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PARALLELIZING ACROSS TIME WHEN SOLVING TIME-DEPENDENT

PARTIAL DIFFERENTIAL EQUATIONS

Patrick H. Worley

Abstract

The standard numerical algorithms for solving time-dependent partial differential equa-

tions (PDEs) are inherently sequential in the time direction. This paper describes algo-

rithms for the time-accurate solution of certain classes of linear hyperbolic and parabolic

PDEs that can be parallelized in both time and space and have serial complexities that

are proportional to the serial complexities of the best known algorithms. The algorithms

for parabolic PDEs are variants of the waveform relaxation multigrid method (WFMG)

of Lubich and Ostermann where the scalar ordinary differential equations (ODEs) that

make up the kernel of WFMG are solved using a cyclic reduction type algorithm. The

algorithms for hyperbolic PDEs use the cyclic reduction algorithm to solve ODEs along

characteristics.



1. Introduction

. For many numerical problems in scientific computation, the execution time grows without

bound as a function of the problem size, independent of the number of processors and of the

algorithm used [40], [43]. In particular, for most linear partial differential equations (PDEs)

arising in mathematical physics, the parallel complexity grows as log N, where N is a particular

measure of the problem size. The proof is based on deriving upper and lower bounds on the

execution time of optimal parallel algorithms for multiprocessors with an unlimited number of

processors and no interprocessor communication costs. (Lower bounds for the case when com-

munication costs are not zero can also be calculated [40], [41], [43].) Due to the assumption on

the number of processors, these optimal parallel algorithms can have very large serial complex-

ities, and the tightness of the bounds on the parallel execution time for practical algorithms is

not established by this analysis.

An analysis of standard numerical algorithms for linear PDEs indicates that growth in the

parallel execution time for these algorithms has an important effect when using scaled speed-

up models to evaluate multiprocessor performance [42]. In this analysis, there is a strong

dichotomy" in the nature of the growth in the parallel execution time between algorithms for

the solution of time-dependent and time-independent PDEs, a dichotomy that ts not present

• zn the algorithm-_ndependent analysis. For example, when approximating elliptic PDEs using

finite difference or finite element discretizations, the serial complexity is at least O(N, ), where

- ?',', is the size of the underlying grid and _(z) denotes a positive quantity" whose leading order

term is proportional to x [16, p. 31]. This linear serial complexity" can often be achieved using

a full multigrid V-cycle algorithm, weighted Jacobi or multi-color Gauss-Seidel relaxation, and

local restriction/prolongation operators, which has a parallel comploxity of ®(log'-' N,) on a

multiprocessor with O(.V,) processors [2], [3], [5], [11]. So. for these problems, there exists an

algorithm whose serial complexity is proportional to that of the best, serial algorithm and whose

parallel complexity" is a polylog function of the serial complexity'.

Timestepping methods are commonly used to calculate the time-accurate solution of time-

dependent PDEs. For a time-accurate solution, the solution is required at a soquence of times

{ti Ii = 0 ..... Nt}, where ti_1 < t, and ti-ti_l is small enough to allow accurate interpolation

of the solution at, ali times in between. Timestepping algorithms calculate the approximate

solution for each time level in sequence, calculating the solution at time ti from the approximate

_ soluti.qn at time._, tg,j < i. Standard timestepping algorithms based on finite difference or

finite elemeat discretizations of hyperbolic and parabolic PDEs have serial complexities that

_ are linear in the number of space-time locations where the solution function is approximated.

Thus, the serial complexity is O(.V, . :Vi), where N, is the size of the underlying grid at. a

fixed time and :Vi is _.he numbor of time levels. The calculation ofoach time level is usually
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easily parallelized, but the time direction in a timestepping algorithm is inherently sequential.

Thus, the parallel complexity is always at least e(Nt), i.e. not a polylog function of the serial

complexity. (Variants of the standard timestepping algorithms have been proposed that begin

the calculation for later time levels before the current time level is finished [12], [30], [39], but

these algorithms do not alter the sequential nature of the time direction.) This paper addresses

the question of whether good serial algorithms for time-dependent PDEs are intrinsically less

parallel than good serial algorithms for time-independent PDEs. We pose the question in the

following form:

For a given time-dependent PDE, is there a numerical algorithm for the time-accurate ap-

proximation of the solution with the properties:

(1) Let C_(N) be the serial complexity of the algorithm for a problem of size N, and let

C_, opt(N) be the serial complexity of the best known serial algorithm for this problem.

Then Cs(N) = e(Cs, opt(N)).

(2) The algorithm can be parallelized in the time direction as well as the spatial directions, so

that the achievable parallel complexity given an unlimited number of processors, Cp(N),

satisfies Cp(N) = O(log _ C,(N)) for some finite constant 7.

In this paper, x we describe a class of algorithms that have properties (1) and (2) for a large •

class of linear parabolic PDEs. Not only does this class of algorithms answer the above theoret-

ical question, it may also have practical applications on massively parallel multiprocessors. We

also briefly describe a different class of algorithms with properties (1) and (2) for a particular

class of linear hyperbolic PDEs.

2. Parabolic PDEs

2.1. Waveform relaxation

Waveform relaxation is a technique for solving systems of ordinary differential equations of

initial-value type [26], [:29]. lt is based on applying standard point and block iterative methods

for the solution of linear systems [37] to the solution of a system of ODEs. For example, let

A be an n × n matrix, and consider the problem dU/dt + AL; = F, where U and F are vector

functions of time. Then the kth step of a Jacobi-based iterative method for the solution of this

system is

d U_ + DUI_ ) F + (D - A)U (_-1) (i)dt

1An earlier version of this paper appears in the Proceedings of the Fifth SIAM Conference on Parallel

Processing for Scientific Computing.
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,,,,'here D is the diagonal of .4. Thus, each step of the method involves the solution of n

independent scalar ODEs. The decoupling of the system allows different discretizations and

" timesteps to be used for each of the ODEs. which can lead to significant savings for some

applications.

To solve parabolic PDEs, the spatial derivatives are discretized to generate a semi-discrete

problem and the resulting system of ODEs is solved using waveform relaxation. Miekkala and

Nevanlinna have analyzed the convergence of waveform relaxation for linear operators [28].

The),,"showed that, for linear PDEs of tile form tit + Lu = f where L is an elliptic operator and

for standard spatial discretizations, the convergence rates for Jacobi and Gauss-Seidel iterations

for the semi-discrete problem are similar to _hose for the analogous linear system.

2.2. Waveform relaxation multigrid

Let La represent the discrete operator generated by discretizing an elliptic operator L. The

correspondence between the convergence rate of waveform relaxation applied to dU/dt + Lhr_; =

F and the convergence rate of the analogous matrix iterative method applied to Lh[_T= F has

two immediate implications. First, the convergence rate is too slow for waveform relaxation to

be competitive with standard timestepping algorithms. Second, multigrid techniques ma) be

effective at accelerating convergence of the iteration.4'

Multigrid acceleration has been analyzed by Lubich and Ostermann [27]. Among their

results, they" showed that full multigrid performance can be achieved for the semi-discrete

problem if Lh is symmetric positive definite, and either Lh has constant diagonal entries, in

which ca,__ weighted Jacobi relaxation is used, or Lh has the form

where DI and D_ are diagonal, in which case Gauss-Seidel relaxation is used. Note that this

latter matrix structure cornmonlv occurs when using a red-black ordering with standard finite_

difference stencils. 3_hev also show __hat full muhigrid performance can be achieved for th,: fully"

discrete problem(io linear serial complexity) if, in addition to theabovo,zonditions, all()DEs

are discretized by th_ same method, the time direction is not coarsened, and th_: ODE solver

is an A-stable linear multistoi-, or Runge-Kutta method Full multigrid t-,,:rformance also t_olds

. for A!o}-srable linear rnultisT,:p or [tlJngo-Kutta rnethods fc)r suitably larg_: o. Note that ali of

these conditions are s_Jftricient, but nc_Tn_-cessar,,'.

This _arcf¢,rm rela:ratt,:,n m_zlttgr,d algcrith_l has t, oen _,:st,,,t ,'xt_,r_si',_:[.,, c,,,_: r,,.,: ;,,t"

i:",51.!3C. and ha.,- t,e,vn _howr_ tc>w_)rk _,:11 for a vari,-tv ;)f [)ara},olic [,rc,bl,.rz_:. b:,th lir,,.ar ar,,J
t I

r_or-tl,n<ar ,*._r_l-,c,r}_s,:rial .:r_,t l,ara.,1,.t ,"_,rllt,i_t,.r_
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2.3. Waveform relaxation multigrid cyclic reduction

The waveform relaxation multigrid algorithm is nornaally implemented in a fashion that is
P

still intrinsically sequential in the time direction. But computation in the time direction only

involves solving linear scalar ODEs. If the ODEs are solved using a linear multistep method

with a statically determined timestep, then each ODE solution corresponds to the solution of

a banded lower triangular matrix equation, or, equivalently, a linear recurrence. Parallelizing

linear recurrence equations has been studied extensively [9], [14], [15], [21], [22], [23], [24], [31].

In particular, if a cyclic reduction approach is used to parallelize the linear recurrence, then

parallelism is introduced without increasing the order of the serial complexity. For example,

if a two-level scheme, like backward Euler or Crank-Nicolson, is used to discretize the scalar

ODE, then a lower bidiagonal matrix equation must be solved. Cyclic reduction combines

even numbered equations with odd numbered equations to generate a new bidiagonal matrix

equation of half the size. If the original matrix has the form

a21 a22 x2 f2
• = , (3)

a32 a33 x3 f3

/143 _44 2:4 f4

then one step of the cyclic reduction algorithms generates a new matrix equation of the form

( a'2.2 . x2 __ f2 - ali fl . (4)
a__

-a43a32a33 a44 z4 f4- a33f3

The solution vector of the smaller system is identical to the even-numbered elements of the

solution vector of the original matrix equation. This process is repeated until only two equations

are left, at which time the two-by-two linear system is solved• The solution values for the small

system are then used to calculate the unresolved values in the next larger linear system. For

example, in (3), x3 = (la- az'2.z2)/a33, which can be calculated immediately since x2 was

determined when solving the smaller system. By repeating this process, the solution to the

original matrix equation is calculated. Note that each step of the reduction stage is perfectly

parallel, in the sense that combining each pair of equations is independent. Similarly, injecting

solution values ilito the next larger system and solving for the unresolved variables can be done

independently for each unresolved variable Thus, cyclic reduction allows us to parallelize the

time direction.

If a k-step linear multistep algorithm is used to solve the ODE, then the banded lower

triangular matrix defining the linear recurrence has a bandwidth of k. The cyclic reduction
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algorithm again halves the number of equations at each step, but now k consecutive equations

are needed to transform the dependencies in a given equation from the previous k - 1 values in

" the current matrix equation to the k - 1 previous values in the new smaller system. As before,

this process is continued until only k equations are left. If k > 2, then solving the k × k system

" and injecting the solution back into tile next larger system does not decouple the calculation of

the unresolved variables. Instead, it produces a new banded lower triangular matrix equation

to solve, one whose bandwidth is [k/2_. Repeatedly applying the cyclic reduction algorithm

continues to halve the bandwidth until ali of the unresolved variables are calculated, at which

time they can be injected into the next larger system to reduce its bandwidth.

The cyclic reduction algorithm is more expensive than the standard serial algorithm, but

the complexity is still O(Nt) for each ODE solution (ifk is independent of Nt). For example, for

a two-levei scheme, the serial complexity" of the standard algorithm is 3,Vt, while for the cyclic

reduction algorithm it is 5.Vr or TNt, depending on whether certain values are precomputed.

For a three-level scheme, the complexity of the standard algorithm is 5Ni, compared to 11Nt or

21Ni for the cyclic reduction algorithm. As long as the complexity of the ODE solver is ID(Xt),

the waveform relaxation multigrid algorithm remains an O(N, • Nt) complexity algorithm.

The parallel complexity of the cyclic reduction algorithm is a function of the number of

time levels used in the discretization of tile ODE. For a k-level scheme, it is tD(log" Nt). where

";, = [t:/2]. Thus. including the parallel cyclic reduction algorithm in a parallel waveform

relaxation multigrid algorithm based on weighted Jacobi or red-black Gauss-Seidel iteration

results in a total parallel complexity of the form O(log 2 :\', . log" Nt), which is worse than for

elliptic problems, but is still polylog.

2.4. Numerical Results

Parallel implementations of multigrid and cyclic reduction have been discussed elsewhere.

See [11]. [19], and [38] for pointers to the literature. In this section, we veri_" the predicted

linear serial complexity of the wa_eform relaxation multigrid algorithms for a specific example

problem.

D,'e solved the heat equation ut + Vu = f on the unit square [0.1] × [0.1] in the time

interval [0.1] using Dirichl,..t boundary conditions. Standard centered differencing was used

to discretize tt,o spatial dr_rivatives. Crank-Ni,rolson. a twc,-level s,'.henie, and the 2hd order

backward difference formula (BI)F). a three-level sch,_mo, wer_+ used to discretize tile tim,-
_t

derivative. "ghe same timostop and si, acest,-p were used in the discretization. _,_ = .\'t. and

a s,:quen,:e of problem siz,+s wa.-,_xanlin,.d

Three algorithnis were trig-d: wav,_form r_'laxation mutigrid with th_- c:_lic r,_.du,:tion OI)E

solver (WFM(;CR}. wave%tin relaxat i_m rout igrid wit h tile standard ODE solver (WFMG ). and



-6-

a timestepping algorithm that uses multigrid at each timestep. The convergence of the multigrid

algorithm was essentially identical for ali three algorithms, and four full V-cycle multigrid cycles,

with 1 relaxation sweep before and after each coarse grid correction, was sufficient to identify °

convergence (small residual and little change between successive iterates) for ali problem sizes

and forcing functions tried. The approximate solutions were also essentially identical, indicating

that the cyclic reduction algorithm is no less stable (for these problems) than the standard

ODE solver. The numbers of floating point operations (flops) required to solve the problems

are displayed in Figures 1 and 2. The data indicate linear giowth in complexity for all three

methods, with WFMGCR being somewhat more expensive than WFMG because of its more

expensive ODE solver.

108

106

flops

104 .,

102 l I J i
4 16 64 256 1024 4096

N.
WFMGCR (...) WFMG (- -) Timestepping (--)

Figure i: Serial complexity for Crank-Nicolson time discretization.

2.5. Discussion

Using cyclic reduction with the waveform relaxation multigrid algorithm has the desired prop-

erties (linear serial complexity and polylog parallel complexity) for ali problems for which (a)

the waveform relaxation multigrid algorithm has a linear serial complexity when using a re-

laxation technique that can be efficiently parallelized, like Jacobi or multi-color Gauss-Seidel,
e

and (b) cyclic reduction is a stable algorithm for solving the linear recurrences arising from

discretizing tile scalar ODEs. Both theory and empirical evidence indicate that (a) is true for a

large class of parabolic problems, both linear and oonlinear. While some work on the stability

of parallelizing recurrence equations has been done [21], [31] and the numerical examples de-

scribed here give no indication of stability problems, more work must be done to establish the
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. 10s .-

106

flops

104 /
10_ " I I I 1 -

4 16 64 256 1024 4096

Ns

WFMGCR (...) WFMG (- -) Timestepping (--)

Figure 2: Serial complexity for second order BDF time discretization.

stability of this algorithm, especially when the bandwidth of the recurrence (k) is large. This

is especially true given the stability problems of the straightforward implementation of cyclic

" reduction for elliptic problems [8].

When properties (a) and (b) hold, we have shown the algorithm to have an achievable

- parallel complexity of ®(log 2 N,. loft 3,rr), where "I = [k/2]. This is higher than that for elliptic

problems, and the question arises as to whether it can be decreased. There is some hope since it

is normally not necessary to solve the "subproblems" exactly in a multigrid solver. The simplest

approach is to use Jacobi iteration to approximately solve the banded triangular systems,

instead of using cyclic reduction. This is essentially the method of Hackbusch [13], which has

been shown to lead to an efficient parallel algorithm for many applications, if some care is taken

in choosing the discretization [1]. [6], [7], [17]. [18]. But the following argument shows that the

total number of Jacobi iterations used to approximate the solution of the triangular systems

over the course of the algorithn_ must increase at, least linearly as a function of :Vr.

Consider solving for the solution at a given location in the space-time grid. As the error due

to the discretization decreas_,s, and :\'t increases, data throughout an increasing portion of the

domain of dependence of the solution operator for this location must be sampled to accurately

. approximate the solution. Sinco this domain is independent of :Vr, and since some fixed fraction

a of the .\'t grid points used to approximate the scalar ODE falls in this domain, at least a.V,

. Jacobi iterations ar_.' requirod for the data at. these grid points to be used in approxitnating

the solution at the given locatiotl. "ltlus, a.svn,ptotically, the parallel coulplexity will tlave a

term that grows like .\'t. Th,_ sa_m: argunJent applies to other point iterative rxlethods thai
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might be used to solve the triangular systems in parallel. Note that this is not necessarily a

condemnation of Hackbusch's method since this growth as a function of Nt can be very small,

and may not show up for realistic sized problems.

The obvious approach to avoiding the problem indicated above is to coarsen the grid in

time (as well as space) during the multigrid process. In this way, data from more distant

grid points can propagate through the coarse grids. Unfortunately, the theory of Lubich and

Ostermann does not hold in this situation, and experiments indicate that naive implementations

of this approach do not work. Local mode (Fourier) analysis for the example problem and

discretizations described in §2.4 confirm the experimental evidence, that coarsening in time does

nGt. work, but more sophisticated discretizations, possibly differing between grids, may still allow

the time direction to be treated in an analogous way to the spatial directions [4]. In summary,

whether or not the parallel complexity can be further reduced, without a corresponding increase

in the serial complexity, is not yet known.

2.6. Generalizations

The waveform relaxation multigrid cyclic reduction algorithm described above was motivated

by the theoretical question introduced in §1. The following generalizations are motivated by

practical issues.

Fine grain parallel algorithms By imitating Hockney's PARACR algorithm [I5], we can

lower the parallel complexity of the parallel cyclic reduction algorithm to e(log Nt), independent

of the length of the recurrence, without increasing the number of processors needed. The trick

is to modify all equations at each reduction step. Thus, after log 2 Nt steps, there are Nt/k

independent k × k systems whose solutions solve the original problem. While the resulting

algorithm has a serial complexity of O(Nt log Ni), this is unimportant on a multiprocessor with

e(Ns •Art) processors.

Coarse grain parallel algorithms - I By imitating the blocked cyclic reduction algorithm

discussed in [19] and [20], the communication cost can be reduced to a manageable size for

distributed memory multiprocessors. For example, if Pt processors are assigned to the solution

of an ODE, the blocked algorithm generates a Pt × Ft linear system whose solution introduces

Pr-way parallelism into the rest of the calculation.

Coarse grain parallel algorithms - II Since each relaxation in the multigrid algorithm

involves the solution of many ODEs, much of the analysis used in det.'rmining how best to

parallelize ADl algorithms for elliptic problems applies immediately [:tg], [20]. In particular,

this analysis addresses the issue of whether to move data for a single ODE to a single processor
J
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and use a fast serial algorithm or to use a cyclic reduction algorithm to parallelize the ODE

solution, attempting to overlap communication with computation since parts of many ODE

- calculations may be assigned to the same processor.

- Coarse grain parallel algorithms - III Selectively exploiting parallelism in time can

alleviate the inefficiency of solving on coarse grids in the multigrid algorithm. For example, the

cyclic reduction algorithm might be used only on coarse grids, when processors have been idled

by the coarsening.

3. Hyperbolic PDEs

While waveform relaxation ,'.an be used to solve hyperbolic PDEs, multigrid does not accelerate

the convergence, and the serial complexity of the resulting algorithm is not O(Ns • ,Vr). But the

same approach to parallelizing in time can be applied to any algorithm whose computational

kernel is solving a linear scalar ODE. In this section we briefly describe such an algorithm for

constant coefficient hyperbolic PE)Es that can be written in the form

d

(-'r + Z A, - U_, = F, (5)
t=l

where the n x n matrices {Ai } can be simultaneously diagonalized. Here, the problem is defined

in d space dinaensions and F is a fun,'tion of both i" and t. where 2 = (xi ..... Xd).

Let. T be the matrix that diagonalizes {A,!i = 1..... d}, TAiT -1 = A,. Define t" = T("

and G = TF. Then (5) can be written a.s

d

t._ + E A, - _]:, = G. (6
z=!

Equation (6) is actually n independent, scalar PE)Es of the form

d

v_ + Z A, v_:, = g. (7
i:1

each of which can be solved be solved by integrating the ODE

d

along the characteristic define,] by rho set of equations {_, = x, - A,tii = 1..... d} fbr each

point (_x,...,_d)in the problem domain [10], [25]. For a numerical algorithm, we would specify

a grid in the space-time domain and only track characteristics that exit the space-time domain
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at a grid point. To recover the desired variables requires interpolating from characteristics

back to the desired space-time grid, and calculating T-1V at each grid location. Since this

overhead is a linear function of the number of grid points, the serial complexity of the r_ulting

algorithm is still linear. Both the interpolation and the inversion are "local" processes, and ali

ODE calculations are independent. Therefore, the parallel complexity of the overall algorithm

is e(log "Tl_]) when using cyclic reduction, where 7 is again determined by the number of levels

in the discretization of the ODE.

Note that the form of (5) is very general. For example, the wave equation utr - u== - f

can be rewritten as

+ • = , (9)
w. 1 0 v2 0

t

where vi = ut and v2 = u_. After applying the above algorithm to solve for vi and v2, u can

be recovered by solving the ODE ut = vi for each spatial grid point, using tbe parallel cyclic

reduction algorithm as before. This extra step alters neither the order of the serial complexity

nor the order of the parallel complexity.

4. Conclusions

The algorithms described in this paper establish that major classes of linear time-dependent

PDEs can be solved in polylog parallel time without giving up linear serial complexity. Beyond

the theoretical question, WFMGCR has promise as a practical parallel algorithm, as indicated

in §2.6, since WFMG is a competitive serial algorithm for many applications. Additionally,

WFMGCR can be used for nonlinear problems since many multigrid solvers automatically

linearize the ODEs.
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