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1.  Introduction

Our present understanding of nuclear structure is almost completely based
on facts obtained for nuclei that can be produced with stable projectiles and
targets which have equilibrated for a significant fraction of the lifetime of the
universe. The use of Radioactive lon Beams (RIB) could overcome this limitation
and provide unique opportunities for the study of nuclear structure with nuclei far
from stability. These nuclei could answer critical issues concerning some of the
most fundamental current nuclear structure themes and allow the study of
entirely new phenomena, unobservable with current techniques and not derivable
from our present knowledge of nuclear theory. RIB will also open new oppor-
tunities for the study of processes taking place at less equilibrated astrophysical
sites, such as supernovae, cataclysmic binaries, and accreted shells of neutron
stars. Widespread interest in RIB has developed in the last few years and a
steering committee has recently been established to consider the construction of
a large radioactive beam facility in North America. With this interest in mind, we -
have performed a feasibility study for a low-cost extension of the Holifield Heavy
Ion Research Facility (HHIRF) accelerators which would provide access, on a
short time scale, to much of the physics of proton-rich nuclei.

2. Radioactive Beams from the HHIRF Accelerators
The two coupled accelerators of the HHIRF provide a unique opportunity

to quickly and economically develop a medium-intensity radioactive beam facility
in North America using an isotope separator on line (ISOL). Presently, the Oak
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Ridge Isochronous Cyclotron (ORIC) serves as an energy booster for heavy ions

and is injected directly from the 25-MV tandem accelerator. To produce radioac-
tive beams with the HHIRF accelerators, this process could simply be reversed.
The tandem accelerator would be injected with heavy ions produced by ORIC. In
this case, the two accelerators will be coupled by a thick target, ion source, and
mass separator mounted on a high-voltage platform. Light ions from ORIC, with

an internal ion source, would produce radioactive heavy icns for tandem injection.

Moreover, the University Isotope Separator-Oak Ridge (UNISOR) with its
FEBIAD ion source2.3 provides the capability to immediately investigate and
develop the target-ion source hardware and chemistry required to produce
useable radioactive beams.

~ Because of its high terminal voltage, the tandem accelerator can accel-
erate 5-MeV/amu beams with high efficiency up to about mass 80. This is
illustrated in Fig. 1, which shows maximum energy and corresponding total
transmission efficiency, including terminal stripping charge state fraction, for
operation with terminal gas stripping and terminal foil stripping. It is important to
appreciate that since the tandem accelerator is inherently a dc machine, no
bunching is required for the injected beam. This propenty is a perfect match to
the low-intensity dc beams available from an ISOL source. In addition, the other
inherent advantages of the tandem accelerator, such as simplicity, reliability,
flexibility, and excellent accelerated beam quality, are also available. No
modification to the tandem accelerator would be required for service as a
radioactive beam postaccelerator.

It is also important to note that most, but not all, elements are easily
formed as negative ions for tandem injection. The use of negative ions provides
an additional physical factor tc help select a specific product atom with respect to
its corresponding isobars. This fact has led to the development of ISOL negative
ion sources4S even in cases where negative ion sources were not required for
other reasons.

ORICS® was designed for the acceleration of both light and heavy ions and
was used extensively for the production of intense light-ion beams in the first
years after its completion in the early 1960s. It should be noted that continued
use of the ORIC as an energy booster in normal coupled operation is planned
and that the modifications required for stand-alone light-ion operation with an
internal ion source are not expected to interfere with this present operating mode.

The shielding for the original ORIC facility’ was designed for 75-MeV,
1-mA proton beams; consequently, the ORIC vault, and the original ORIC target
areas, rooms C110 and C111, are shielded to this original standard. These
rooms are also equipped with single-pass HVAC systems appropriate for high-
radiation areas. In this study, room C111 was assumed to house the ISOL
target-ion source and mass separator on a 300-kV platform, as well as the
associated storage caves and remote handling equipment which may be required
for the irradiated target-ion sources. While rearrangement of stacked block
shielding may be necessary, no civil construction would be required.



3. Expected Energy and Intensity Performance

Primary beams will be accelerated in ORIC. The maximum energy of
these beams is limited by the maximum ORIC bending power given by K =
ME/Q2 = 105, as well as rf frequency and focusing limitations for protons. The
assumed maximum energy for the light-ion beams of interest are: 55-MeV H,
52-MeV 2H, 140-MeV 3He2+, 105-MeV 4He2+, 70-MeV 6Li2+, 60-MeV 7Li2+,
94-MeV 10B3+ and 86-MeV 11B3+. The maximum available intensity of 1H, 2H,
3He, and 4He beams is presently believed to be limited by heat dissipation and
activation in the beam extraction system, specifically the septum of the electro-
static deflector. For this study, a maximum value of 1 kW for heat dissipation in
the deflector septum and a beam extraction efficiency of 67% were assumed.
These assumptions Iimit the extracted beam power to 2 kW; consequently, the
corresponding extracted beam intensity is given by | (ppA) = 2000/E (MeV). 1t
was also assumed that the available intensity of Li and B beams will be ion-
source limited to 10 ppA for both elements, independent of energy.

The thick target production rates listed in Table 1 for radioactive atoms
were estimated using a cross-section model based on nuclear systematics along
with the stopping powers of Northcliffe and Schilling.8 Production rates for
proton-rich beams were calculated using (H, xn), (He, xn), (Li, xn), and (B, xn)
reactions on C, N, O, Si, and Ge targets. Other target elements and reactions
are also possible, but were not considered in this study.

In principle, 118 proton-rich radioactive beams between 7Be and 84Rb
could be accelerated with energies > 5 MeV/amu from an ISOL facility® based on
the existing HHIRF accelerators. For this study, we have restricted the initial
radioactive beams to those isotopes of oxygen, fluorine, phosphorus;, sulfur,
arsenic, and selenium which are icentified in Table 1. These isotopes were
chosen because they could be obtained using target-beam combinations with
favorable chemical and physical properties and their half-lives were not too short,
nor so long as to pose activation problems. Taking into consideration the
maximum accelerated beam intensity, the intensity and half-lives of the activation
products, and other factors where appropriate, the most favorable reaction was
chosen for each radioactive beam. Information on these most favorable
reactions is summarized in Tabie 1. it is important to note from Table 1 that the
maximum required primary beam energies are generally quite low. These low
energies will result in low ORIC operating costs and low system activation. Other
factors contributing to the maximum accelerated RIB intensities given in Table 1
are listed below:

(1)  Conversion efficiency of atoms to negative ions was considered for
either direct surface ionization or charge exchange. Direct surface
ionization was assumed for elements with electron affinities greater
than about 2 eV. For these elements, conversion efficiencies were
estimated from the Langmuir-Saha relation for a LaBg surface
ionizer operaid at 1370°K. The actual operating efficiency was
taken to be 50% of this calculated value.



Conversion efficiencies for atoms to negative ions using the charge-
exchange technique are the product of two factors: the efficiency
for conversion from atoms to positive ions and the efficiency for
conversion of positive ions to negative ions. For this study, the
efficiencies for converting neutral radioactive atoms into positive
ions were estimated by scaling the efficiency of the species in
question to a 30% value measured for calcium.10 The efficiencies
for positive to negative ion conversion through sequential charge
exchange were based on experimental measurements by
Heinemeier and Hvelplund for Na and Mg11 exchange vapors and
on measured values by Greenway for Cs exchange vapor as
reported in Ref. 12. \

(2) A 50% loss factor has been included to account for anomalous
losses in beam transport.

(3)  Total tandem accelerator efficiencies were taken from Fig. 1.
These efficiencies are the product of the tandem transmission for
either gas or foil terminal stripping and terminal charge state
fraction.13 The charge state and charge state fractions were taken
at the peak of the charge state distribution. A maximum terminal
potential of 26 MV was assumed.

(4)  The results summarized in Table 1 do not contain any decay losses
for short-lived isotopes and assume a 100% release efficiency of
radioactive atoms from the target material.

4. Additional Equipment

The additional equipment required to produce radioactive beams at the
HHIRF is shown in Figs. 2 to 4. Figure 2 shows the ISOL target-ion source and
mass separator located on a high-voltage platform situated in the south end of
room C111. Except for a necessary change in elevation, the high-voltage
platform could be fed by an existing 43-it-long beam lin2 from ORIC. The high-
voltage platform would be operated at potentials up to 280 kV, with respect to
building ground, and, in conjunction with the ISOL source potential of 20 to 80
kV, with respect to platform ground, weuld provide the nominal 300 keV energy
presently used for tandem injection. ORIC beams would be transported from
ground potential to the platform, and the ISOL source, through an acceleration
tube. Depending on the element, either positive o negative ions would be
formed in the ISOL source. These ions would be accelerated to platform
potential, gaining 20 to 80 keV, and then transported through a 90° analyzing
magnet where ions of the desired mass would be selected. This mass-analyzed
beam would then be transported through the charge exchange cell, if required,
and through an acceleration tube to ground potential. At this point, the beam
would be ready for injection into the tandem accelerator with the normal injection
energy of 300 keV. As shown in Fig. 2, the north end of room C111 could, if
required, be configured as an ion source service area with appropriate shielding
and remote-handling equipment.



'Figures 3 and 4 show a beam line to transport the negative ion beam
through the east experimental area, roorn T106, froia the high-voltage platform to
the tandem accelerator. Injection into the tandem accelerator would be accom-
plished by transporting the beam through the existing, de-energized, mass-
analyzing magnet as shown in Fig. 4. A second macs analysis would be
performed on the negative ion beam prior to tandem injection with the 65°
magnet shown in Fig. 3. The negative ion beam transfer line will use compo-
nents identical to, or very similar to, those used in the existing tandem injection
line and will be of all-metal construction. This beam line will be pumped with
sputter ion pumps, and operating pressures in the low 108 Torr range are
expected. 4

Controls for components on the ISOL high-voltage platform and the
negative ion beam transfer line would be provided by a straightforward extension
of the existing tandem accelerator CAMAC-based control system. Since the
tandem accelerator is now equipped with two independent control consoles, one
of these could easily be used for ISOL operations. It is important to note that the
proposed ISOL system could be operated independently of the tandem acceler-
ator, so that radioactive beams could be developed off-line without disturbing
conventional tandem-only operation.

The most impoertant additional component required for producing radivac-
tive beams with the HHIRF is, of course, the ISOL target-ion source. The
detailed choice of target type and composition, ion source type, materials and
geometry, component operating temperatures, possible support gases, etc.
depend on the desired radioactive beam and target isotope. Clearly, the general
techniques developed at the ISOLDE facility,14 UNISOR, GSI,15 and other on-
line isotope separators, are directly applicable. However, the specific techniques
required for a low-energy, light-ion primary beam producing relatively light
radioactive ions in thick targets will require considerable research and develop-
ment. Efforts are now under way to begin this research and development using
the existing UNISOR facility and the tandem accelerator as a source of beams for
the implantation of elements of special interest.
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Fig. 1. Maximum beam energy per nucleon and total
transmission efficiency of the most probable charge state for
the tandem accelerator operated with gas and foil stripping with
the terminal potential at 26 MV.
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