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The ultimate object of our program is to learn how to extract information
about molecular rovibrational motions from experimental spectra or calculated
energy levels. This goal of spectroscopy and theoretical chemistry has historically
only been possible in the regular spectral region. Our project is one of several which
are aimed at spectral interpretation in the chaotic or mixed chaotic plus regular
regions.1.2 Our particular tools involve a scaling theory developed under our
previous DOE support period.3 This theory uses experimentally fitted spectral
Hamiltonians or Hamiltonian's whose potentials are calculated using quantum
chemistry, to obtain energy levels as a function of # -1. The scaling theory then uses
this input to highlight the actions of the subset of all periodic orbits which control
(or guide) the dynamics at any given energy up to dissociation. The periodic orbits
themselves, are the skeleton of classical phase space for the molecular motions and
are found by classical non-linear dynamic techniques. The finding and following of
these periodic orbits by constructing a bifurcation diagram, and in 2D, Poincare
surfaces of section, is labor intensive and takes much of our available man hours.
We have two projects, "acetylene" and "NO;." Below we first briefly sketch the
results of the classical phase space study using the fitted spectral Hamiltonian that

describes pure bending dynamics of in the acetylene X1Z state to 15,000 cm-1 of
internal energy.4® The work on NO; will follow.

The specific purpose of this part of our work is to establish relations between
experimental data and quantum mechanical results on one side and the behaviour
of the dynamics given by the corresponding classical Hamiltonian function on the
other side for the bend vibrations of the CoHj molecule. A spectroscopic
Hamiltonian is provided by the MIT group.> We transform it into a classical
Hamiltonian function given in action and angle variables. It describes four degrees
of freedom: a two dimensional oscillator representing the cis vibrations and a two
dimensional oscillator describing the trans vibrations. The Hamiltonian has two
further conserved quantities beside the energy: the sum N of the actions of all four
degrees of freedom, and the total angular momentum L (at the moment we are only
interested in the case of L=0). Thereby the problem reduces to one with two degrees
of freedom but with two parameters N and L. Therefore the number of
independent conserved quantities is less by one than the number of degrees of
freedom. The reduced system with two degrees of freedom is nonintegrable and
shows large size chaos over wide ranges of E and N, if E is not too small. For a given
value of N only a finite interval of values of E corresponds to a non empty phase
space. Fixing a particular value of N corresponds to the selection of a particular
polyad number in experiment. Here classically any value of N is possible, whereas
after quantization N can only be an integer multiple of k.

As it is usual for a system with two degrees of freedom, the best way to get
information about the classical phase space is to construct Poincare sections. This
shows immediately, where the most important periodic orbits are; have large KAM
tori around themselves; which are sufficiently large to have influence on the
corresponding quantum behaviour. Only three different periodic orbits (and




sometimes also their period doubled descendents) ever produce large size KAM
islands for appropriate combinations of values of E and N. These few periodic orbits
seem also to be the organizing centers of the chaotic regions in phase space for such
parameter values, where large size chaos appears. Thereby we can be confident, that
the behaviour of the whole systems can be understood from the properties of only a
few important orbits which act as the skeleton of the whole dynamics.

This analysis indicates that in the low polyad number region the classical
analysis for each polyad shows trans, beating motion and cis motions at the bottom,
middle and top of the polyad respectively. Above polyad 8, due to anharmonicity,
the frequencies of the cis and the trans modes each move toward an intermediate
frequency. At this point the Dennison-Darling and I-doubling resonance interaction
become important and cis and trans motions disappear. New modes emerge. The
higher polyads generally each have local mode motion at the bottom and counter
rotating modes at the top. In the middle is chaos mixed with some extraordinary
regular motions that space does not allow us to here describe. In general the chaos is
biggest about polyad 16 and smaller above and below. Polyad 22 is half regular while
polyad 16 is only about a third regular. The classical motions and their frequencies
can be correlated with the experimentally observed level spacings giving us
confidence in the results. The observed experimental level patterns also correlated
with our classical results.

We are continuing to push the quantum-classical correspondence and will
soon assign the spectra with periodic orbit based quantum numbers. We are very
proud of our achievement as for the first time high vibration state molecular
motions have been extracted directly from experiment.

The NO; project aims at producing a scaling diagram for this system. This
will highlight the important periodic orbits which (non-trivially) must be found as a
function of energy. Experiments up to dissociation have been done on this system
but no spectral Hamiltonian has been developed that is valid over a large energy
range. Hence our first job, which has been completed, has been to develop good
potential surfaces for the ground and the intersecting first excited states.

Though there has been some great improvement in constructing
semiempirical effective surfaces for the X2A; ground state of NO,10 it was decided
to use the ab initio potential energy surface by Leonardi, Petrongolo, Hirsch
andBuenker.8 Although this surface gives less accurate results an rms deviation of
17.13 cm! for the states below 10,000 cm-1 compared to the deviation of about 3 cm-1
in the above mentioned surface, it is the only surface for NO2 which provides the
user with both the ground and the first excited A2B; state in the diabatic
representation. Additionally it also gives the coupling potential between both
surfaces. Only the existence of these three surfaces makes it possible to compute the
nonadiabatic bound states of the molecule. Any adiabatic computation of only the
ground state will not give the experimentally measured states above 11,000 cm-1
since here the breakdown of the Born-Oppenheimer approximation will occur. The




chosen surface had two major drawbacks. One was unphysical kinks, which we
smoothed out, and the other was a too high density of states. We chose a smoothing
of the kinks such that phase space was reduced yielding a lower density of states

than observed, but with only half the deviation than obtained prior to our
modifications.

Now, according to Delon, measurements show that the NO2 molecule
possesses more than 3,000 eigenstates in the 3.226 eV deep well.7 This gives rise to a
measured density of states no larger than 5 per cml. Such densities are a formidable
challenge for theory. The only method, available today, which is capable of
handling that many dense eigenstates, is the filter diagonalization method in
combination with signal processing, both of which were products of prior DOE
support.11 For example, a direct matrix diagonalization in a adapted basis by
Leonardi et al., gives only half of the states up to about 2 eV. To realize, why signal
processing made the calculation of ALL states possible, one has to understand, that
filter diagonalization alone, is only able to compute the states in a narrow energy
window. This is done by generating an effective basis for this energy range. To
ensure that one gets all states lying in this range, one has to generate more basis
functions than there are eigenstates in this range, i.e., so that the density of the basis
functions matches the real ones. Since the real density is a function with
fluctuations of about one order of magnitude and more , it is practically not possible
to do the trial and error calculations needed to find a sufficiently dense number of
basis functions for each energy window. This is so as every test for each trial
window size and bases would require a separate Chebyshev iteration (the time
consuming step). Since signal processing is basically the extraction of states out of a
huge time signal (generated by only one iteration procedure), the convergence of the
energy window parameters is easy, because the signal processing is a fast running
code. Actually we needed on average ten tries with different grid adjustments until
we converged a window to extract the states with six figures accuracy (finally we had
about fifty windows per symmetry).

For a system as large as NO2, one has to setup an efficient strategy which
minimizes the computational effort. We have done this by using Radau
coordinates which makes it easy to account for the symmetry of the system and
which gives a simple expression for the kinetic energy. To get only the states of one
symmetry species at a time, we applied a symmetry operator to a potential adapted
grid, which was constructed by using a combination of a Legendre DVR with a one
dimensional NO diatom adapted basis (which was generated out of a sinc DVR).

We identified the three dimensional potential energy cutoff as the principal
parameter with which we checked the convergence of our iteration. We ran four
grids, consistent with cutoffs of 4, 6, 8, and 8.1 eV for the even symmetry of the
adiabatic ground state to check that the accuracy of our states is better than 104
which is one magnitude better than the average distance between the states of the
surface. Since the adiabatic first excited state has only about one fifth of the number
of states of the ground states, and the nonadiabatic state has approximately the same
density, we used the two largest grids for the other electronic states and the odd




parity without any further check of the convergence. A number of recalculations
with different grids and variation of other computational parameters gave us
confidence that we had extracted all the bound states for each symmetry for both the
adiabatic and the nonadiabatic coupled surfaces.

The comparison of the state density with experiment is quite good and gives a
‘density of 0.3 cm! per symmetry just below dissociation (adabiatic and nonadiabatic
states). This is less than the one found in experiments (0.5) cm-1 but is in accordance
with semiempirical expectations.”.10 The states below 10,000 cm-! differ, only
slightly from those of Leonardi.

We are now undertaking calculation at other #-1; will try to get the relevant
periodic orbits and in general will attempt to get enough data for a full scaling
analyses (which is easy compared to the full classical and quantum calculations).
We will also apply our energy independent statistical analysis methods®) to further
reveal information about the evolving dynamics.
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