
CONP-890555—19

DE89 015692

DEVELOPMENT AND APPLICATION

DIAGNOSTIC SYSTEMS TO ACHIEVE Egsi-|,5g"P|

FAULT TOLERANCE -<s"a|l!|^^

Ronald W. King Jg i = ~-<s = ii§
Ralph M. Singer ^ 2 1 1 1 | * *| $ »•

EBR-II Division 36 "3 o S =» § 1 1 5 .s-5
Argonne National Laboratory 5 1 i | °.5 -a * -j ̂  ̂

P. 0. Box 2528 l ^ g l i l ^ ' S - S S 1

Idaho Falls, Idaho S ^ - J a i l s l s
B3^03-E52B a ^ a f s ^ t ^ l s

, ^ - -- Mi ftliu
; Tht lutxnitwd nwnuicript hM bwn tuihorxl * • R O . £ £ * - ' £ > M 8
j hv • contractor of th» U. S. Govtrnmant - t ° - . i c ' - S *
I undtr contract No. W-31-1W-ENG-38. S g 8 L ^ S 3 g | 2
| Accordinply, th» U. S. Govtrnnwnt ntaint J ; §* c ?, <2 « B J ~'B -n
> nomxcluiiv*, royalty-frN lictrut to publith _ o ^ > , 8 3 - 5 ° o
I oc nprodua th* puMMMd form of this , •= | S" a 5 8 S S "2 "5
j contributionr or allow others to do to, for i r O S i S o , 5 £ E * 3
I U. S. Government purposes. j

Submitted for Presentation
at the

Seventh Power Plant Dynamics, Control
and Testing Symposium

May 15-17,1989
Knoxville, Tennessee

JUL :\ S 1989

-: MASVb
Work supported by the U. S. Department of Energy, Office of
Nuclear Energy under Contract No. W-31-109-ENG-3S. _



DEVELOPMENT AND APPLICATION OF DIAGNOSTIC SYSTEMS

ACHIEVE FAULT TOLERANCE

R. W. King
R. M. Singer

Argonne National Laboratory

ABSTRACT
Much work is currently being done to develop and apply

diagnostic systems that are tolerant to faulted conditions in the
process being monitored and in the sensors that measure the
critical parameters associated with the process. A fault-
tolerant diagnostic system based on state-determination,
pattern-recognition techniques is currently undergoing testing
and evaluation in certain applications at the EBR-II reactor.
Testing and operational experience with the system to date has
shown a high degree of tolerance to sensor failures, while being
sensitive to very slight changes in the plant operational state.
This paper briefly mentions related work being done by others?
and describes in more detail the pattern-recognition system and
the results of the testing and operational experience with the
system at EBR-II.

Introduction
In order for a process operator or automatic control system

to take appropriate control action or decide to take no action in
response to an indicated abnormality in process operation* there
must be assurance that the indication being received does, in
fact, represent actual process or equipment conditions. This
implies that a distinction must be made between readings from
faulted and unfaulted instruments, and that an accurate
determination of the value of a critical parameter must be
provided even though the sensor measuring that parameter may have
failed or degraded. In other words, the system must have a high
degree of tolerance to faulted instrumentation including single
and multiple faults. If the operator does not have a high degree
of assurance thac the indicated reading is correct, he has to
make a decision on whether to take the action that is called for
if the indication is correct, or assume the indication is
incorrect. Since the action that may be called for in response
to an indicated reading may be somewhat drastic, the operator may
be hestitant to take that action until some other evidence is
available regarding the validity of the indication. His decision
about the validity of the indication, if incorrect, could have
serious consequences.

* Work supported by the U. S. Department of Energy, Office of
Nuclear Energy, under Contract No. W-31-109-ENG-38.



As a simple example that may occur to any of us» assume we
are driving our expensive automobile on a very busy, fast
turnpike that has no pull-off space on the side for several
miles. Suddenly, the engine oil—pressure warning light comes
on. There are tough choices to make. We either assume the
indication is right or that it is wrong. All we know is that
thare is a fault; either the instrumentation is faulted or the
process (the engine lubrication system) is faulted. The
consequences of making a wrong decision about the validity of the
indication are that if we keep going and the indication is
correct, the engine would be ruined (very expensive), or risk
life and limb by stopping on the turnpike, perhaps unnecessarily
if the indication is wrong. This is a very simple situation
compared to the situation that an operator of a large, complex
process (such as a nuclear power plant) is in when he receives an
indication of a serious plant abnormality. The potential impact
of his decision on how to respond is several orders of magnitude
greater.

The importance of providing a validated indication to the
operator is extremely important to enable him to take immediate
action without hesitation due to uncertainty about the validity
of the indication. If the sensor providing the information has
failed or degraded, an alternate means of providing the correct
information to the operator must be provided in order to enable
him to take appropriate action. Thus the system, in order to be
tolerant of sensor/instrumentation faults, must be able not only
to identify faulted instrumentation, but also provide a valid
sensor value even under faulted conditions.

Much work is currently being performed to investigate ways
to achieve fault—tolerance in diagnostic systems, particularly in
the area of fault detection and sensor validation. Notable work
being done in this area includes a signal validiation project at
the University of Tennessee involving the integration of parallel
diverse signal processing modules, each of which incorporates a
different signal processing technique. These techniques include
single and multiple variable consistency checking, process
empirical modeling, signal anomaly detection and
characterization, and other techniques C1,S3. Other work on
sensor failure detection at the Univeristy of Tennessee has been
directed toward the development of a non-linear model of a
process that is used for prediction of the values of critical
signals for comparison with the actual sensor readings C3D.

An expert system for sensor validation and diagnostics has
been developed at Ohio State University, that incorporates
hardware and analytic redundancy, and expert knowledge of "normal
expectations" of sensor data relationships under different
conditions to identify questionable sensor values. It then
employs the use of other sources of knowledge such as logical
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diagnostic conclusions, analytic calculations, and relationships
between unlike sensors to validate or reject the questionable
sensor readings Ikl.

Some of the earlier work on fault isolation and signal
validation has been performed at the Charles Stark Draper
Laboratory C5,63. Several other projects to develop
fault-colerant diagnostic systems are underway both in this
country and in other countries. Additionally, intelligent
display methods are being developed and tested which also provide
a degree of sensor validation and fault detection L71.

One of the techniques currently in use and undergoing
further development and testing at EBR-II in conjunction with
E I International, is based on pattern-recognition, state
determination methods- This system is called the System State
Analyzer <SSA). In general terms, the SSA is somewhat related to
many of the above mentioned techniques, and it has some
characteristics that are similar to neural networks ZB1.

Pattern-Recognition, State-Determination-Based Diagnostics
The SSA, in different forms, is in various stages of

development, testing, and application at EBR-II. The SSA has
been developed specifically to be tolerant of instrumentation
faults by being able to identify faulted instruments and provide
a reasonably accurate estimated value for that instrument
reading. This estimated value is based on previously learned
pattern relationships with readings from other instruments that
are similarly related to and define the process being monitored.
The SSA has demonstrated a high degree of tolerance to sensor
faults during plant tests and during normal plant operational
surveillance. The SSA was also developed to be able to detect a
change in the operational state of the process and provide
information about the characteristics of the new state and what
caused the state change. This can be a change to a different
valid operational state or to a faulted.state.

The SSA process begins with identification of system
operational states over a learning period of system operation.
Then the SSA compares new observed data with the learned state
patterns. The SSA then establishes an estimated state based on
the similarities with previously learned states. The estimated
state is "built" using a weighted combination of learned states,
the weighting value being determined by the degree of pattern
overlap with each learned state. The estimated state contains a
new estimated value for every parameter being monitored,
including estimated values for sensors that have degraded or
failed, assuming sensor data was available during the learning
process. Because the estimated signal values are based on actual
established relationships with the values of all the sensor
signals in the signal group representing the process, the failure
or degradation of any sensor has an insignificant effect on the
SSA estimated value for that sensor signal.



SSA Methodology
In the SSA, the state of a system, whether a learned state

or an observed state to be monitored* is represented by measured
quantities instead of analytically derived parameters. The SSA
methodology is based on using a collection of observations
(learned states) of the measured quantities to create a data
matrix. A state estimation is then made using only the current
observation and the learned state data matrix. The SSA algorithm
calculates a set of linear combination coefficients for all of
the learned states based on the current observed state and uses
all of these coefficients to create the estimated state. The
estimated state includes an estimated value for each individual
signal in the signal group being analyzed.

This methodology gives the SSA the property of essentially
ignoring faults in individual signals during the system state
estimation process. The estimation for the faulty signal is
essentially unaffected because it is based primarily on the other
signals in the signal group and the previously learned pattern
relationships. The SSA methodology involves no fitting and no
convergence criteria. The SSA uses a single-pass equation which
is always solvable, thus making it fast and robust.

As capable as the SSA methodology is in detecting system and
instrument faults, it is only as good as the learned domain of
system operation. The SSA, while being able to detect, flag, and
characterize observed states that are outside of the learned
domain, cannot provide reliable estimates for individual sensor
readings when the system state has gone outside the domain. The
boundaries of the learned domain ar& defined by the outlying or
outermost learned states in the learned state collection. The
learned domain can be narrow or broad depending upon the type of
system diagnostics desired. The establishment of a valid learned
domain is critical to proper SSA application and interpretation
of the SSA analyses.

SSA Output Displays
An important feature of the SSA is the output display which

provides to the operator or engineer the diagnostic information
being generated by the SSA algorithm. Figure 1 is an example of
an SSA output display called a signature plot which shows the
distribution of actual system signals at a point in time,
relative to the SSA estimated values which are represented by a
horizontal line through the center of the plot. The vertical
bars above the line to the left represent signals that are higher
than the estimated values, and those below the horizontal line to
the right represent signals that are lower than estimated. The
signal deviations from estimated values are shown normalized to
the average signal deviation for the entire group of signals, so
that the height of a vertical bar indicates a multiple or a
fraction of the average percent deviation for the group.



The average signal deviation from estimated values for the
group at that poirt in time is shown at the top center of the
graph. This value is very important for detecting process state?
changes, for differentiating between signal failures and process
state changes) and for determining if the process is operating
within the learned domain. The distribution of signals is shown
as an ordered list from left to right showing in descending order
those signals that deviate most in the positive direction on the
far left, crossing over the horizontal line near the center
indicating signals that are close to or right on estimated
values, and continuing to the right with signals that are lower
than estimated. The "X"s and the curve drawn through them are
overlaid as an indication of an expected normal distribution of
signal deviations as a multiple from 0 to 3 times the average
deviation. Two vertical lists of numbers on the far left and far
right sides of the plot indicate those signals that are three
average deviations or more above or below the estimated values.

Another type of SSA output display is the individual signal
plot as shown in Fig. 10. This type of plot is a time history
plot that shows a DAS channel value plotted over time, the SSA
estimated value for the same DAS channel plotted over the same
time period, and an upper and lower "uncertainty boundary" above
and below the SSA estimated signal trace representing relative
uncertainty of the estimate based on how well the current data
patterns a,re fitting into the learned domain.

SSA Test Experience at EBR-II
The SSA has been undergoing performance and operational

testing in various forms at EBR-II for the past three years. The
most significant results have been achieved using the "on-line"
SSA software (in FORTRAN) that has been installed on the EBR-II
Data Acquisition System (DAS) computer and runs in the background
while the DAS performs its primary function of data collection,
display, and storage. This version of the SSA uses one-minute
signal averages from the DAS data log. The signal group being
monitored consists of 115 signals representing the heat
generation and transfer process from the reactor core to the
primary, secondary, and steam systems. Many of the signals come
from key plant parameter sensors measuring sodium flow rates,
core inlet and outlet temperatures, and neutron flux.

The tests described below show first, the ability of the SSA
to detect and characterize minor plant state changes simulating a
faulted process, and then the ability to detect a faulted signal
condition and provide a "correct" estimated value for the faulted
signal.

The first two EBR-II plant tests discussed here were
designed for characterization of the System State Analyzer. The
purpose of the first test was to investigate the response and
sensitivity of the SSA during a slow 1 MWt power decrease from
normal full reactor power. The purpose of the second test was to



investigate the response of the SSA to a slow reduction in
secondary sodium flow from normal full flow rate down to ~97 'A of
normal flow. The set up for these first two tests consisted of
establishing a narrow learned domain from data recorded between
5:40 and 7:40 on the morning of the tests. Eleven equally spaced
learned states were established during this time period. The
choice of eleven learned states is somewhat arbitrary; experience
has shown that this number works well, but no studies have been
done yet to optimize the number of learned states for a
particular application. The narrow learned domain established
just before the test period provided assurance that the pre-test
plant conditions would closely match the learned domain.

The first test was initiated at 9:41 a.m. with slight
movement of the controlling rod intended to slowly drop power
about one-third to one-half of the 1 liWt total power reduction
planned. No adjustments were made to any other plant parameters
during this test. The SSA signature plot of the plant taken just
before initiation of rod movement indicated an average signal
deviation of 0.03 'A from estimated values which is very good
steady state agreement as expected (Fig. 1). The next update of
the SSA one minute after initial rod movement (Fig. 2) indicated
that the average signal deviation had doubled to 0.06 '/., and six
nuclear-power-related DAS channels were being flagged abnormally
low by the SSA. The next one-minute update (Fig. 3) indicated a
0.09 'A average deviation and indicated two thermal-power-related
channels being low in addition to the nuclear channels. This
trend continued as the power level was reduced to the targeted
value at about 9:52. The maximum average deviation value reached
shortly after that time was 0.35 'A as indicated on the signature
plot show in Fig. 4. This demonstrated the capability to detect
and diagnose what could be a process fault simulated by reactor
control rod movement.

After completion of the power reduction, the controlling rod
was slowly returned to near its starting position (a slight
adjustment was made to allow for fuel burnup) at 10:21 a.m. A
slight overshoot in power level was experienced as the reactivity
feedback effects came into play. This can easily be seen in the
signature plot recorded at -110 minutes (Fig. 5) showing the
signal shift to the high end of the plot, compared with the
signature plot shown in Fig. 4.

After the plant was returned to and stabilized near the
pre-test conditions, the second test was initiated at 10:35 by
reducing secondary flow by about 1 '/.. The pre-test signature
plot is shown in Fig. 6, indicating an average deviation of
0.04 '/, and showing a well balanced plot. The first update after
the start of the test one minute later indicates an average
deviation of 0.06 7. and flags three secondary-flow-related
signals as "leading" the transient (Fig. 7). Secondary flow was
reduced one more 1 'A step, and then two 0.5 V* steps for a total
flow reduction of about 3 % from normal full nower conditions.



The final flow reduction was completed at 10:53- The maximum
average signal deviation reached was 0.58 'A at 11:05 (Fig. B).
Secondary flow was returned to initial conditions at 11:38.
The plant was allowed to stabilize at pre-test conditions; the
SSA average signal deviation returned to 0.04 */. by 11:50
(Fig. 9), and the test was terminated at 11:54.

The next test was performed to investigate the ability of
the SSA to provide an accurately estimated value for an important
plant parameter when the sensor that provides the parameter
measurement has degraded and no longer provides a valid signal.
Also, as part of this test, multiple signal failures were
introduced into the system on a sequential basis to determine the
effect of multiple signal failures on the SSA estimated values
for key parameters. The test was performed during normal full
power operation of the plant. The "signal failures" were
introduced on-line by changing conversion units in the DAS
computer software to provide output values that represented
different sensor/signal failure modes. No actual plant changes
were made during the test, the plant remained at steady-state
full power operation for the duration of the test.

During the test, a reactor core DT channel (DAS No. 97) was
monitored as the reactor parameter of interest. Both the
DAS-indicated value and the SSA estimated value were monitored
throughout the test. The same signal map containing 115 DAS
channels was employed for this test as for the two tests
described above. The test started with a simulated partial and
then complete failure of the monitored core DT channel (No. 97)
resulting in the a drop from the pre-test value of ~180 deg. F to
an indicated 170 deg. F, and then to 0 deg. F. This can be seen
on the DAS/SSA plot (Fig. 10) where the change in DAS reading
occurs at -17S and -164 minutes. There is no observable change
in the SSA estimated value for DT even though the simulated
failure has caused significant changes in the "measured" value.

The DAS DT channel was returned to normal at -156 minutes.
Beginning at -145 minutes, several more simulated signal failures
were introduced. All of the failures introduced directly
affected one or more signals in the SSA signal map. Some of
these failures directly affected the core DT channel value on
DASE as can again be seen in Fig. 10 beginning at -145 minutes.
Again, the SSA estimated value for core DT was essentially
unaffected throughout the test. A total of 14 signals (IS */.) out
of the total of 115, were degraded significantly or failed
completely. The SSA responded with an increasing uncertainty
band on the estimated value as more signals were failed. The
test was terminated at -66 minutes by restoring all DAS channel
readings to their correct values.
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SSA Operational Experience at EBR-II
Use of the SSA as an engineering surveillance tool for

periodic monitoring of EBR-II plant conditions has resulted in
some interesting observations during normal plant operations. In
several instances, the SSA has detected signal problems. These
have ranged from instrument drift to sensor failures. The most
notable of these occurrences was observed in 1988 with the
degradation of a thermocouple (TO measuring mixed—mean reactor
coolant temperature in the reactor outlet pipe. This measurement
provides the basis for the reactor core DT determination and is
used by the reactor operator as a control parameter. The TC
degradation mode resulted in a drop in the indicated temperature,
resulting in a drop in indicated core DT of about seven degrees
over a period of about t̂O minutes beginning with a one degree
drop, then continuing down on a jagged decline. Over this same
time period, the SSA estimated value for this core DT channel
came up about one-half degree shortly after the drop in indicated
DT, and then held steady. Later analysis indicated that the
reactor operator, observing an indicated drop in core DT, raised
reactor power very slightly to compensate. He then observed that
the indicated core DT was not responding to his action and
switched to other core DT indicators for plant control and held
the plant steady. The SSA estimated value continued to provide
an accurate estimate of the DT value during the TC failure and
responded properly to the slight power increase C93.

The SSA is currently being used for pattern comparisons of
EBR-II plant states at different times during a reactor run and
from run to run. Specific applications are to assist in plant
power level determinations, and to search for system
abnormalities that may be indicative of short or long-term system
or component degradation. It has also been used for plant
transient test monitoring, and for comparison of initial pre-test
plant conditions with pre- and post—test conditions from a
previous test. Other developments ongoing include the
development (by El International) of a digital feedwater
controller that includes on-board signal validation using the SSA
pattern-recognition technology, and the development of an SSA
version in "C" that runs in near real time, and provides the
basis for a real-time hierarchical diagnostic and signal
validation system that is being integrated into the model-based
display system under development by the EBR-II Division of
Argonne National Laboratory.

Conclusions
The development of fault—tolerant diagnostic systems is

progressing along several paths. The development and use of a
pattern-recognition, state-determination methodology as the basis
for fault-tolerant diagnostic systems has been very successful in
tests and initial applications at the EBR-II reactor facility.
The SSA algorithm is inherently fast and can therefore be
incorporated into systems requiring near real-time diagnosis, and
it is robust in the sense that it will always provide an answer



and an indication of the degree of uncertainty of the answer,
even when multiple input failures have occurred. It is these
features that are important to the development and application of
fault-tolerant diagnostic systems. The SSA technology is generic
to the extent that many different types of applications are being
developed with little or no change required in the basic SSA
algor i thm.

Combining the SSA technology with other technologies,
particularly in the artificial intelligence/expert system area,
is beginning to show potential particularly for the development
of powerful and fast diagnostic and automatic control systems.
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