TO 2.5 s FOR LIMITING PEAK TEMPERATURE
TO 500 K. THIS BURN PERIOD WILL BE FURTHER REDUCED IF NUCLEAR HEAT LOAD
IS INCREASED.



POWER CONSUMPTION AS A FUNCTION OF COIL MATERIAL

CDR102 TF-CP I*x2*R TF-CP CDR15S TF-CP Ix*2xR

U.U ..Ml

UIII: if.)

CDA-102 COPPER ALL OVER

'I 1 M l . I , I

CDA-102 COPPER ONLY IN THE
VERTICAL LEG

1.1) U.O

TUN. I'jl
ii. u ui.Q

CDA-155 COPPER ALL OVER

o PEAK NUCLEAR HEATING = 0
o PEAK NUCLEAR HEATING = 20 MW/M 3

A PEAK NUCLEAR HEATING = 100 MW/M 3

TOTAL ELECTRIC POWER CONSUMPTION INCREASES WHEN PEAK NUCLEAR HEATING IS INCREASED,



ENERGY CONSUMPTION AS A FUNCTION OF COIL MATERIAL

CDR102 TF ENERGY CDR102/155 TF ENCRCY CDR155 TF ENERGY
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CDA-102 COPPER ALL OVER CDA-102 COPPER ONLY IN
THE VERTICAL LEG

CDA-155 COPPER ALL OVER

° PEAK NUCLEAR HEATING = 0
o PEAK NUCLEAR HEATING = 20 MW/M 3

A PEAK NUCLEAR HEATING = 100 MW/M 3

TOTAL ELECTRIC ENERGY CONSUMPTION INCREASES WHEN PEAK NUCLEAR HEATING IS INCREASED,



fWA REQUIREMENT AS A FUNCTION OF COIL MATERIAL

CORI02 TF MVfl CDR102/1SS TF MVH COR 155 TF MVfl

lo.O

"Oo

T i m : i ••'

lil.O

CDA-102 COPPER ALL OVER CDA-102 COPPER ONLY IN THE
VERTICAL LEG

o PEAK NUCLEAR HEATING = 0
o PEAK NUCLEAR HEATING = 20 MW/M 3

A PEAK NUCLEAR HEATING = 100 MW/M 3

CDA-155 COPPER ALL OVER

PEAK MVA REQUIREMENT IS ESTABLISHED BY THE TF CURRENT RAMP-UP REQUIREMENT.
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STRUCTURAL ANALYSTS

. Comparison of 2-lurn and. 1-turn
TF Coil

2. Evaluation Of TF Coil Plate
For:

•Preload
.TF Forces
•Temperature
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Comparison of 2-turn and 1-turn
TF Coil

For Preload and TF Forces

• Average Tresca Stress Higher For 2-turn

• Reaction Ring Loads and Stresses Higher
For 2-turn

• Preload Tends To Concentrate On
Innermost Turn Of Magnet Throat

- 75 Percent Of Preload Carried
By This Turn
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Evaluation Of TF
Preload, TF Forces, and Temperature

• Temperatures From Thermal Analysis, Kalsi
- Ramp-up (3), Flat top (5), Ramp-down (2)
- Material -CDA155
- Evaluations at

. Beginning-of-Burn

. End-of-Burn

. End-of-Cycle
• Temperatures Applied To Finite Element

Model
- Judgement Used To Estimate Finite

Element Distribution
• Finite Element Model Is 2-D
• Stress Levels, Average and Peak,

Acceptable, But
Approaching CDA155 Limits



CDR155 TF-CP ON-20

CRSE

10.0

PROFILE -

o - 2 RRC - i N N f < ^ ^
A - 3 RRC-ouTee Aec
• - 4

11:54:52 11/12/B5

CDR155 TF-ffp°*QN- 20

0.0 2.0 I 1.0 B.O
TIME IS)

POST

B.O 10.0

CRSE
o - 3 SECT - PLASMA
o - 2 SECT
A - 3 SECT
• - 4 SECT
x - 5 Sfc'CT
« - 6 SECT
* - 7 SECT
• - 8 SECT
« - 9 SECT-jJOLD^OlO

11:25:23 11/12/85
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COMPARISON OF MODEL WITH EXPERIMENTAL DATA ON COOLING TIME WITH LN 2

COOLING TIME

MASS COOLING SURFACE (H)

(TONNE) AREA (M 2 ) MODEL1 EXPERIMENT

ALCATOR A

ALCATOR C ( 2 )

5.5

18

1.73

5.5

3.4 2-3

5.8 5.2

1. THE MODEL IS FOR BARE COPPER SURFACE WITHOUT ANY INSULATION

2. ACTUAL NITROGEN CONSUMPTION IS 6.2 TONNE FOR COOLING DOWN TO 80 K. THE MODEL

PREDICTS 6.6 TONNE.
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VARIOUS METHODS OF COOLING INNER LEG

(WALL LOAD = 8.5 MW/M2)

METHOD

COOLING

CDA-

2.

6,

2.

(TO

•102

,2

.3

.8

TIME

80°

CDA-

2.M

6.9

3.0

(H)

K)

155

ACTIVE COOLING; NO CONDUCTION

- COOLING CHANNEL AT PLASMA SIDE OF TF COIL INNER LEG (1)

- COOLING CHANNEL AT OH SIDE OF TF COIL INNER LEG (2)

- (BASED ON 50X AREA AVAILABLE FOR COOLANT)

NO ACTIVE COOLING, CONDUCTION ONLY

- NO COOLING CHANNEL (COOLED BY CONDUCTION THROUGH

OUTER LEG) M.5 M.5

1. FOR BARE COPPER. APPROXIMATELY 502 INCREASE IN VALUES FOR O.OMO IN INSULATION
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EFFECT OF CONDUCTION ON THE COOLING TIME OF INNER LE6(1)

(WALL LOAD = 1.7 MW/M2)

METHOD COOLING TIME (H)

CONDUCTION NONCONDUCTION

COOLING CHANNEL INSIDE OF INBOARD AND

OUTBOARD OF TF COIL (5% OF TOTAL AREA) 1.8 (2) 2.6

1. MATERIAL IS CDA-155 FOR BOTH INBOARD AND OUTBOARD LEGS.

2. THIS TIME WILL NOT REDUCE BY MUCH IF THE INBOARD MATERIAL SWITCHES TO CDA-102
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A SLIDING JOINT CONCEPT FOR TOROIDAL FIELD COILS OF A TOKAMAK

ORNL-DWG 85-3433FED

SLIDING CONTACTS

VIEW "A"

A TF COIL TURN WITH TWO SLIDING JOINTS.

ORNL-DWG 85-3434FED

(1) VERTICAL
INNER
TURN

LAP JOINT CONFIGURATION.

THIS IS A POSSIBLE CONFIGURATION FOR UTILIZING FINGERJOINT CONCEPT IN A LAP JOINT
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FUSION ENGINEERING DESIGN CENTER

MAINTENANCE

THE MAINTENANCE PHILOSOPHY IS BASED ON REMOTE OPERATIONS IN THE TEST CELL

AND CONTACT OPERATIONS IN THE EQUIPMENT CELLS

UTILIZATION OF
REMOTE MAINTENANCE

EQUIPMENT

3 PHASES OF

REACTOR

OPERATION

| HYDROG. D-D D-T

REACTOR SHAKEDOWN OPERATIONS TO ELIMINATE INFANT

MORTALITY PROBLEMS; MOCKUP TESTING OF REMOTE HANDLING

EQUIPMENT
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REPLACEMENT (OR REPAIR) IS PLANNED FOR LIFE-LIMITED COMPONENTS BY UTILIZING A

MODULAR DESIGN APPROACH WITH SIMPLE. REMOTELY OPERABLE. INTERFACES

• ALL OPERATIONS IN THE TEST CELL ARE DONE REMOTELY AND INCLUDE

- REPLACEMENT OF RF ANTENNAE AND SHIELDS

- DECOUPLING OF DIAGNOSTIC AND FUELING PENETRATIONS

- REMOVAL OF ALL PORT COVERS

- REPLACEMENT/REFURBISHMENT OF FIRST WALL, MIRRORS, AND WINDOWS

- IN-VESSEL/EX-VESSEL INSPECTIONS

- EQUIPMENT ADJUSTMENTS/MODIFICATIONS AND VACUUM/COOLANT LEAK REPAIRS

• MAINTENANCE SCENARIOS DO NOT INCLUDE REPLACING MAJOR COMPONENTS WHICH ARE NOT

AFFECTED BY WEAROUT (I.E., TF/PF/OH COILS. VACUUM VESSEL, STRUCTURE)

- EXTENSIVE QUALITY ASSURANCE DURING FABRICATION AND INSTALLATION

- CORRECTION OF EQUIPMENT INFANT MORTALITY PROBLEMS PRIOR TO TEST CELL

ACTIVATION
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THE IGNITOR REACTOR IS BEING DESIGNED AS A 60 TONNE MODULE WHICH IS FACTORY

ASSEMBLED; THE OUTBOARD PF COILS AND THE PRELOAD STRUCTURE ARE INSTALLED ON SITE

REACTOR
MODULE

OUTBOARD
PF COILS

2H AVAILABLF VESSEL PORTS

• 2 FUELING

• 2 INSPECTION

• 2 VACUUM

• 5 RF

• 13 DIAGNOSTICS
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FIRST WALL REPAIR

• THE IGNITOK PORT OPENINGS ARE 20 X 80 CM AND ARE SUFFICIENT FOR UNI-LATERAL

MANIPULATORS OPERATING IN ̂ ATRS THROUGH 12 (ALTERNATE) PORTS

MODIFICATIONS TO

EXISTING MANIPULATOR

• REMOVE 1 ARM

• RE-ORIENT SHOULDER

MOUNT 90*

• SHORTEN UPPER & LOWER

ARM

I ADD FORCE REFLECTION

DIMENSIONS AND CAPACITIES
Upper Arm Length 406 M M

Lower Arm Length 483 M M

Extended Reach 1067 M M

Maximum Tong Opening 64 M M

Tout Slave Assembly Weight 59 KG.

Slave Arm Weight 21 KG.

Lifting Capacity (Arm Horizontal)* 10 KG.

'Variable-based on customer speed/load requirements.

16 IN

19 IN

42 IN

Z5 IN

130 LB

47 LB

22 LB
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A PRELIMINARY TEST CELL ARRANGEMENT WITH NO DEVICE SHIELD HAS BEEN DEVELOPED;

BASED ON LAYDOWN AREAS, PERIPHERAL REACTOR EQUIPMENT SPACE. AND REMOTE OPERATIONS

PRELOAD
STRUCTURE
LAYDOWN

1 2 3 4 5 DIAG. CELL

• FUEL INJECTORS AND MOST

DIAGNOSTICS LOCATED IN

EQUIPMENT CELLS BEHIND TEST

CELL SHIELD

I CERTAIN DIAGNOSTICS WILL BE IN

THE TEST CELL; NORTH SIDE IS

FOR LARGE DIAGNOSTIC EQUIPMENT

• TEST CELL SIZE IS

15L X 15 W X 16.5H

IGNITOR TEST CELL - GROUND LEVEL PLAN
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TEST CELL EQUIPMENT ( I . E . , CERTAIN DIAGNOSTICS AND RF) ARE REPLACED/REPAIRED

IN-S ITU ; MOST EQUIPMENT IS OUT OF THE TEST CELL

AA

i i
i I

CRANE STORAGE
• MAINT.

REMOTE MAINT.
CONTROL
ROOM

h

RF MODULES ARE RAIL MOUNTED ON

SUPPORT PLATFORMS

PERIPHERAL EQUIPMENT

INTERFACES UTILIZE DEMOUNTABLE

PIPE COUPLINGS

ACCESS TO EQUIPMENT CELLS

1 DAY AFTER SHUTDOWN (•)

R/M OPERATORS SUPPLEMENT

REMOTE VIEWING WITH DIRECT

VIEWING

CRANE SYSTEMS HAVE HANDS-ON

MAINTENANCE

(•) NEUTRONIC ANALYSIS TO
ESTABLISH SHIELD REQ'MTS t» TO
MAP ACTIVATION
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CERTAIN DIAGNOSTIC EQUIPMENT WILL BE LOCATED IN THE TEST CELL

PRELOAD
STRUCTURE

VAC. DUCT
TEST CELL
DIAGNOSTIC

REQUIREMENTS

I ACCESS TO EQUIPMENT

• REPLACEABILITY OF IN-VESSEL

EX-VESSEL MIRRORS

I ACCESS TO PLASMA CHAMBER

WINDOWS
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Single bolometer
(8 singles. * upper. A lower)

Horizontal comera A
(with 10 bolometers)

Horizontal camera B
(with 10 bolometers)

TOTAL *2 channels

X Vertical comera (with V. bolometers)

JET BOLOMETER (KB1) SHOWING THE

TWO LATERIAL & ONE VERTICAL

CAMERAS AND A TYPICAL SINGLE
am OMFTFR

input radiation trap (& exit)
second horizontal component
is not shown

exit radiation trap

20 joule
ruby laser polychromatorconcrete

block housle

penetration box //
/.with tritium sea l / /

^penetration box 7
/with tritium seal

top port
assembly

input window tlange

vewmg window

exit
window
flange

mirror
_# 1000 mm

W///////V//////////

JET SINGLE POINT THOMSON

SCATTERING SYSTEM (KE1)
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5 analysers

JET NEUTRAL PARTICLE ANALYZER ARRAY (KR1)
JET GRAZING INDIVIDUAL VACUUM
ULTRA-VIOLET SPECTROSCOPY (KT1)
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JET NEUTRON YIELD PROFILE MEASURING SYSTEM (KN3)


