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ABSTRACT

Crystallographic shear distortions have been observed in
fluorite structure, single crystals of UO2 and ZrCCa)02_x by neutron-
diffraction techniques. These distortions localize on the oxygen
sublattice and do not require the presence of an external strain.
The internal rearrangement node in UO2 is a transverse, zone bound-
ary t = 2ir/a (0.5, 0,0) deformation with amplitude 0.014 A. In
Zr(Ca)O2»x, the mode is aolongitudinal

:
t "q = 2ir/a (0,0,0.5) deforma-

tion with amplitude 0.23 A. Catibn-anion elastic interactions dom-
inate in selecting the nature of the internal distortion.

INTRODUCTION

We report the observation of internal distortions in.fluorite
structure (Fm3m) UO2 and Zro.85CaO.15°1.85* One unique feature of
our observations is that both materials* exhibit internal distortions
which are not coupled to an external strain. Moreover, these shear
distortions are internal rearrangements that basically involve
eation-anion interactions.

Uranium dioxide, UO2, exhibits a first-order, para to anti-
ferromagnetic transition with the Ne€l temperature, TJJ = 30.8 K.
Tlie transition is characterized by a discontinuous jump in sublat-
tice magnetization and a volume discontinuity AV/V t> 60 ppm at Tjj.
For actinide magnetism, we anticipate a large spin-orbit and strong
crystalline electric field effects. Moreover, the resultant spin-
lattice interaction should reduce the symmetry of the lattice below
TN and thus produce an external strain. A number of x-ray experi-
ments have failed to detect the presence of such a strain.

Calcia-stabilized zirconia, Zr(Ca)02_x exhibits an order-
disorder transition with Tc ^ 1275 K. The transition is very slug-
gish from above, requiring several hundred hours just below T c to
produce the ordered state. The driving force for this transition
is presumably related to the formation of microdonains of ordered
structure with high Ca ion and oxygen vacancy concentrations. Again
x--ray experiir.ents have failed to detect the presence of an external
strain.

EXPERIMENT
• • . • * • • ~ - ' " ~ " ' " . ' • . . . . - . -

The experiment for U02, is to cool a single crystal below T N

and measure the scattering that arises from the antiferromagnetic
state.2 Full three-dimensional neutron scattering Bragg intensities
were obtained... For Zr(Ca)02_x, the crystal was annealed at 1250 K
for 400 hours to produce the ordered state.3 The onset of ordering

*Work supported by the U.S. Department of Energy.



for both materials is apparent by a reduction in symmetry of the
lattice. For the disordered state of an fee crystal, only reflec-
tions with Miller Indices h + k + I '*> 4n, 4n + 1, and 4n + 2, where
n is an integer are allowed. In the ordered state, "forbidden"
reflections arise with h,k,& mixed odd and even.

DISCUSSION

The problem then is to understand what mechanism gives rise to
the "forbidden" reflections. The appearance of these reflections
clearly show, however, that a superlattice representation is net
required. A complete period of lattice modulation must occur over
a unit cell dimension. In Fig. 1 we illustrate the internal re-
arrangement mode that occurs in TJO2* The shaded planes contain
the ferromagnetic sheets which are stacked + - + - yielding the
type I antiferromagnetic structure. A modulated structure is
defined by the arrows which show how the oxygen s ablattice internal
rearrangement mode arises from collective displacements of the
oxygen ions from.their ideal fluorite lattice sites. Oxygen (010)
planes shear in alternate directions. From least-squares analysis,
A, the mode amplitude is 0.014 A. In Fig. 2 we illustrate the
internal rearrangement mode that occurs in nonmagnetic, but ordered
Zr(Ca)02_x. The modulated structure is defined by the .arrows which
show p-i-0) oxygen sublattice shear planes. The mode amplitude is
0.23 K.

A search criter-
ion for the occurence
of internal rearrange-
ments has been devel-
oped. Let us assume
that the mode that
occurs is least unfav-
orable with respect to
an increase in elastic
energy. An internal
distortion localized
on the anion sublat-
tice satisfies this
constraint, and is
observed experimental-
ly. Moreover, let us
assume that only
short-range nearest-
neigfebor radial elas-
tic forces need be
considered. Elastic
force equations can
then fine written and
need only involve a
nine-ffltfcom assembly of
one aariion and eight

--Y

Fig. 1. The U02 fluorite unit cell. The
closed circles are the cations that form
an fee lattice. The open circles define
the anions on sublattices A and B with
fractional coordinates 1/4, 1/4, 1/4 and
3/4, 3/4, 3/4.



cations. The constraint is that the net forces summed at the cation
site should vanish, as they do in the undistorted crystal. If the
anions displacements are - .

uA»B
(1)

then for q along a cube direction, only three possible solutions
exist. The allowed solution for UO2 is a transverse, ̂  = (2u/a,0,0),
zone boundary internal rearrangement mode. The second allowed solu-
tion for Zr(Ca)02_x is a longitudinal, ̂  = (0.0,2ir/a) 2one boundary
internal rearrangement (the phase of the mode is ir between anion
sublattices). These results suggest the dominance of (100) dis-
placements in the disordered state of Zr(Ca)02_x and indeed this is
the case.^ This model clearly shews that successful predictions
require a consideration of only cation-anion interactions. Although
the underlying driving forces fo? the^e internal distortions is
quite different for UO2 or Zr(Ca)(>2_x, in each cassf the internal
rearrangement mode that occurs is dominated by a Minimal cost in
elastic energy.
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Fig. 2. The Zr(Ca)02_x fluorite unit cell.


