
ORNL/TM--II655

DE91 005602

i

Engin_ring Physics and Mathematics Division

Mathematical Sciences Section

EARLY EXPERIENCE WITH THE INTEL IPSC/860

AT OAK RIDGE NATIONAL LABORATORY

M. T. Heath
G. A. Geist
J. B. Drake

Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2009, Bldg. 9207-A
Oak Ridge, TN 37831-8083

Date Published: September 1990

Research supported by the Applied Mathematical Sciences

subprogram of the Office of Energy Research, U.S. Depart-
ment of Energy

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

" Martin Marietta Energy Systems, Inc.
for the

U.S. DEPAI%TMENT OF ENEttGY
under Contract No. DE-AC05-84Ol_,21400

MASTER
IDISTRIB!.ITI,_j!,,f©1:--i ,'-i]:._,[3(,..'-_j;!,..iJv'iENTIS UNLIMITED

1 Contents

1 Introduction 1

2 Intel iPSC/860 Hardware 3
3 Intel iPSC/860 Software 4
4 Performance on Computational Kernels 5
5 Performance on Matrix Computations 11
6 Superconductivity Computations 13
7 Plasma Flow Computations 19
8 Atomic Physics Computations 21
9 References 24

EARLY EXPERIENCE WITH THE INTEL IPSC/860
1

AT OAK RIDGE NATIONAL LABORATORY

M. T. Heath

G. A. Geist

J. B. Drake

Abstract

This report summarizes the early experience in using the Intel iPSC/860 paral-

lel supercomputer at Oak Ridge National Laboratory. The hardware and software

are described in some detail, and the machine's performance is studied using both

simple computational kernels and a number of complete applications programs.

1. Introduction

Today's leading supercomputers are capable of performing over one billion floating

1 point operations per second (Gflops). The current generation of conventional super-

computers, typified by the Cray-2 and Cray Y-MP as well as a number of Japanese

machines, attain such prodigious computational speeds by combining a small number

(typically 4 to 8) of very powerful vector processors having a cycle time of a few nanosec-

onds (typically 4 to 10). For such an environment, efficient parallel implementations of

application programs tend to be very coarse grained, meaning that the sizes of tasks

executed by individual processors are relatively large. At the opposite extreme, another

means of providing Gflop performance is through massive parallelism, in which a very

large number (tens of thousands) of very small processors are employed. This approach

is typified by SIMD architectures such as those a;',_ilable from Thinking Machines and

MassPar. Due to the very limited power and memory of the individual processors, such

machines require a very fine granularity of parallelism in applications programs.

An intermediate approach between these two extremes is that of medium-grain,

distributed-memory multicomputers, in which a few hundred to a thousand 32- or 64-

bit microprocessors are combined by an interconnection network. Such medium-grain

parallel machines potentially have a price-performance advantage over either of the

, other two approaches in that they require fewer custom parts, instead employing mostly

commodity parts whose development and manufacturing costs are amortized over hun-

dreds of thousands produced for the personal-computer and workstation markets. The

most successful instances of this approach to date have been parallel computers called

"hypercubes," named for the topological structure of the network interconnecting the

processors. The hypercube architecture, first practically realized at Caltech [19], has

served as the basis for a number of commercial machines, some of which ultimately

failed in the :marketplace (Ametek/Symult and FPS T-series), but others of which

have been notably successful (Intel and Ncube).

The aggregate performance of such a medium-grained machine is determined by

the performance of its constituent microprocessors, the bandwidth and latency of its
,J

interconnection network, and the total number of processors. Given their relatively low-

. powered processors and limited memory, the first one or two generations of hypercubes

were not bona fide supercomputers in that they were not yet competitive with the

w

fastest conventional machines at the time unless extremely large numbers of processors

were used. Nevertheless, these early machines were valuable tools for computational

scientists to learn to deal with parallelism in applications. Recently, with the advent of
w

RISC designs and other technological advances, very high performance microprocessors

(with cycle times as small as 25 nanoseconds)have become available and are now

making their way into multiprocessor and multicomputer architectures. CmLsequently,

this class of architectures has now moved into the Gflop performance range with the

commercial release of the Intel iPSC/860 and the Ncube 6400 hypercubes_ and is now

competitive with any other class of general-purpose supercomputers.

Oak Ridge National Laboratory (ORNL) has had a long association with commer-

cial hypercubes. ORNL was one of the first recipient:; of the Intel iPSC/1, iPSC/2, and

original Ncube/ten (now called Ncube 3200) machines. These machines have been used

for basic research in parallel algorithms as well as for a variety of applications at ORNL

[10]. In January, 1990, ORNL took delivery of one of the two beta test machines of the

new iPSC/860 hypercube produced by Intel (the other was delivered to NASA Ames

Research Center). The iPSC/860 is also known as the Touchstone Gamma Prototype,

since it represents an early phase ofIntel's Touchstone project; whose development is

funded in part by DARPA.

The purpose of this paper is to summarize ORNL's early experience with the Intel

iPSC/860 machine. In the sections to follow, we will present an overview of both the

hardware and software of the iPSC/860, performance data for some basic computational

kernels, and results for some initial applications implemented on the machine, including

comparisons with performance of the same applications on more conventional super-

computers. One of these applications, superconductivity, is discussed in some detail in

order to gain an appreciation for the work done in adapting it for parallel execution.

The work reported in this paper involved the efforts of many other people in addition

to the listed authors. Contributions by key individuals will be noted in the appropriate

sections.

The reader should keep ill mind that our conclusions are based on experience with

a beta release of the iPSC/860 during the three-month period preceding the first ship-

ments of regular production models to customers. Thus, one should naturally expect
o

more bugs and instability in both hardware and software than might be considered

-3-

tolerable in a mature product. It is also unrealistic to expect highly tailored and op-

timized development tools in such a new environment. Neverthelessl even during this

_ early stage, the iPSC/860 has proven capable of world-class performance and shows

great promise for tackling the grand challenges of computational science.

2. Intel iPSC/860 Hardware

Each computational node in the iPSC/860 consists of an Intel i860 processor plus mem-

ory and communication components. The iPSC/860 at ORNL has 128 such nodes, the

maximum configuration available. Each computational node has 8 Mbytes of memory,

for an aggregate total of one Gbyte of RAM. Each i860 processor features an inte-

ger core unit, pipelined floating-point units for addition and multiplication, a graphic s

unit, memory-management support, a large register set, separate instruction and data

caches, and 64-bit data paths, all integrated into a single chip having about one mil-

lion transistors [12,17]. With a clock rate of 40 MHz, each i860 processor has a peak

execution rate of 32 MIPS integer performance, 80 Mfiops 32-bit floating-point per-

formance, and 60 Mfiops 64-bit floating-point performance. Thus, the aggregate peak

performance rate of the 128-processor iPSC/860 is over 7 Gfiops (64-bit) and 10 Gflops

(32-bit). It should be kept in mind, however, that peak execution rates are based on

. optimal conditions that are difficult to realize or sustain in practice. In particular,

the peak rate for the i860 assumes an ideal instruction mix, cache utilization, data

alignment, pipelining, etc. These issues will be discussed in greater detail below.

The processors in the iPSC/860 are interconnected by a 7.dimensional hypercube

network in which "worm-hole" routing hardware is employed to provide efficient mes-

sage routing between nonadjacent processors. The network essentially provides circuit

switching (as opposed to packet switched, store-and-forward message routing), thereby

effectively emulating a fully connected network, with very little penaity for nonlocal

communication. The peak data transfer rate across the hypercube interconnection

network between any two nodes is 2.8 Mbytes per second.

. In addition to the 128 computational nodes, ORNL's iPSC/860 has four I/O nodes,

each of which has an Intel 80386 processor and two 650-Mbyte (formatted) disks_ lvr

an aggregate total of over 5 Gbytes of disk space. These I/O nodes and the disks they

support are directly accessible to the computational nodes over the interconnection

4-

network. Peak data transfer rate between a single computational node and the I/O

node disks is about 1.5 Mbytes per second. When more computational nodes access °

the I/O disks simultaneously, the aggregate throughput initially increases, peaking at

about 3 Mbytes per second, but eventually degrades due to contention as still more

processors are used. For more detailed performance data for the iPSC/860 on basic

I/O, communication, and arithmetic operations, see [5].

Like most machines of its type, the iPSC/860 is not a stand-alone machine_ but

requires a host machine to serve as its interface to the outside world for program

development, resource management, and external network access. The host machine,

known in Intel terminology _s the System Resource Manager (SRM), is an Intel 301

microcomputer, which features an intel 80386/387 processor p_ir running at 16 MHz,

8 Mbytes of RAM, a 300-Mbyte disk, cartridge tape unit, and an Ethernet network

connection. The SRM is attached to the hypercube network, and this link provides a

peak data transfer rate of over 1 Mbyte per second.

3. Intel iPSC/860 Software

The user interface and software environment for the iPSC/860 reside primarily on the

SRM. The SRM runs Unix System V, Release 3.2, with support for TCP/IP networking

and the Network File System (NFS) via Ethernet. The disk space on the I/O nodes is

managed by a separate Concurrent File System (CFS) that is not currently integrated

with the SRM disk or NFS. A special shell is provided, however, for accessing and

managing CFS files from the SRM.

The computational nodes in the iPSC/860 system run a simple operating system

kernel called NX that supervises process execution and provides buffered, queued mes-

sage passing (including communication to I/O nodes or the SRM). Like other MIMD

hypercubes, the programming model for the iPSC/860 is based on adding explicit

communication calls (send/recv) to serial code written in a conventional programming

language (C or Fortran)..At present, there is no automation provided to aid in paral-

lelizing programs, but a node debugger is available.

Compilation of either C or Fortran for the i860 node-processor target takes place on

the SRM. The cross-compilers currently available do not take specific advantage of any

of the special features of the i860 processor (dual instruction mode, etc.) theft give it its

.

unusually high performance. The result is that compiled code from high-level language

source generally runs at about an order-of-magnitude lower performance than the peak

rates expected for the i860. Specific performance data will be detailed below.

The i860 development tools currently available (compilers, linker, assembler, archiver)

run very slowly on the SRM (much more slowly than their counterparts for the 80386/387

target), even for a single user. If multiple users run the i860 development tools on the

SRM simultaneously, the SRM slows to a crawl. For example, at ORNL we have

i860 application programs that cannot be built on the SRM in an eight-hour shift.

Thus, although the computational performance of the iPSC/860 is competitive with

conventional supercomputers, it is not yet in the same league in terms of the program

development cycle. Intel and a number of third-party software houses are presently

working on enhanced compilers and other development tools for the i860 that should

be much more efficient, both in building programs and in executing them on the i860.

In addition, another obvious route to alleviating some oi"the SRM bottleneck would be

to move program development elsewhere on the network onto higher powered worksta-

tions via additional cross compilers, or onto the hypercube itself. Such improvements

will be necessary before the iPSC/860 can become the same kind of everyday pro-

- duction workhorse that one expects of conventional supercomputers, such as the Cray

series, where compilations seem almost "instantaneous."
9

4. Performance on Computational Kernels

Basic operations on vectors and matrices are common in all areas of scientific com-

puting. These fundamental building blocks form the inner loops of many numeri.-

cal algorithms and are a dominant factor in determining the performance of many

numerically-intensive applications programs. The performance of these computational

kernels is therefore of great interest on any computer architecture, and they tend to be

among the first benchmarks run on any new processor. The definitions and user rater-

faces for these low-level operations have been standardized in the Basic Linear Algebra

Subprograms (BLAS) [15], which in turn form the basis for portable implementations

of higher-level matrix operations, such as solving systems of linear equations (see, e.g.,

. [3]).

When implemented in a high-level programming language such as Fortran or C,

-6-

the BLAS can be made portable across a wide range of computers, but their perfor-

mance rarely approaches the theoretical peak on any individual machine. The usual

approach, therefore, is to implement custom-coded versions of the BLAS in assem-

bler language for each particular processor, while maintaining the same user interface

across ali implementations so that programs that call the BLAS will remain portable,

while retaining the speed advantage of assembler coding in their inner loops. High-

level language implementations of the BLAS are still of interest, however, in that the

performance gap between them and optimized implementations in assembler language

serves as an indication of the effectiveness of the compilers for a given machine.

We have implemented a number of the most important BLAS in assembler language

for the Intel i860 processor and compared their performance with standard implemen-

tations in Fortran and C. Both in writing these codes and in testing their performance,

we were confronted with a number of options regarding methodology. The i860 pro-

cessor has a number of features, and corresponding instructions in its instruction set,

that potentially enhance its performance, but whose exploitation may limit the general

applicability of the resulting code. For example, the "quad load" feature allows the

fetching of 128 bits of data from memory with a single instruction, but only if the data

are aligned on a "quad word" boundary (i.e., a byte address that is a multiple of 16).

The use of this capability substantially increases the effective bandwidth between pro-

cessor and memory, but in many applications it is impractical or impossible to meet the

concomitant restriction on data alignment. Thus, in writing a general-purpose code,

one must either forgo using this special feature entirely, or else detect those (possibly

rare) cases for which it is applicable and exploit it only then. Clearly, this issue must

be kept in mind when choosing benchmark tests and interpreting the results.

The "advertised" peak performance figures cited earlier for the i860 are baaed

on ideal conditions, including alignment of data on proper word boundaries, perfect

pipelining, no cache misses, an instruction mix that exactly matches the functional

units of the processor, optimal use of dual instruction mode, etc. Full realization of

these conditions in real programs for any sustained period of time is undoubtedly ex-

tremely rare, but they can conceivably be achieved in simple, artificial benchmark tests

such as isolated tests of individual routines from the BLAS. However, we are confronted

here by another thorny question of methodology regarding cache usage. An individual

-7-

call to a single BLAS routine on a high-performance processor is too brief to yield

reliable timing results. The usu_ approach to such a problem is simply to replicate

the test many times, perhap_ several thousand, so that overall execution times can be

measured accurately. Unfortunately, a far higher percentage of cache hits is likely to

occur in such a replicated test than would be experienced in one-time usage of the

routine, thereby significantly skewing the results. On the other hand, there certainly

are instances in actual practice, some of which will be noted in the next section, in

which data can be expected to remain in cache for sustained periods if the algorithm is

carefully constructed. The reader should keep these Comments in mind when interpret-

ing this section's results, which were obtained through replication in order to produce

accurately measurable execution times.

In _ high-level language such as Fortran or C, the user has little specific control over

cache utilization, but in i860 assembler, data traffic to and from memory can bypass

cache at the programmer's option to obtain better overall cache utilization. The general

principle, of course, is that reusable data should be cached, while nonreusable data

should bypass cache so that it does not displace any resuable data that may already

reside there. For example, one of the most important computational kernels in linear

. algebra is to compute the result of a scalar times a vector plus a vector, commonly

known in BLAS terminology as axpy, y = ax + y, where x and y are vectors and c_

- is a scalar. Cache management is particularly important for this operation because of

the different roles played by the variables involved. In particular, y is both fetched and

stored, while x is only fetched, so it m_y be advantageous to cache y, while bypassing

cache with x.

Figures 1 through 3 show results for the BLAS routines saxpy, daxpy, and zaxpy

for single precision real, double precision real, and double precision complex data,

respectively. In all cases the vector length is measured in words of the appropriate

size for the precision involved. The execution rates shown were obtained using timing

tests that make 10,000 successive c_lls of the basic routine, using a stride of 1 and

with the same argument list for each call. Thus, after the first call, some data may

- remain in cache that is potentially reusable on successive calls, depending on the vector

length involved. S_,me of the implementations shown use special instructions that load

" multiple words, but these require the input vectors to be aligned on special boundaries.

60

50-

40-

M cached*
f

20- /--_ .' _- _ _ __.
y cached __

10-

Fortran

0 I I 1 I I I

500 1000 1500 2000 2500 3000

vector length (words)

Figure 1: Execution rate for various implementations of saxpy on the Intel i860. As-
terisk indicates routine requires aligned data.

9-

The routines using the special instructions are indicated by an asterisk in the figures.

• These results are included for comparison purposes, but it should be kept in mind

that _ot al] applications will be able to meet the restrictions on data alignment, and

hence may not be able to take advantage of the higher performance offered by the

kernel implementations that use these special features. The maximum execution rates

achieved with assembler-coded axpy routines are about 55 Mflops with single precision

data, and about 27 Mflops with double precision data. The 2-to-1 performance ratio

between the two precisions for this computation is presumably due to the fact that the

i860 can issue a single precision multiply instruction on every clock cycle, but it can issue

a double precision multiply instruction only on alternate clock cycles. These ma_mum

execution rates represent about 50% to 70% of the advertised peak performance of the

i860, depending on the precision. Fortran implementations of axpy, on the other hand

achieve only 7% to 15% of theoretical peak performance, suggesting that the compiler

is taking little or no advantage of the i860's high-performance features.

30-

25-

J.

2O
.r

o1
Ps

/_ Fortran

250 500 750 1000 1250 1500
J

vector length (words)
J.

Figure 2: Execution rate for various implementations of daxpy on the Intel i860. As-
terisk indicates routine requires aligned data.

,k

Cache effects can also be seen clearly in Figures 1 through 3. Perfor,nance falls off

10-

markedly when the vector size exceeds the 8 Kbyte cache size. This point is reacLed

for vectors only half as large if both z and y are cached. And of course, the longer

wordlength of double precision and complex data cause the cache to be saturated at a

smaller vector size. As expected, caching only y gives better performance than caching

only x. The best performance occurs when y is cached and z is "quad aligned," so

that it can be piped from memory in 128-bit chunks. For very large vectors, the

performance curves for all of the assembler routines converge to about the same level,

which is little better than that of Fortran, suggesting that "strip mining" should be

used to keep ve:tor lengths within the cache size. Unlike the assembler routines, the

Fortran routines are relatively insensitive to vector length and precision of data, but

there is little virtue in this consistency.
|

3O

I x and y cached

.,

25

20-

M
f
1 15-

O
P
S

b

10 - Fortran

0 I I I I I

200 400 600 800 1000

vector length (words)

Figure 3: Execution rate for various implementations of zaxpy on the Intel i860.

_igure 4 shows res_llts for the BLAS routines sdot, ddot, and zdot, which compute

the inner product of two single-precision, double precision, or complex double precision

vectors, respectively. In our assembler implementations, one of the two vectors is
tr

cached, while the other is piped from memory, bypassing cache. Again we see some

11-

fairly clear-cut cache effects similar to those seen earlier for axpy. Note, however, that

" wedo not see the factor of two difference in performance between single precision and

double precision for dot that we saw for axpy. The relatively higher performance for

zdot is presumably due to the larger ratio of arithmetic operations to memory accesses

for complex arithmetic.

The assembler kernels whose performance is reported in this section were written

by T. H. Dunigan, R. E. Flanery, and G. A. Geist.

35

3O

25 assembler, s _

20

1,
Ps 15

assembler, d

Fortran, z Fortran, s

10 _ .._.P, _,,

5 - Fortran, d
,w

I 1 1 I

500 1000 1500 2000

vector length (words)

Figure 4: Execution rate for sdot, ddot and zdot on the Intel i860.

5. Performance on Matrix Computations

Although simple computational kernels such as those discussed in tile previous section

do a reasonably good job of capturing the flavor of the dominant inner loops of many

scientific applications, their performance as isolated modules does not necessarily reflect
P

their performance when used within the context of a larger, more complicated program.

, Cache managemeitt, in particular, plays a major role in determining overall performance I

and is much less straightforward to optimize in a real program with complicated data

- 12-

structures, memory reference patterns, _nd multiple computational phases.

For benchmarking purpose_,, _ useful corr_promise between simple computational "

kernels and fully-detailed application programs is provided by more substantial oper- t

ations on matrices, such as matrix factorization to solve systems of linear equations.

With their more complex memory-referer =e patterns, such matrix operations place a

more realistic and demanding load on data paths between processor and memory, and

contain enough computaZi,_n that performance can be accurately measured without

replication. These features probably account for the popularity of the Linpack bench-

mark, in which a linear system of order 100 or 1000 is solved as a basis for compari_,g

floating-point performance of many computers [2]. At present, however, the Linpack

benchmark code is limited to serial computers and a few shared-memory multiproces-

sors (with or without vector capability), so we have developed our own programs for

matrix factorization for parallel execution on multiple processors of the distributed-

memory iPSC/860.,t

We first consider the Cholesky factorization A = LL T of a symmetric positive def-

inite matrix A, where L is a lower triangular matrix. There are three b._sic algorithms

for implementing this factorization, corresponding to different ways of arranging the

triply-nested loop that defines the computation (see [9] for a full discussion and an

explanation of the terminology we use here)'

• row-Cholesky, for which the inner kernel is sdot,

• column-Cholesky, for which the inner kernel is saxpy,

• submatrix-Cholesky, for which the inner kernel is saxpy.

Column-Cholesky and submatrix-Cholesky are both column-orie3ted and both use

saxpy, but they differ in their memory-reference patterns. Column-Choir.sky makes

repeated calls to saxpy with the same y but different x vectors, whereas submatrix-

Cholesky makes repeated calls to saxpy with the same x but different y vectors. More-

over, in a parallel implementation, column-Cholesky uses fan-in communication, while

submatrix-_holesky uses fan-out communication. Row-Cholesky makes repeated calls

to sdot with one vector fixed and the other varying, and in a parallel implementation

uses fan-out communication. These features suggest a different strategy for each of the

algorithms in the use of cache by the underlying BLAS kernel.i

13-

The single-processor i860 performance of the three Cholesky algorithms is shown

• in Table 1. The variation in single-processor performance among the algorithms is due

in part to differences in their effectiveness in exploiting cache. Note that we have not

used "strip mining" in any of tL_ algorithms to enhance the use of cache, so for large

matrices the vectors involved irl a given call to a BLAS routine may exceed the cache

size. The row Cholesky algorithm based on inner products is clearly the most effective

algorithm for tLis computation on the i860 processor, probably due to the fact that it

requires no stores to memory (or cache) in accumulating the inner products, whereas

the other two Mgorithms require stores in the inner loop. The performance of the serial

Cholesky algorithms correlates well with the performance of their underlying BLAS

kernels, as reported in the previous section.

BLAS Precision Row-Cholesky Col-Cholesky Sub-Cholesky

C single 5.1 3.7 3.8
C double 4.4 3.3 3.3

assembler single 24.6 15.5 N/A
assembler double 22.4 14.8 10.7

..... ,.

Table 1' Asymptotic execution rate in Mfiops for Cholesky factorization on a single
i860 processor.

Multicomputer performance of the row-Cholesky algorithms is shown in Figure 5,

, using all 128 processors of the iPSC/860. In the multicomputer case, the use of double

precision also doubles the necessary communication volume (measured in bytes), in ad-

dition to incurring a slightly lower arithmetic execution rate. We see that performance

exceeds 1 Gflop for single precision, and about 600 Mflops for double precision.

The work reported in this section was done by M. T. Heath, greatly assisted by the

assembler kernels discussed in the previous section.

6. Superconductivity Computations

The discovery of high temperature superconductivity in 1986 has provided the poten-

tial for spectacularly energy-efficient power transmission technologies, ultra-sensitive

" instrumentation, and other devices. Each year new materials are found to add to the

family of existing high temperature superconductors. In general these materials are

difficult to form and use, and some of the superconducting compotlnds are unstable.

14-

1000 -800 - . n

M
f 600 -
1,
0
P
S

400- double precision

o

200 -

,.

I i I i I
2000 4000 6000 8000 I0000

matrixdimension

Figure5: Executionrateof row-Choleskyfactorizationusing128 processorson the
InteliPSC/860.

- 15-

These difficulties are exacerbated by the lack of an accepted theory explaining super-

" conductivity at higher temperatures. To further our understanding of the behavior

1 of solids in general and of superconductors in particular, quantum-mechanical laws

have been incorporated into sophisticated computer algorithms to predict from first

principles the structural, vibrational, and electronic properties of matter.

Present calculations of the electronic structure of real materials usually employ a

mean field approximation in which each electron is viewed as moving independently in

a self-consistent potential due to ali of the electrons and nuclei. According to density-

functional theory, it is possible to express the energy of any system of electrons and

nuclei as a unique functional of the electron density [1]. Since this functional is not

known exactly, it is usually approximated by that of a homogeneous electron gas. This

local density approximation to density functional theory has been very successful when

applied to metallic and semiconducting systems, but it appears inadequate to explain

important physical phenomeaa such as optical band gaps and superconductivity found

in transition metal oxides. More sophisticated treatments of the many-electron problem

are possible, but have not been attempted previously because the Green's function and

the susceptibility function needed to construct the electron self-energy are very difficult

• to calculate for real systems, especially those with narrow bands such as transition metal

oxides.

" The approach taken by researchers at ORNL is based on theoretical advances grow-

ing out of work on the Korringa, Kohn, and Rostoker coherent potential approxima-

tion (KKR-CPA) theory of alloys and magnetism [13,14]. The advantage in using the

KKR-CPA approach is that it yields directly the Green's function for the system and

thereby a direct way of calculating susceptibilities. The effects of disorder are treated

in the CPA, which is an analytic technique for calculating the configurationally aver-

aged Green's function [20]. The KKR approach is a natural context for implementing

the CPA, because it is a Green's function method, and there is a natural separation

between the lattice and the potential.

Researchers at ORNL and their colleagues have developed a self-consistent, semi-

- relativistic KKR-CPA computer code that can handle multiple atoms per unit cell.

The code has wide applicability to situations in which some form of substitutional

• disorder plays an important role, including metallic alloys, high-temperature supercon-

16-

ducting compounds, metallic magnetism, and metal-insulator transitions. There are

three primary reasons for parallelizing this code. °

• The KKIt-CPA calculations are computationally intensive. A single KKR-CPA t

calculation commonly requires 10 hours of CPU time on a Cray-2. An estimated

1000 hours or more of Cray CPU time would be needed to complete a single self-

consistent computational experiment. The turnaround time for such experiments

makes them prohibitive on conventional supercomputers.

• The KKR-CPA algorithm embodies natural parallelism that can be exploited to

increase computational throughput. The feature we exploit is the calculation of

the density of states (DOS) at a given energy level. Computation of the DOS at

over one hundred energy levels is required to determine the Fermi level. Each of

these DOS can be calculated independently of the other energy levels.

• The availability of a parallel computer with Gfiop performance, the iPSC/860,

has made it feasible and attractive to develop an efficient parallel version of the

KKR-CPA code.

In adapting the KKR-CPA code to a parallel setting, the modifications to the

KKR-CPA code were made in such a way that the code can still be run on Crays, and

smaller problems can be run on scientific workstations. Having only one consolidated

code to maintain has made software modifications much simpler to implement than

trying to keep three versions of the code up to date. Moreover, the user interface is

identical across ali the machines the code runs on, which has been an important factor

in inducing scientists to use the code in a relatively unfamiliar parallel environment.

Explicit parallelism is hidden from the user, with operations such as allocating a number

of processors and loading programs onto these processors done automatically by the

code. The number of processors to be used in a given computational experiment is

specified in the input file, making it easy for the user to control the '_gree of parallelism

for each run of the program. Organizing the code in this way required writing only a

few new routines to be added to the existing serial code. None of the additional routines
I

involved new calculations, so exactly the same computational routines are called in the

serial and parallel versions.

A master/slave paradigm is used in the parallei implementation. In this scheme, one

17-

processor controls work on the entire problem, and the remaining processors perform

• work requested by the master process. The master process in our implementation is

called the pseudo-host and executes on one of the iPSC/860 nodes. We avoided usingD

the SRM for the master process because of the computational imbalance between its

80386-based processor and the much more powerful i860-based computational nodes.

The SRM is also burdened with executing the Unix operating system and program

development tools for time-shared use by multiple uQers.

The KKR-CPA algorithm is organized in the following way. We start by inputting

the atomic numbers of the species and initial estimates for the charge density and

potentials. Since the Green's function for the system at any energy is independent of

any other energy, this is a natural point in the algorithm at which to exploit parallelism.

In the parallel implementation, the energies to be evaluated are held in a queue of tasks.

The difficulty of each task is initially unknown, so a heuristic strategy is used to arrange

the queue in order of approximately decreasing difficulty. Each idle processor selects the

next task in the queue and returns the DOS to the master process, which computes the

integral over ali energies. Load balancing is achieved naturally, with all the processors

remaining busy as long as there are tasks left in the queue.

• The most computationally intensive portion of the tasks assigned to the processors

is integrating the KKR matrix inverse over the first Brillouin zone. To evaluate the

integral, hundreds or possibly thousands of complex double precision matrices of order

between 80 and 300 must be formed and inverted. Each matrix corresponds to a

different vertex of the tetrahedrons into which the Brillouin zone has been subdivided.

The results of the integration are used to compute the Green's function for the system

and the DOS for the given energy.

A further outer iteration is necessary to incorporate self-consistency of the charge

density into the KKR-CPA code. This outer iteration involves integrating the Green's

function over energy to obtain the charge density, which is used to derive the potential

for the next iteration. Thus the entire process described thus far is repeated several

times in the self-consistent version of the code, greatly magnifying the already substan-

o tial computational demands of the program.

Using the high temperature supercondlxctor Bal_xKxBi03 as a test problem, the

° consolidated KKR-CPA code has been run on several computers. The test problem

18-

requires the calculation of the DOS for a fixed number of representative energies, with-

out iterating to self-consistency. The average execution rate for a range of computers •

is shown in Table 2.
!

M¢chine Processors Mfiops Comments
DE(3100 1 2

IBM RS/6000 1 18 Model 530
Cray-2 1 49

Cray Y-MP 1 130 Fortran only
Cray Y-MP 1 203 assembler BLAS

Cray Y-MP 8 1509 multitasking
iPSC/860 128 725 Fortran only

iPSC/860 128 1792 assembler BLAS

Table 2: Average execution rate for superconductor test problem on several computers.

The KKR-CPA code using only Fortran runs at a rate of about 130 Mfiops on a

single processor of the Cray Y-MP. Performance increases to about 203 Mfiops when

assembler-coded BLAS are used. The addition of multitasking to make use of ali eight

processors of the Cray Y-MP yields an aggregate performance of over 1.5 Gfiops. The

rate shown for the iPSC/860 includes the time to load the problem onto 128 processors,

all communication, file I/O (four fairly large output files are generated), and dynamic

load balancing overhead. The rate of 725 Mfiops was attained using only compiled

Fortran. This rate was increased to about 1.8 Gflops by using an assembler language

zaxpy in tile inversion routine and in the formation of the KKR matrix. The test

problem used here is too small to a_ttain the asymptotic execution rate of which the

code is capable on the i860. Larger problems are expected to yield execution rates of

approximately 2.5 Gfiops.

The use of parallel computation on the iPSC/860 has led to more than an order-

of-magnitude improvement in computational speed compared to a single processor of

the Cray supercomputers previously used for the KKR-CPA code. From a research

standpoint the improvement in turnaround time for computational experiments is even

more substantial, since each subcube of the iPSC/860 is dedicated to only one user at a

time, while the Crays are time-shared by many users. This greater computational power ,,

allows us to begin investigating many unanswered questions in superconductivity and

materials science. For example, several studies are underway on the effects of alloying

in the two perovskite superconducting compounds Bal_xKxBi03 and BaPbl_xBix03.

- 19-

The work reported in this section was done by G. A. Geist, W. A. Sh_,lton, and

' G.M. Stocks. For further details, see the paper [8].

'D

7. Plasma Flow Computations

One of the obstacles to the design of a magnetic-fllsion reactor is an understanding

of anomalous transport mechanisms that dew,troy plasma, confinement. The onset of

plasma turbulence can be studied numerically by considering the dynamics of the

plasma edge. Detailed measurement_ are possible at the plasma edge using probes,

so that experimental verification of numerical models is possible. The study of plasma

edge turbulence faces many of the same challenges as the classical fluid turbulence prob-

lem. Ali the important time scales and length scales must be resolved in a numerical

computation, and this strains the abilities of present supercomputers. In addition, since

the plasma is not a perfect conductor, the turbulence can cause changes in the topology

of the magnetic field. These topological changes are critical for plasma confinement.

A code for studying plasma instabilities based on tLe reduced magneto-hydrodynamic

(MHD) equations has been in use by researchers in the Fusion Energy Division of ORNL

ibr several years [11]. This code has been optimized for use on the Cray machines avail-

" able at the Nationai Energy Research Supercomputer Center. As a pilot study, the code

was implemented oa the Intel iPSC/1 hypercube [4]. The MHD equations in a toroidal
-a

geometry are discretized by a pseudo-spectrai method, with derivatives in the time and

radial directions approximated by finite differences while functions of the two angu-

lar variables are expanded in Fourier series. Derivatives in the angular variables are

performed analytically. All quantities are stored in spectral form. The nonlinear con-

vection terms are taken to be explicit in time, while linear terms are treated implicitly.

The convolutions arising from the nonlinear terms are performed analytically, rather

than using a fast Fourier transform. This allows for explicit study of mode interactions

during the nonlinear evolution.

Parallelism is incorporated by a spatial domain decomposition of the radial coor-

dinate. This approach preserves data locality for the computationally intensive con-

volution calculation. The implicit terms require solving multiple tridiagonal systems

distributed across the processors. A ring-based, pipelined solution strategy is used forI

this phase. Results on the iPSC/1 indicated that the calculation is well suited to large-

- 2O-

scaJe parallel computation, attaining parallel efficiencies above 90%. But as a practicai
t

matter, on this early hypercube the run time was considerably larger than correspond-

ing runs on Cray machines. The iPSC/1 is aiso limited by its relatively small memory
1

of 512 Kbytes per processor. Only small problems having 20 to 30 modes fit in memory,

whereas interesting simulations involve 500 or more modes,

The second generation Intel hypercube, the iPSC/2, offers an improvement in both

processor speed and memory size, but still falls short of the Cray-2 in overall run time.

The 4 Mbytes of memory per processor accommodates much larger problems, but a

500-mode case remains infeasible on the iPSC/2, The Intel iPSC/860, on the other

hand, with 8 Mbytes of memory per processor and vastly improved computational

speed, has the potential to run full-sized simulations with times comparable to any

other supercomputer available. Figure 6 shows execution times on two generations of

Intel hypercubes, the iPSC/2 and iPSC/860. Each data point represents the CPU time

required to take 10 time steps using 16 processors.

I000,,

q

100
S
e "

C
O
n

d

s / o

10 IP_ /

i I I I I I I I I I --i I I I I I II I I I' I I I I I I

1 10 100 1000

problem size (number of modes)

Figure 6: Execution times of plasma flow code using 16 processors oll two generations
of Intel hypercubes.

Table 3 shows CPU times on the iPSC/860 compared with the corresponding single, •

processor Cray-2 time for a 300-mode case. The Cray code uses 60-bit precision, while

21-

the iPSC/860 code uses 64-bit precision. The Cray code has unrolled loops and takes

" advantage of vectorization of the inner loop of the convolution calculation. We have

begun to experiment with optimizing the inner loop on the iPSC/860. By rearranging

the order of loop indices we can obtain a factor of two increase in performance. We

find that the unoptimized inner loop executes at about 1.9 Mfiops per processor. With

compiler optimization, the execution rate increases to 4.5 Mfiops. We expect to increase

this speed significantly in the future by using assembler-coded routines.
J

Machine Processors CPU time Comments

Cray-2 1 67

iPSC/860 16 180 unoptimized Fortran
iPSC/860 16 130 optimized Fortran

iPSC/860 16 110 unoptimized, loops rearranged
iPSC/860 16 69 optimized, loops rearranged

iPSC/860 32 49 optimized, loops rearranged

Table 3: Times in seconds h,r 10 steps of the plasma flow code for a problem with 300
modes.

Since the timing results from these tests appear favorable for large scale compu-

tations simulating plasma edge turbulence, we are developing more extensive models,

. such as the KITE code [7], for use on the iPSC/860.

The work reported in this section was done by J. B. Drake and V. E. Lynch. For

- further details see the paper [16].

8. Atomic Physics Computations

The collisions of heavy ions at high energy levels can be simulated using a quantum

electrodynamic framework, which is somewhat simpler and more tractable than the

full coupling of quantum chromodynamics. One of the structures to emerge from the

collision is a strongly coupled lepton-antilepton pair. This structure usually decays

in les_ than 10-19 seconds. The simulation of the production and decay of leptons

is a formidable computational challenge. The ability to simulate the production of

such pairs is important in the design of experiments for colliders currently under con-
e

struction. Until recently, most accelerator designers have worked in the domain where

fundamental interactions can be decoupled from engineering considerations, with little

or no involvement in the modeling of basic processes on supercomputers. It is now rec-

- 22 -

ognized, however, that beam stability and focusing in ali advanced collider designs are

strongly influenced by pair production. The theory of these processes is rapidly evolv-

ing for both high-energy heavy-ion colliders and for electron.positron linear colliders
e

[1si.
The fundamental model for heavy ion collisions is based on Dirac's equation [21].

The solution of this equation gives the motion of the leptons, which are assumed to

move independently of the classical electromagnetic fields. Dirac's equation relates the

time rate of change of the particle probability distributions to spatial derivatives of the

distributions. This equation is linear, so that propagation of the distribution in time

can be represented as an operator exponential. Methods developed for the simulation

of lepton-pair production are also applicable to related non-relativistic _problems in

nuclear, chemical, surface and plasma physics.

A B-spline collocation method for Dirac's equation has been implemented on the

iPSC/2 and iPSC/860, as well as on the Cray and the FPS T-series computers. The col-

location method employs basis splines of user-selectable order. The high-order splines

have better approximation properties than low-order splines or the simple interpolants

typically used in finite difference and finite element discretizations. The B-spline col-

location method thus has excellent convergence and accuracy properties. The method

also allows implementation in a storage-efficient tensor product style, where the effects

of the discrete operator in each coordinate direction are separated. The desired level

of resolution is a 100 × 100 × 100 lattice. The computations typically involve solving

an eigenvalue problem for the initial minimum energy state and then taking several

thousand time steps through a transient pair production and decay. The eigenvaiue

calculation is an iterative procedure using only the operator; the tensor form of the

operator replaces explicit formation of a matrix representing the operator.

Parallelism is introduced by domain decomposition, with processors and data as-

signed in a two-dimensionai grid or, with edges connected, a torus arrangement. Apply-

ing the discrete Dirac operator to a state vector requires three matrix-matrix products,

one for each coordinate direction. Two of these directions, y and z, have data divided

among the processors by the domain decomposition. The first matrix of the product

represents the derivatives of the Dirac operator in the particular coordinate direction.

This matrix is of order 100 for the desired resolution and c;_neasily be formed and stored

23-

on each processor, so that only the state vector is then divided among the processors.

" A "roll" algorithm similar to the well known parallel matrix-matrix product algorithm

[6] is employed to accumulate the results. This phase requires nearest.neighbor com-
mt"

municatton on the grid of processors, accumulating the results for they direction using

rings of processors in one directio,_ and then accumulating the results for the z direc-

tion using rings of processors in the perpendicular grid direction. The inner loop of

the implementation is a saxpy, even though all of the state vectors are complex. ILeal

and imaginary parts of the state vector have been rearranged to gain efficiency from

the use of only real arithmetic.

Preliminary performance data for this code on the iPSC/860 are shown in Figure

7. The figure shows dramatic improvements in computational speed with the use of an

assembler-coded saxpy for the inner loop calculation. The crossover in performance

between the two codes based on assembler-coded saxpy is due to the lower efficiency

of the the aligned code when the vector lengths are short, which is the case when a

fixed-size problem is spread over more processors. Timing studies and operation counts

show a dependence on the number of processors, p, and the grid resclution, n, that is

proportional to n4/p. Physically interesting results computed at the rates shown and

at the desired resolution can be obtained with runs lasting approximately one day.

. 50-

40-

M assembler saxpy, aligned dat

f 30 - _

1 , assembler saxpyo assembler saxpy
P
s 20-

O' l l l l
. 0 1 2 3 4

hypercube dimension

• Figure 7: Execution rate of lepton pair code for a 16 x 16 x 16 lattice.

24-

Efforts to optimize the performance of the code for the iPSC/860 have thus far

taken precedence over exploring the physics of pair production using the iPSC/860's

computational power. The latter activity will begin in earnest during the next few

months. The work reported in this section was done by C. Bottcher, J. B. Drake, R. E.

Flanery, and M. R. Strayer.

9. References

[1] U. Von Barth, Density functional theory for solids. In P. Phariseau and W. M.

Temmerman, editors, The Electronic Structure of Complex Systems, pages 67-140,

Plenum Press, New York, 1984.

[2] J. J. Dongarra, Performance of various computers using standard linear equa-

tions software. Tech. Rept. CS-89-85, Dept. of Computer Science, University of

Tennessee, Knoxville, TN, January 1990.

[3] J. J. Dongarra, J. R. Bunch, C. B. I,loler, and G. W. Stewart, Linpack User's

Guide, SIAM, Philadelphia, 1979.

[4] J. B. Drake, W. F. Lawkins, B. A. Carreras, H. R. Hicks, and V. E: Lynch,

Implementation of a 3-D nonlinear MHD calculation on the Intel hypercube. Tech.

P_ept. ORNL-6335, Oak Ridge National Laboratory, Oak Ridge, TN, 1987.

[5] T. H. Dunigan, _erformance of the Intel iPSC/860 hypercube. Tech. Rept.

ORNL/TM-11491, Oak Ridge National Laboratory, Oak Ridge, TN, 1990.

[6] G. Fox, et al. Solving Problems on Concurrent Computers. Prentice-Hall, Engle-

wood Cliffs, NJ, 1989.

[7] L. Garcia, H. R. Hicks, B. A. Carreras, L. A. Charlton, and J. A. Holmes, 3-D

nonlinear MItD calculations using implicit and explicit time integration schemes.

J. Comput. Phys., Vol. 65, pages 253-272, (1986).

[8] G.A. Geist, B. W. Peyton, W. A. Shelton, and G. M. Stocks, Modeling high-

tempaerature superconductions and metallic alloys on the Intel iPSC/860. Proc.

Fifth Distributed Memory Computing Conf., to appear.

- 25,

[9] A. George, M. T. Heath, and J. Liu, Parallel Cholesky factorization on a shared-

" memory multiprocessor. Linear Algebra Appl., Vol. 77, pages 165-187, (1986).

., [10] M. T. Heath, Hypercube applications at Oak Ridge National Laboratory. In M. T.

Heath, editor, Hypercube Multiprocessors 1987, pages 395-417, SIAM, Philadel-

phia, 1987.

[11] H. R. Hicks, B. A. Carreras, J. A. Holmes, D. K. Lee, and B. V. Waddell, 3-

D nonlinear calculations of resistive tearing modes. J. Comput. Phys., Vol. 44,

pages 46-69, (1981).

[12] L. Kohn and N. Margulis, Introducing the Intel i860 64-bit microprocessor. IEEE

Micro, Vol. 9, No. 4, pages 15-30 (1989).

[13] W. Kohn and N. Rostoker, Solution of the SchrSdinger equation in periodic lattices

with an application to metallic lithium. Phys. Rev., Vol. 94, page 1111, (1954).

[14] J. Korringa, On the calculation of the energy of a Bloch wave in metal. Physica,

Vol. 13, page 392, (1947).

[15] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subpro-

grams for Fortran usage. ACM Trans. Math. Software, Vol. 5, pages 308-325,

. (1979).

[16] V. E. Lynch, B. A. Carreras, J. B. Drake, and J. N. Leboeuf, Plasma turbulence

calculations on the Intel iPSC/860 (RX) hypercube. Internat. J. Supercomputer

Appl., submitted.

[17] N. Margulis, The Intel 80860. Byte, Vol. 14, No. 13, pages 333-340, (1989).

[18] M. Month, Physics of part,de accelerators. A.I.P. Conference Proceedings, Vol.

184, Ithaca, NY, 1988.

[19] C. L. Seitz, The cosmic cube, Comm. ACM, Vol. 28, pages 22-33, (1985).

" [20] P. Soven, Application of the coherent potential approximation to a system of

muffin-tin potentials. Phys. Rev., Vol. 156, page 809, (1967).

26-

[21]A. S. Umar, J.Wu, M. R. Strayer,and C. Bottcher,B_is-splinecoUocation

method forthe latticesolutionofboundary valueproblems.J.Comput. Phys.,

submitted,1989_.

al

