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ABSTRACT
- Presented here is our methodology for developing automated aids for diagnosing faults in complex systems.
We have designed these aids as multilevel-multiagent diagnostic aids based on principles that should be generally
applicable to any complex system. In this methndology, "multilevel” refers to information models described at
successive levels of abstraction that are tied together in such a way that reasoning is directed to the appropriatc level
as determined by the problem solving requirements. The concept of "multiagent” reiers to the method of information
processing within the multilevel model network; each modcl in the network is an independent information processor,
i.e., an intelligent agent.

1.0 INTRODUCTION

Presented here is our methodology for developing automated aids for diagnosing faults in complex systems.
Wc undertook this research at the Pacific Northwest Laboratory (PNL)! for the U.S. Department of Energy and the
U. S. Nuclear Regulatory Commission. We have designed these aids as multi.cvel-multiagent diagnostic aids based
on principles that should be generally applicable to any complex system. In this methodology, "multilevel” refers
to informatior: models described at successive levels of abstraction that are tied together in such a way that reasoning
is dirccted to the appropriate level as determined by the problem solving requirements. The concept of "multagent”
rcfers to the method of information processing within the multilevel model network; ecach model in the network is an
independent information processor, i.e., an intclligent agent.

1.1 ROOT CAUSE ANALYSIS

: Our rescarch in fault diagnosis at PNL grew ot of our work in root-cause analysis (RCA). RCA iy the
process of determining the fundamental cause for the riegradation or failure of an artifact {1]. RCA consists of two
major acuvities: fault diagnosis and roct-cause evaluation (RCE). These activities and their relation with cach other
are shown in Figure 1 in relation to a "plant” within which a complex process-system can be found. The purpose of
fault diagnosis is to characterize and specify faults, i.e., determine the plant events and conditions that are associated
with a specific symptom. Then RCE is used 1o determine the cause of the events and condition.

1.2 GENERAL APPROACH
It is our opinion that software development in gencral is evolving from an ad hoc activity 10 an engincering
discipline. Ata minimum, the classical life-cycle approach 1o software system development includes tasks such as
“problem definition, conceptual design, design, construction, certification, implementation, and maintenance.
Intelligent systems, on the other hand, modify these tasks by requiring additional activities to be performed. In our

1 Operated for the U.S. Department of Energy by Batielle Memorial Institute under Contract DE-AC06-76RLO
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approach, we categorize these activities as 1) determining knowledge requirements, 2) constructing models, and
3) developing the requirements for representation schemes
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Figure 1. Schematic of the activitics in root-cause analysis

1.2.1 Knowledge Acquisition

We group knowledge for fault diagnosis into two broad groups: cognitive task and process-system
knowledge. Cognitive task knowledge is knowledge of how to perform a task such as fault diagnosis. This
knowledge includes inference methods, control strategy, procedures, and methods or criteria for making decisions.
The process-system knowledge consists of knowledge about the process-system structure, function, constraints,
physics, and faults. Process-system knowledge is uscd with plant state and event data to develop information about
the behavior of the plant.

During the rcasoning process, the knowledge contained in these two groups are related to cach other, back
and forth, 1o draw conclusions about the process-system, as illustrated in Figure 2. This paper focuses or the
determination and specification of process-systecm knowlcdge.

‘ PROCESS-SYSTEM KNOWLEDGE )4———_—

State Parameters
and Event Data

CONCLUSIONS ABOUT BEHAVIOR
Figure 2. Interaction between the process-system and task models

Domain knowledge is acquired in both the knowledge acquisition and model construction activitics.
However, the knowledge acquisition activity is the primary and initial mechanism for acquiring domain knowledge.
Moxicl construction 1s a secondary mechanism for acquiring knowledge. During model construction additional
knowledge rcquircments may be discovered and existing knowledge may be refined and modified.

1.2.2  Mode!l Construction

By modcl we mean a representation of a specificd reality which captures some essential aspects of the reality
within a framework of a representation method. The modcel of the reality provides a means of explering the
properties of that reality. This definition is an adaptation of the definiton for mathematical models presented by J.L.
Casti [2]. The important issucs concerning modcls are that 1) they caprare essential aspects 2) in an appropriute



representation 3) in order to explore properties of the reality. This mecans that the essential properties and the
purposc of the model must be understood. It also means that the method for representing the model must allow for
inferencing that accomplishes its purpose.

For fault diagnosis, the essential properties are knowledge of the process-system and how to perfor™ a
diagnosis. 1n our methodology for developing automated aids for fault diagnosis, this knowledge is represented as
models using quanutative calculus, a qualitative calculus, predicate logic, and intelligent agents.

As might be expected, because the major categories of knowledge are cognitive task and process-system, the
major categorics of model development are the same. In this chapter. however, we only discuss the modeling of
process-system knowledge. Preliminary work on modeling the diagnosis task is presented in Stratton and Jarrell [1].
The mode! construction activity is used to construct fault-association modcls Quantitative and agent models are
primarily developed in the problem dcfinition activity.

1.2.3 Representation Scheme Requirements Development

Once the process-sysiem knowledge is represented as a system of quantitative and qualitative models, it is
necessary 1o determine the knowledge representation requirements in order that the models can be implemented in a
software framework. Because we are using a model-based reasoning approach, the representation scheme will have a
general requirement that it provide a means for the knowledge 1o be organized and executed as a system of
successively abstract and integrated models which function interactively as required during problem solving.

Representation scheme requirements are determined by analyzing the cognitive and process-system
knowledge. Thesc requirements gencrate a specification which the representation scheme should satisfy. The
representation scheme should provide methods for representing and organizing information as well as methods for
performing inference and reasoning control.

2.0 KNOWLEDGE REQUIREMENT ISSUES
Before discussing the major subjects of this chapter (knowledge determination/acquisition, model
construction, and representation scheme determination), we feel it is important to first discuss some general issues
associated with knowledge requirements for intelligent system. Specifically, in this section we discuss 1) knowledge
requirements for process-system control and diagnosis, 2) the relationship between knowledge requirements for
different cognitive tasks, and 3) intcraction between quantitative and qualitative knowledge.

2.1 PROTOTYPE SYSTEM

In illustrating and discussing the concepts to be presented in this section and the remainder of this chapter,
we will use a cooling system of the kind used in nuclear reactor service water systems as a prototype of a process-
system. A diagram of the prototype is shown in Figure 3. The function of this process-system is to cool the
process fluid routed through the shell side of the heat exchanger. The system consists of a pump, three valves (V1,
V2, and V3), a heat exchanger, interconnecting piping, and instrumentation.
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Figure 3. Sc-system, which is in the cooling mode, as illustrated in Figure 4.

In operation, the pump draws water into the system from the river and routes it through the tube side of the
hcat exchanger. A diffcrent system then routes the process fluid through the shell side of the heat exchanger. The
process-sysiert has several modes. These modes are defined by the pump speed (two speeds) and the scttings of the
valves. The instrumentation for this system is, as shown in Figure 3, labelea as follows: Z indicates position; for



example, Z1, Z2, and Z3 indicate the position of V1, V2, and V3 respectively. Mass flow rate is indicated by M:
M1 is the coolant mass flow rate and M2 is the process fluid mass flow rate. Pressure then is indicated by P: Pl is
the pump inlct pressure and P2 is the pump discharge pressure. Finally, temperature is indicated by T: T1 and T3
indicate the tube inlet and outlet temperatures, respectively, and T2 and T4 indicate the shell inlet and outlet
temperatures, respectively.

Initial understanding of knowledge requircments is developed via analysis of task (control and diagnosis)
scenarios. In the following, we discuss control and diagnostic scenarics with respect to our prototype process-
system, which is in the cooling mode as illustrated in Figure 4. In the figure, the process fluid is shown being
cooled; the components of the system are in the following states: the pump is running at 100% capacity, V1 is 50%
open, V2 is fully open, and V3 is closed. State variables have the present reading: M1 = 100,000 Ibm/hr and T4 =
600°F.

PROTOTYPE STATE MODE & COOLING
Pump(100%) Pump(100%)
V1 (50%) -~ Tube V1 (50%)
V2 (100%) Diagnosis Block State | V2 (100%)
V3 (0%) ' V3 (0%)
T4 = 600°F T4 = 600°F
M1 = 100,000 lbrmvhr M1 = 103bm/nr

Figure 4. Prototype state vector and associated control and diagnostic results

The control task analyzes the process-system data and determines that the outlet temperature of the process
fluid has exceeded a limit value of S70°F. The control response under this scenario is to increase the opening of
valve V1 to 75%, as shown in Figure 4, the effect of which is to increase the cooling mass flow. Listed in Table 1
is a sample of the types of knowledge needed to perform this task.

CONTROL KNOWLEDGE DIAGNOSTIC KNOWLEDGE

+ Controlling variable and its real-time and setpoint values + Component operating states are unchanged

p + Mass flow affects cooling - Cooling mass flow decreases
rocess- - .

system » Valve position affects mass flow ‘ « Flow affects cooling .

+ V1 controlling component and has capacity « Heat transfer area affects cooling

+ Mechanism to actuate the valves + Heat rate relations

» Fault-association relations

+ How to recognize control requirements + How to recognize a tault
Cognitive | * How to determine controlling compenent and its capacity |+ How to localize a tault

+ How to determine state change requirements + How to identity a fault

« How to change controlling component state

Table 1. Samples of types of knowledge needed to perform control task analysis

In this scenario, as the control task is being accomplished. the diagnostic task analyzes the process-system
data and concludcs that a fault is present in the heat exchanger and that the faulty state is a tube block. The basis for
this diagnosis is that the cooling mass flow has unexpectedly decreased, and the calculated heat rates are not in
agrcement with each other. Listed in Table 1 is a sample of the types of knowledge necded to perform this task. (As

a side issue, think about an advanced control system that dynamically alters its control strategy based on diagnostic
input.)

2.3 SOME OBSERVATIONS ABOUT KNOWLEDGE REQUIREMENTS
The above scenarios provide a sample of the kinds of knowledge used to perform control and diagnosis.
Analysis of this knowledge implics some general conclusions about knowicedge requirements: 1) intelligent systems



need knowledge of both the arntifact rcasoned about and the reasoning task itself and 2) each task contains knowledge
unique to itself and knowledge that is common to some other cognitive tasks. Both of these conclusions are
illustrated in Figure 5.

Common Knawledge

PROCESS-SYSTEM KNOWLEDGE
and
COGNITIVE KNOWLEDGE

Unique Knowledge Unique Knowledge
for Diagnosis for Control

Figure 5. Characteristics of knowledge within and between tasks

Additionally; a word of caution is needed concerning knowledge resolution and its effect on task
performance. That is, having knowicdge of the value of a state variable, such as mass flow rate, may not be
cffective in the performance of diagnosis until it reaches a threshold value because of the resolution required of the
variable in the task. We will illustrate this concemn in the following example of the diagnosis of a tube block in the
heat exchanger, the prototype process-system.

A block in the tube of the heat exchanger causes the mass flow to decrease due to the increase in flow
resistance. Also the calculated heat rates are not equal because the wrong value of the heat transfer surface area is
uscd 1o calculated heat rates (the design value is use instead of the actual value). However, in practice the degree of
the degradation caused by the block may be so small that it is masked by the resolution of the measured parameters.

In the case of the tube block, if 1 wbe out of 326 is blocked, this means that the cross-sectional arca for
flow and the heat transfer surface area have decreased by 1/326 of their original values. The nominal value of the
mass flow rate is 170,000 lbm/hr. A single tube block will decrease the mass flow approximately 520 Ibm/hr, or
approximately .3%, which is well below the resolution of the mass flow rate sensor. The same reasoning applies to
the heat-rate calculations based on the change in the outlet temperatures that is due to the small percentage change in

the heat transfer surface arca.
State PHYSICAL
Parameters PROCESS
QUALITATIVE

' State Parameters
MOD
- ELlS . ) and Event Data

¥
Qualitative Behavior
Quantitative Behavior %

i

COGNITIVE TASK MODEL REASONER )<
N\ %
Conclusions About Behavior
Figure 6. Intcraction between process-system qualitative and quantitative models
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This phenomenon suggests that in real world diagnostic aids the effect of sensor resolution must be
understood in context of the knowledge requirements and the cognitive task. Knowledge must be analyzed to
determine whether it has a threshold restriction. That is, the knowledge value must exceed a certain threshold value
before ii can be used eflectively in problem solving.

Also indicated by the task scenarios is that process-system knowledge exisis in at least two forms,
quantitative and qualitative, which interact during the process of problem solving. This interaction is schematically
illustrated in Figure 6. The process-system model shown in the figure is, therefore, composed of both quantitative
and qualitative models. This model exccutes based on values of process-system state variables and events. The
qualitative and quantitative models develop information about qualitative and quantitative behavior, respectively. In
some cases, the models interact based on the informaton they develop. For instance, a qualitative model may be
used to examine mass flow rate to determine whether it is increasing, decreasing, or constant. Based on the results of
the examinz:ion, the qualitative model may signal a quantitative model to calculate the heat rates needed 10 provide
further information for the diagnosis. Both qualitative and quantitative models will be discusscd further in Section
3.0

3.0 ACQUISITION OF PROCESS-SYSTEM KNOWLEDGE
Process-system knowiedge is acquired from system documentation, opcration and maintenance records, text
books, and system experts. In this section, we discuss our method for acquiring and modcling process-system
knowledge for the development of automated fault diagnostic assistants. This method consists of two major
activities--problem definition and model construction--and their associated subactivities, as illustrated in Figure 7.
The problem definition activity determines initial imformation about the process-system. Model construction uses
this information to construct information models via constraint, fault-class, and qualitative analysis.

PROBLEM DEFINITION

‘ PHYSICS )
§ ‘ FAULT—CLASS’
Gmucmas ) : _(FUNCT!ON)

Problem Definition

CONSTRAINT

Process-System
. Model!

Unresolved Issues
" MODEL CONSTRUCTION  *7==== =
:;;GAULT-CLASS ' (OUALITATI@

Figure 7. Process-system knowledge acquisition activities

These activities are not necessarily performed sequentially. In fact, there is a large amount of intcrolay
between activities and between subactivities within an activity, The interplay between physics and fault-class
determination serves as an example. An initial examination of the heat exchanger physics suggests that heat rate,
mass ilow rate, and conservation of mass and energy are sufficient to characterize the physics. However, when
determining fault-classes it was determined that Asian clam infestation can be a principle cause of heat exchanger
blocking and that knowledge of the fluid chemistry is necessary to determine the potential for this kind of fault.

3.1 PROBLEM DEFINITION
3.1.1 Structure Determination

Structure is the actual makeup and environment of the process-system and is exprcascd in terms of
composition, connectivity, and objcct class information. Structure knowledge is used to partition the problem for
analysis, provide a list of elements that directly or indirectly participate in faults, and determine system functions.
Structure is expressed at different levels of abstraction described as an organized collection of subsystems, com-
ponents, and parts. (Parts makeup components, subsystems are comprised of componeits, and subsystems are



combined 10 define systems.)

Composition explicidy defines the clements that makeup the process-system. The principal composition
rclation between structural elements is the "composed-of” relation. The prototype cooling system is composcd-of
"develop kinetic energy,” "route fluid," and "exchange heat” subsystems. The exchange heat subsystem is composed-
of the heat exchanger which is composed-of shell, bes, inlet water box, outlet water box, cooling fluid, and cooled
fluid.

Connectivity specifies how structural elements are connected via the "connected-to” relation. There are at
lcast two types of connectivity: physical and environmental. Physical connectivity expresses the direct or explicit
connection between elements. The system pump is connected-to inlet and outict pipes, the pump outlet pipe is
connected-1o valve (V1) and so forth. Instrumentation connected-to components arc also defined by the connectvity
relation, e.g., pressure sensor Pl is connected-to the pump inlet, current sensor 11 is connected-tc the pump motor
windings, and speed sensor S1 is connected-to the pump shaft. Environmental conncctivity expresses an implicit
connection between structural elements. An uninsulated pipe may be environmentally connected-to a pump motor in
that the pipe can develop surface condensation which would drip onto the motor windings and contacts.

Object class information documents generic knowledge about structural clements from a class perspective.
The object class knowledge is viewed as typical knowledge associated with a structural element. An example of
generic knowledge is illustrated by examining the parts that makcup components, ¢.g., a valve consists of a body,
bonnet, stem, and disk and a pump consists of a case, shaft, seals, impeller, and motor.

3.1.2 Function Determination

Function defines the purpose of an artifact. In this context, an artifact is a process-system, subsystem,
component, or component part. As an example, the function of the prototype system is to cool an internal process
fluid and the function of the pump is 1o move river water through the tube side of the heat exchanger. Function can
be expressed hicrarchically. o

Process-system functions arc determined from the physics and structural elements of the process-system.
Function determination can be viewed as a combination of both goal- and data-directed analysis. In the goal-directed
analysis, the process physics is analyzed 1o determine the dependent and independent parameters. From this analysis,
functions are derived that abstract and relate the associations between these parameters. Data-directed anzlysis begins
with the process-system components and determines the functions of cach component. For further discussion
concerning the use of process-system functions in reasoning, see Stratton [5), Stricklin [6], and Moorthy [7).

3.1.3 Constraint Determination

We broadly define a constraint as a confinement or restriction. In this context, assumptions and -
requircments are not constraints but they do impose constraints. Constraints are developed from the problem to be
solved and the capabilities of the software system to be built. Thiey are used to specify and bound the process and
relevant physics and impose requirements on the reasoning task.

CONSTRAINT TYPE CONSTRAINT SPECIFICATION

Physics Properties cocling fluid incompressibie
coaling fluid single phase

Process Parameters temperature T1 = constant
pressure P1> prassure P2

Sensor Capability pump sensor set [S1, P1, P2, 1]
$1 accuracy +5%
S1 resolution £10°F

Table 2. Prototype systems cxample of natural constraints

Constraints can be group as natural and synthetic. Natural constraints are developed from physics
propertics, process parameters, and sensor capability. Synthetic constraints arise in consideration of the computing
environment and funding level. The synthetic constraints restrict the size and scope of the problem to be solved. In



an implicit way, the synthetic constraints impose restrictions and refinements on the natural constraints. Examples
of natural constraints (see Table 2) are fluid chamacteristics (physics properties), constancy of and relation between
state variables (process paramelters), and sensor sct size, accuracy, and resolution (sensor capability).

Dctermination of constraints is performed by an analysis of the process-system characteristics and the
automation systcm requircments. Process-system analysis examings structure and behavior of the physical system
and process physics. Automation requircments analysis determincs the desired capabilitics and limits of the software
system. Constraints are then defined based on the process-system structure, behavior, and actual and desired limits

and capabilitics.

3.1.4

Physics Determination.

Process-system physics consists of the quantitative relations that express the process-system
thermodynamics, hydrodynamics, chemical dynamics, and clectromagnetic properties. These relations are determined
from an analysis of the physical system, chemical processes, constraints, faults, and reasoning requirements. The
physics defines expected process behavior and specifies fundamental process models from which fault models arc
developed. Some of the prototype process physics are illustrated in Table 3.

PHYSICS CLASS

PHYSICS PROPERTIES

Hydrodynamics

‘Mass Flow Rate

M:pVAC

Thermodynamics

Heat Flow Rate
q=MCp(Tout - Tin)

q=U As LMTD

Conservation of Energy
gshell = gtubes = gxI

Table 3. Example prototype physics propertics

3.1.5

Fault-class Determination

Definition of Terms:

p=density; v = average fluid velocity at
Ac; Ac = fluid cross section area; Cp =
fluid heat capacity; Tout and Tin are fluid
outlet and inlet temperatures; U = heat
transler coefficient between tubes and
shell fluids; As = total tube surface area;
LMTD = log mean temperature difference;
and gshell, qtubes, and gx! are the heat
rates for the shell fluid, tube fivid, and
betweer: fluids,

In the contcxt of a process-system, a fault is a condition that mars, flaws, or defccts the process-system
structure or process resulting in unexpected behavior. A fault can be viewed as a dynamic redesign of the process-
system brought about by a degradation mechanism. Fault and degradation mechanisms are varied. The purpose of
fault-class determination is to discover the types of faults and associated degradation mechanisms. Additionally, fault-
class determination specifies potential location of faults within the process-sysiem structure.

FAULT CLASS FAULT FAULT LOCATION
Block Elov:: p:‘i!h Shell
€ak piug Iniet waterbox
Fluid containment Outlet waterbox
Leak Tubes

Block crosion

Heat Transfer
Coeficient (U)
Degradation

Tube U degradation

Interior tube surface
Exterior tube surface

Table 4. Heat Exchanger {auli-classes, faulis, and locaton.

Fault-classes are discovered by component and process degradation analysis and operation and maintenance
experience. Like function determination discussed above, fault-class discovery is both goal- and data- dirccted. In
goal-directed analysis, the components and processes are analyzed 10 determine what can malfunction and how these
malfunctions can be brought about. Analysis of expericnce gained from operation and mainicnance provides a dati-

dirccted method for determining faults, causes, and locations.



The results of both kinds of analyscs are combined to provide a specification of faults, fault mechanisms,
fault-classes, and fault locaions. Table 4 specifies the heat exchanger fault-classes, faults and locations. Fault
mechanisms are discussed in Jarrell (8],

3.2 MODEL CONSTRUCTION

In the following we discuss model construction subactivities: constraint, fault-class, and qualitative
analysis. Thesc subactivitics arc uscd to develep both quantitative and qualitative information models of the process-
system. Additionally, we provide an illustration of how the quantitative and qualitative models interact to develop
on-linc knowlcdge that is later used in diagnosis.

3.2.1 Constraint Analysis

The purposc of constraint analysis is 1o detcrmine reasoning implications and requircments associated with
the process-system constraints. This is necessary because the reasoner must be able to recognize its limitations in
context of the constraint envelope (the set of constraints determined during problem definition). When inside the
envelope, the reasoner should be able to recognize this situation and function as per design. However, when the
constraint envelope has been breached, then the reasoner must recognize the breach, revise its reasoning capability,
and notify the user.

Constraint analysis is performed by determining the implications of the constraints, analyzing .he process-
system relations that define the constraint implication, determining constraint reasoning requirements, and
developing a strategy for handling constraint violations. Examples of the implication determination and analysis are
illustrated in Table 5. The reasoning requirement for the single phase fluid constraint is that the reasoner must
understand the relation between temperature, pressure, and fluid phase. Based on this relation and the real-time state
of the fluid, the reasoner determines whether the fluid has violated the single-phase constraint.

CONSTRAINT IMPLICATION ANALYSIS
Single-phase fluid No boiling Temperature-pressure relation
Tube-pressure>Shell-pressure No shell to tube leak Inter-part relation

Table 5. Exampic prototype constraints, implications and analysis

The final part of constraint analysis is to determine the reasoner response in the event of a constraint
violation. There are several alternatives {or dealing with ccn raint violations. The reasoning scope can be reduced
such that reasoning domains not affected by the violation re -ain in effect and capabilitics affected are shut off. Other
alternatives are that the recasoner can continue reasoning with lower belicf values and disclaimers, or the reasoner can
shut down all together. The strategy selected is contingent on how well the constraint violation is understood with
respect to the process-system physics and fault-associations.

3.2.2 Fault-Class Analysis .

The fault-class analysis activity develops fault-association models in context of faults, constraints, and
physical structure. This activity can also be viewed as an analysis of known fault scenarios, c.g., a block in a
system component. It is performed by analyzing actual and calculated component behavior for known faults.

Fault-class analysis proceeds as follows. Select a known fault and determine the relevant physics. For each
physics relation, determine the actual and calculated values of the dependent variables. Then use the actual values and
their relations to determine the logical relations that exist between the calculated valucs. The interest in the
calculated and sensed values is founded on the understanding that these are the values the operator or automated
systern sce.

The acwal values arc determined using known theoretical behavior of the parametric variables based on the
specified fault. If the fault under consideration is a heat exchanger tube block, then the actual heat transfer area, A,

and therefore heat transfer, qyg, will decrease. However, the calculaied values are determined using design and sensed
values of the variables. For the same block fault, the calculated value of gy will be based on the designed value of
A, and the designed A is constant in context of any fault. The following devclopment of a heat exchanger fault-



association illustrates how fault-class analysis is used to develop fault-associations. The fault in the {Hllowing
illustration is a block of 20% of the tubes in the prototype heat exchanger.

The physics relations for determining the acal heat rates (subscript "2") are
Qsheli(a) = Msnell Cp ATshen
GQuube(a) = Miube Cp AT ube
Qxray = U Ay LMTD
Qube(a) = Qsheli(a) = Qxf(a)-
The physics rclations for determining the calculated heat rates (subscript "c") are

Usheli(c) = M2 Cp(design) ATgpen(sensor) Qubee) = M1 Cp(design) ATyybe(sensor)

Gxic) = Uldesign) A, (design) LMTD(scnsor)

Qube(c) = Gshell(c) = Axf(c)-
Using the above relations, we compare the actual and calculated values to determine the relation between calculated
heat rate:

Mubes = Ml

Mshen =Mz

A < A, (design)
9] = U(design)

Qube(a) = Grube(c)
Qshell(a) = Qshell(c)
Uxf(a) < Qxf(c)-
The analysis results in the following logical relation:
(Qlubc(c) = Qshell(c) < Qxf(c)) -> tube block.
The tube block fault has multiple diagnoses. One diagnosis is that the designed cross-section flow area has been
reduced or a second is that a previously existing leak is plugging.
We recognize that this analysis is not complete and that there are possibly other faults that could develop
the same relation between heat rates. Therefore, a more appropriate expression is
(QLubc(c) = Gshell(e) < Q,xf(c)) -> tube block or unknown.
Relations developed via this technique can provide direct knowledge of a fault as shown in the above expression or
indeterminate knowledge of a fault as the following illustrates. Analysis of the heat-rate expressions for blocks in
either the inlet and outlet water boxes deiermines that for these faults the heat rates are equal. For a non-faulted heat
exchanger, the heat rates are also equal. Therefore, logical expressions for these fault-classes must be preceded with
the qualifier "possible™:
(Gube(e) = Gsheli(c) = dxf(c)) -> possible inlet water box block
(Quube(e) = Qshell(c) = Qxf(c)) -> possible outlet water box block.

3.2.3  Qualitative Analysis
The purpose of qualitative analysis is the same as that for fault-class analysis, i.c., to derive {ault-

association models that specify process-sysiem behavior in context of faults, constraints, and physical structure.
This activity is performed by developing qualitative models from quantitative models and then analyzing the
qualitative modcls in context of constraints and faults. Development of the qualitative mass flow-rate relation as it
applies to a gencric heat exchanger ¢omonstrates this process. The quantitative reiation for mass {low is

M=pvA..
Based on the constraint that p is a constant, the mass flow relation and its derivative can be qualitatively expressed as

M = [v Al

oM = [v dA, + A, av].
The "90" notation denotes the qualitative time derivative and expressions between brackets, [J, are evaluated in a
qualitative sense [9]. The fluid velocity in a heat exchanger changes only as a consequence of a change in area, not
as a result of the device adding or removing kinetic energy in cther ways, which allows the velocity term to be
climinated. The final expression for the qualitative mass flow derivative is then

oM = dA,.



The above cxpression specifics a causal relation between the fluid mass flow rate and the flow cross-scction arca.
Analysts of this expression with the previously determined fault classes results in the flowing logical expressions:
(@M = 0) -> (0A¢ = 0) :normal behavior
(0M < 0) -> (0A. <0) :faulted behavior
(@M > 0) -> (0A. > 0) :faulted behavior,
Analysis of the relation between the fault-classes and the heat exchanger structure results in
(0A, < Q) -> block of a design flow path or plug of an existing lcak
(0A; > 0) -> lcak in a design flow path or crosion of an existing block.

3.2.4 Quantitative and Qualitative Model Interaction

The above methods of knowledge acquisition have resulted in a set of quantitative (physics rclations) and
qualitative (constraint relations and fault-associations) relations that specify the process-system behavior during
normal and faulted operation. The following illustrates how these models might interact during the opcration of the
prototype system.

Initially, prior to time 12, both scts of models are quiescent. At t2, the qualitative model! set is activated to
analyze the new state of the mass flow rate, M;(12), as shown in Figure 8. It is determined that the qualitative mass
flow derivative, dM1, is less than zero which implies that a fault is present, fault(present,t2). The qualitative model
sends its diagnostic findings to the task reasoner and signals the quantitative modcl that a fault is present.

M1(12), M2(t2)
TH{R), T2(2), T3(12), T4(12)

M1(2)
‘—faullﬁ *
Quantitative Models
Qualitative Models
qtubes = M1 Cp (T3-T1)
gshell « M2 Cp (T2-T4) M 1[sign(M1{t1)-M1({r2)})]
of=U As LMTD oM1(cal,2) <aM1(exp,12) -> fault
qlubes = gshell < qxf -> tube_block or
leak_plug
L

qlube

gshell M1’ ]

qxf fault(present t2)

fault_type((tube_block or leak_plug,12)

Figure 8. Interaction between quantitative and qualitative model during a block fault

The quantitative model calculates heat rates using the complete heat exchanger state vector, (M, (12),
M-(12), Ty (12), T2(12), T3 (12), T4(12)). The heat-rate information is sent to both the qualitative model and the task
rcasoner. The qualitative model evaluales the new state information to determine additional diagnostic information.

Qualiwative heat-rate analysis indicates that there is either a block in the tubes or plugging of a previously existing
lcak. This new informaton is sent to the Lask reasoner and both models return 1o a quicscent mode.

4.0 REPRESENTATION SCHEME REQUIREMENTS
Subscquent te process-sysiem knowledge acquisition we Jevelop the intelligent diagnostic aid conceptual
design which is thee. nsed to specify the representation scheme requircments. In this section, we illustrate elements
of the conceptual design and discuss what we mean by representation scheme requirements and how these
requircments relate to the conceptual design and how they are developed.



4.1 REPRESENTATION SCHEME ISSUES

By representation scheme we mean a language used to implement an information processing task in
software. ( See Levesque [10] for a broad general discussion of knowledge representation and reasoning.) The
representation scheme must provide a capability for documenting and exccuting both qualitative and quanttatve
models. This means that it niust provide a capability for representing and organizing information and methods for

performing inference and controlling reasoning. These capabilities, shown in Table 6, specify the elements that
makecup a representation scheme.

CAPABILITY I ELEMENT EXAMPLES
Structure
Function
Representation Bohavior
Documentation Task know how
. nts
Organization z.g:ra rchies
Implication
. inheritance
interence D|scyepancy
Fault-Assoc:ation
Reasoning
Fault Recognition
Reasoing Fault Locahzation
Control Fault Identification
Fault Specificaton

Table 6. Representation scheme capabilities, elements, and examples

Fault diagnosis knowledge and reasoning requirements place constraints on the elements of the
representation scheme. The representation element defines the methods for recording and interpreting information
based on a defined syntax and semantics. This element must allow for documenting the process-system structure,
function, behavior, and knowledge of how to diagnose. The organization element provides methods for organizing
and abstrocting information. It must allow for the specification of intelligent agents and agent hierarchies. The
inference element provides methods for knowledge computation and must provide the capability for performing
implication, inheritance, discrepancy analysis, and fault- association reasoning. The reasoning control element
provides methods for determining what computations 1o perform and when to perform them. The remainder of
Section 4.0 discusses in some detail the elements of the fault diagnostic representation scheme. The discussion for
the most part will be in context of the prototype system previously defined.

Representation
Scheme B
Conceptual Design -
Probiem Solution
Definition Characterization} |

Conceptual Design

L Solution
k Characterization APPROACH 1

Problem
Definition

Representation
Scheme

pma APPROACH 2

Figure 9. End points of the representation scheme selection spectrum



There arc a large number of languages, shells, and tools--i.¢., representation schemes--available for
implementing information processing systems. Each scheme potentially provides a different depth and breath of
representation scheme elements (not all representation schemes are equal). This situation suggests that there arc
multipic ways, a spectrum of approaches, in which to sclect a representation scheme 1o implement intclligent
diagnostic aids. The two ends of the spectrum .. . illustrated in Figure 9.

In Approach 1, the representation scheme is acquired prior to determining what information processing task
is to be automated. In this approach, the problem and associated solution targeted for automation do not levy
constraints on the representation scheme selection. In Approach 2, the conceptual design is developed and analyzed
10 identify representation scheme requirements. Then the representation scheme is acquired.

The representation scheme selected for implementing a softwarce system constrains the scope, capability,
flexibility, and cfficiency of the software system. In Approach 1, the representation scheme biases the development
and implementation of the problem solution. In Approach 2, the problem and conceptual solution bias the
representation scheme. It is our perspective that Approach 2 should be used when developing intelligent diagnostic
aids. Approach 1 is analogous to purchasing a cross-cut saw and then deciding that the purpose of the saw will be
the cut down trees. Whereas in Approach 2 you would first determine that the purpose is 1o cut down trees and then
specify the purchasce of a chain saw.

4.2 REPRESENTATION ELEMENT

The representation clement defines the methods for recording and interpre.i- 7 information bascd on a defined
syntax and secmantics. It is used to document the process-system structure, function, behavior, and knowledge of
how to diagnose. Table 7 lists the categories cf process-sysiem information to be documented and includes examples
of cach. The "How-to-Diagnosc" category contains two types of information, as shown in the table.

INFORMATION
CATEGORY INFORMATION EXAMPLE
Structure Pump, Valves, Pipes, and Heat Exchanger
Function Contro! Fluid Heat, Develop Fluid K.E., Route Fiuid, and Exchange Heat
Behavior Heat Rates, Mass Flow, and Fault Associations
How to Diagnose 1. Fault Recognition, Loczlization, ldentification, and Specification
2. Descrepancy Analysis, Fault-Association, Meta-Analysis

Table 7. Catcgorics of process-system information

4.2.1 Information to be Represented

Two types of information mced 1o be represented. The first is information about diagnosis tasks: fault
recognition, localization, identification, and specification. The sccond is information about how tasks are
accomplished and includes discrepancy analysis, fault-association analysis, and meta-analysis  The relation between
these two types of information is illustrated by examining how discrepancy analysis is used in the fault-recognition
task. As the name implies, the purposc of the fault-recognition task is to determine the presence of a fault in the
process-system. Discrepancy analysis is one means of determining a fault's presence. This type of analysis
evaluatcs (or simulates), based on real-time state vector information, the state of the process-system. It then

compares this simulated state to the actual or expected state o determine whether there is any disagreement which

indicates the presence ol a faull

4.2.2  Representation Methods

There are many methods for representing information. The methods that we use arc summarized in Table §
and include a qualitative calculus, quanutative calculus, structured logic, and agent objects. Each method has a set of

catures defined as a set of operators and operands.

The quantitative calculus representation uses the real number space o define its operands, i.e., numbers
from negative infinity to positve infinity. Operators include addition, subtraction, multiplicaton. differentiation,
integration, and ctc. The quantitative relation for the mass flow rate, M = p v A, is an example of information
represenicd in a quanttative calculus.



There has been extensive work done in the development of qualitative calculus [11]. The theory of a
qualitauve calcuius is an ongoing area of rescarch in artificial intelligence. The qualitative calculus we are presenty
using is based on the calculus specified by de Kieer and Brown S]. For a discussion or how we interpret and use
their qualitative calculus, see Stratton and Jarrell [1]. This representotion has three symbols in its number space: -1,

0, and 1. The 0 symbol refers to values of 0, -1 symbol refers to values less than zero, and the 1 symbol refers to
numbers greater than zero.

REPRESENTATION MET TURES
METHOD ETHOD FEA
o Number space 00 10 +eo
Quantitative Operators +,-J," dx.integration, etc.
Caleulus Examole M=pvAc
A Number space .0+
Qualitative Operators subset of quantitative operators
Calculus Examole oM = dAc
Truth space true, false
Logic Operators conjunction, disjunction, negation, and implication
Example T>328F and P=10Cpsi -> state(H20, steam)
Agents ?ymbol space name, attributes, and relations
g eatures develop K.E. agent
Examole

Table 8. Rcpresentation methods and their features

The operators in the qualitative representation are a subset of the quantitative operators. Because a
qualitative calculus does not have magnitude certain quantitative operation can not be performed, e.g., the additon of
aX=[-1]and Y =[1]. An examplec of a qualitative expression is the qualitative time derivauve of the mass flow
equation: oM = dA.. This expression is interpreted to mean that the direction of the change in the mass flow is the
same as the direction in the change of the cross sectional flow arca.

The logic representation is Prolog, a version of predicate calculus. Its value space consists of true and false
with operators of conjunction, disjunction, negation, and implication. The following expression is an example of a
logic expression:

T>328F and P<100psi -> state(H,0,steam).

This expression is interpreted 1o mean that H,O molecules are in the state of steam when the environments
temperature is greater that 328°F and the pressure is less than 100 psi.
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« Fault Associations
* Fauit Detection

« Constraint Reasoning
Figure 10. A generic process-system agent

An agent representation method consists of a symbol space in which agents are defined with features
consisting of a name, attributes, value, and relations. An example of an agent is the "Develop K.E." agent. Figure
10 illustrates a generic agent containing process-system information.



4.3 ORGANIZATION

The organization clement provides methods for abstracting and organizing information. Organization is
developed around the noton of intelligent agents and hicrarchics of agents. Agents were discussed in the previous
sccton.

Hicrarchies organize information based on object description and class abstraction. There are several kinds
" hierarchies and for each there are multiple ways in which the hicrarchy can be defined, as shown in Stratton (5],
Mesarovic {12}, Chandrasckaran [13], Minsky [14], and Padl [15]. Structure and content of hierarchies arc influenced
by the purposc of the hierarchy and the modeler's perspective of the domain to be modelied. We presenty define a
hierarchy as a tree structure in which cach parent node has one or more children and, except for leaf nodes, cach child
has onc parent (lcaf node connections are discussed later). We use both componcent object (based on object
descnption) and process-system function hierarchies (based on class abstraction).

MECHANICAL

c :
omponen COMPONENTS

Opject Hierarchy

Kind-of relation:

A VALVE is a king-of
MECHANCIAL
PUMP COMPONENT.

GATE GLOBE BALL
VALVE VALVE VALVE

s
p—
Component

lnstancesL_ Valvet CValv@ | Vaive3 ,

Figure 11. Example of an object description hierarchy based on components

Object hierarchies are used 1o organize generic taxonomical knowledge about component classes and
instances in a "kind-of” relationship, e.g., a valve is a kind-of mechanica! component as illustrated in Figure 11.
Component classes describes object types such as pumps and valves and component instances describe actual objects
that exists somewhere in the real world (valve 1, valve 2, and valve 3). The purpose of the object hierarchy is to
organizc generic information about component classes and specific information about component instances. The
component class hicrarchy is relatively static and changes only when new components classes arc determined or when
new components are constructed.

-

CONTROL
Process-System

Function FLUID HEAT Part-of relationship:
Hi h e The EXCHANGE HEAT function
|er‘arc y is part-of the
CONTROL FLUID HEAT tunction.
DEVELOP ROUTE EXCHANGE
FLUIDKE. FLUID HEAT
System

Components Heat
Pump Valve 1 Valve 2 Valve 3 Exchanger

Figure 12, Examplc of a class abstraction hicrarchy based on function

Function hicrarchies organize knowledge around process-system function in a "part-of” relationship, e.g.,
the function to exchange heat between the process fluids is pari-of the function 1o control fluid heat (Figure 12).
This hicrarchy specifies the function and sub-functions of the process-system, specifics their relationships, and as-



sociales system components to ground functions. These hicrarchies are developed by decomposing the physical
systemn into functions and sublunctions, generally based on the notion of systcm and subsystem. Function
decomposition proceeds until ground functions are determined and specified. A ground function is the function just
before the leaf nodes. Route Fluid is a ground function to which the leaf nodes Valve 1, Valve 2, and Valve 3 are
connccted. '

Lcaf nodes arc the physical components that combined to provide for the functions specified at the ground
level. Leaf nodes can be further functionally decomposed within the node itself and be expressed as functions based
on physical parts, e.g., the pump can be modcied as a motor (develop kinctic energy), bearings (stabilize), and im-
peller (develop pressure differcnual).

The function hierarchy is unique for cach process-system. The structure once defined is static except for
physical system design changes. However, values of the function attributes are dynamic, e.g., performance
requirements and state values. It is expected that, during system operation, components change state (on, off, failed,
etc.) based on performance demands and component condition.

We view object hicrarchics as “librarics of knowledge™ containing generic information about objects and
function hierarchies as models of "designed systems™ knowledge containing information about a real world process-
system (Figure 13).

Object Hierarchy Function Hierarchy
“Library of Knowledge™ "Desigred System Knowledge "
[ Mechanical Comoonenﬂ Control
Fluid Heat
Route Develop Exchange
— Fluid Fluid K.E. Heat

Generic Knowledge System Specific Knowledae

Vaive1

Name: Name:
Parts: Connectivity:
Maintenance Requirements: Function:

General Diagnostic Methods:

Spacific Diagnostic Methods:

Figure 13. Relation between object and function hicrarchics

Component instances exist in both hicrarchies. Valve 1 in the object hierarchy, for instance, is the child of
the "gate valve" node while in the function hierarchy it is the child of the "route fluid” node. Valve 1, as an object
leaf node, contains information about the generic structure and behavior of the valve. However, as a function lcaf
node, it contains knowledge concerning its function in the designed system as well as physical connections, real-time
state, and behavior knowledge. Component nodes can be viewed as the intersection of the knowledge contained in
cach type of hicrarchy.

4.4 INFERENCE

The inference element provides methods for knowledge computation by means of implication, inheritance,
discrepancy analysis, and fault-association reasoning. They are used to draw conclusions and develop new knowledge
from existung knowledge. The following discusses generic and task dependent inference methods. Generic inference
methods are fundamental methods of inference and can be of use in a wide variety of cognitive tasks. Task dependent

inference methods for the most pant are specific inference methods used in a single or a small set of related cognitive
task . o

4.4.1 Generic Inference Methods :

Implicauon and inheritance are generic inference methods (reasoning task independent). Implication is a
logic operation that determines the truth of a logic expression and is cither goal or data dirccted. Goal-directed
inference determines the truth of a goal by determining the truth of its conditions. If the conditions arc true, then so



is the goal; however, if any condition is false, then the truth of the goal is not known and the statement is false.
The general form of a goal statement and an example arc as follows:

General Form: (goal) is implicd by (conditions)
and, the example,

Route Fluid is in heat-exchanger-header mode IS IMPLIED BY

valve 1 is in the open state AND

valve 2 is in the open statc AND

valve 3 is in the closed sute.
Data-dirccted inference executes in the reverse of goal-directed. If a data clause is detcrmined to be true, then the
rcasoner fires to determine whether any conclusion based on the data clause can be set to true. The general form of a
logical data statement and an example are as follows:

General Form: (data) implies (conclusion)
and, the example,

Valve 1 is in the open statc AND

Valve 2 is in the open state AND

Valve 3 is in the closed state IMPLIES

Route Fluid is in heat-exchanger-header mode.

Inheritance inference propagates knowledge between classes, subclasses, and instances. The valve class
hierarchy shown in Figure 11 is used to illustrate this inference method. The class Valve has knowledge of gencric
valve structurc and optivnal implementation features of the structure (see Table 9). The parts of a valve are body,
bonnet, disk, stem and operator. Implementations features of a valve disk are gate, ball, or plug.

|__OBJECT | ATTRIBUTE V;ALUE _
Parts body and bonnet and disk and stem and operator
Valve Disk gate or ball or plug

Operator pneumatic or manual or motor

Parts body and bonnet and disk and stem and operator
Gate Valve Disk gate '

Operator pneumatic or manual or motor
Pneumatic EP).?;rbt(s b::jg' and bonnet and disk and stem and operator
Gate Valve 9 .

Operator pneumatic

Table 9. Inheritance of object structure and implementation features

By assigning "Gate Valve” as a sub-class of the "Valve" class, it inherits the valve class structural
xnowledge and modifies it as appropriate. Knowledge of the generic parts remains the same; the disk-type attribute
is defined as a gale, and the operator attribute is a list of potential values. Valve 1 is represented as an instance of a

pneumatic gate valve. Therefore, Valve 1 inherits valve class and gate valve sub-class knowledge and modifies the
opcrator type (pncumatic).

4.4.2 Task Dependent Inference Methods

Discrepancy analysis and fault association are inference methods inherently specified by the fault-diagnosis
reasoning task [3, 16, 17, 18, 19]. Discrepancy analysis evaluates the relation between the actual and the expected
state in order to infer the presence of a fault as illustrated below:

state(expected) # state(calculated) -> fault(present)

JdM(calculated,tl) < oM(expected,tl) -> fault(present).
Fault-association inference is used to determine the location and cause of the fault using expressions that relate object
state 1o fault state. Fault associations are predetermined implications that relate process-system physics, faults, and
structure. An example of fauli-association inference is

Qusbe > GQshel] and Quf > Qshell => fault(inlet_walterbox,lcak_to_atm).



4.5 REASONING CONTROL
The reasoning control element provides methods for determining which computations o perform and when
to perform them. The following discusses a generalized method for reasoning about faults and an example.

4.5.1 Generalized Reasoning Method

It is our belicf that fault diagnosis is a combination of data and go v-directed recasoning and itcrates between
them based on the present state of the diagnosis. Fault diagnosis consis. of subtasks that recognized, localize,
identify, and specify the fault [1]. Each of these subtasks employs inference methods for reasoning about process-
system knowledge to determine conclusions about the diagnostic state of the process-systiem.

The function hicrarchy can be gencralized as three levels of agents: top, intermediatc, and ground agents
(Figurc 14). Diagnostic subtasks take place at different levels with in this generalized structure. Each subtask is
characterized by the type of analysis principally employed to perform it. Fault recogniuon is performed using
discrepancy analysis, fault localization and identification are performed via fault-association analysis and mcta-
analysis, and fault specification is performed using meta-analysis and procedure look up.

,' Top
Expected States Agent

Analysis .

——
Meta-Analysis
Dus:re?arjcy Intermediate Intermediate Intermediate

nalysis Agent 1 Agent 2 Agent 3

| S

r
Fault Association Ground Ground Y { Ground \{ Ground Ground
Analysis Agent 1 Agent 2 Agent 3 J{ Agent4 Agent 5
: |
Figure 14. Generalized hierarchy of agents for performing diagnosis

The diagnosis cycle is initiated either by the notification of process-system operation requirements change
or state vector collection. Initiation takes place at the 1op agent if a new operations requirement is received or at an
intermediate agent if a state vector is collected. In cither case, the diagnosis aid activitics fault recogniton by
determining the expected state of the process-system and comparing it to the calculated state. If a discrepancy exists,
then lower intermediate or ground agents are notified to inidate fault localization, depending on where the discrepancy
was dctermined.

The notified agents generate and analvze process-system information concerning the diagnosis. The
diagnostic {indings of these agents are then analyzed by higher level agents to determine the diagnosis. The
diagnosis is cither partially or uniquely identified. If it is panially identified, the partial diagnosis is spacificd along
with daia collection methods that can be used to further develop the diagnosis. If the diagnosis is uniquely identified,
then it is specified and the diagnostic aid is quiescent.

4.5.2 An Example of Fault-Diagnostic Reasoning

Initially, time 10, the diagnostic aid is in a quicscent state polling the outside world to determine changes in
system operation requirements or state variables. For this example at tl, the diagnostic aid is informed thar the
pump has been switched from mode 1 to mode 2 (Figure 15). A mode change specifics a change in operational
requirements. The mode change is interpreted by the "control fluid heat” agent which informs lower level agents of
expected process-system state changes. The "Develop Fluid K.E." agent is then informed to cxpect the pump speed
to double and the "Exchange Heat" agent is informed to expect the mass flow rate at t1, M1(t1), 10 increase (o
1.7 umes the present mass flow rate M1(10).
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Figure 15. Prototype activity during faull diagnosis

The "Develop Fluid K.E." agent evaluates the new pump speed, motor current, and differcnual pressurc against
expected behavior and concludes that the pump is operating as expected. However, the "Exchange Heat” agent
recognizes the existence of a fault when it detcrmines that the new mass flow rate is 1.2 time the old mass flow rate
instcad of the expected 1.7.

Expeccted Change:  M1(11)/M1(10) = 1.7

Calculated Change: M1(11)/M1(10) = 1.2

M1(t1)/M1(t0)[calculated] = M1(11)/M1(10)[expected].

After recognizing a fault presence, the "Exchange Heat” agent sends a message to subagents to initiate fault
localization. Each subagent gencrates additional state data which is analyzed to determine fault informadon. State
generation and analysis is similar for both inbox and outbox agents. Each box agent determines that, based on the
relative change in M1, there is a potential for either the flow path being blocked or a previous leak being plugged.
Analysis of history implies that there arc no leaks which is used to draw the conclusion that cither or both
watcrboxes are possibly experiencing blocking in their flow paths:

Sute Generation:

oM1(t1,reiative) = M1(t1)/M1(10)[calculated] - M1(11)/M1(t0)[expected]

=.1

State Analysis;

(M <0)-> (dA. < 0)

(0A. < 0) -> block of a design {low path or plug of an cxisting leak

history data -> no lcaks

possible block and possible plug and no leak -> possible block.

The tube subagent also performs state gencration and analysis. Tube mass flow rate analysis alone is not enough to
draw any conclusions. However, the tube agent also evaluates and analyzes the heat rate relations. The heat rate for
the tube and shell fleid are determine along with the rate of heat exchange between the fluids. Comparison of the

heat rate is as expected, i.e., the magnitudes of all are equal. The tube agent concludes that it does not contain a
fault:

State Generation:

Qepen(11) = M2(t1) Cp (T2-T4)
Quibe (11) = M1(11) C,, (T3-T2)
gx(t1) =U Ay LMTD



Statc Analysis:

oM1(tl,rclative) -> possible block or leak plug

history data -> no leaks

Qshell (1) = Quibe (11) = qxg(11) -> no block

possible block or Icak and no leaks and no blocks -> no fault.
Each subagent informs the "Exchange Heat” agent that its analysis is complete. The "Exchange Heat” agent cannot
identify the fault with certainty based on the collected data and generated information. It concludes that there is a
block fault and that the fault s either in one or both of the waterboxes. The "Exchange Heat" agent informs its
parent agent of its conclusions. The "Control Fluid Heat” agent informs the user of the diagnosis and suggests some
non-intrusive non-destructive methods for collecting further data that can be used to develop a more specific
diagnosis.

5.0 SUMMARY

Presented here is our methodology for developing automated aids for diagnosing faults in complex physical
systems, e.g. reactor cooling system. We undertook this research at the Pacific Northwest Laboratory (PNL) for the
U.S. Depantment of Energy and the U.S. Nuclear Regulatory Commission. We have designed these aids as
multilevel-multiagent diagnostic aids based on principles that should be generally applicable to any complex system.
In this methodology, "multilevel” refers to information models described at successive levels of abstraction that are
ticd together in such a way that scasoning is directed o the appropriate level as determined by the problem solving
requirements. The concept of "multiagent” refers to the method of information processing within the mulilevel
model network; each model in the network is an independent information processor, i.c., an intelligent agent.

Our research in fault diagnosis grew out of our work in root-cause analysis (RCA)[1]. RCA consists of two
major activities: fault diagnosis and root-cause evaluation (RCE). The purpose of fault diagnosis is to determine
plant events and conditions that are associated with a specific symptom. Then RCE determines the cause of the
events and condition.

We use an enginecring approach for the development of intelligent aids. Requirements for intelligent systems
development modify the classical life-cycle approach to software sysiem development by requiring additional
activities to be performed. In our approach, we categorize these activitics as 1) knowledge requirements
dctermination, 2) model construction, and 3) representation scheme requirements development.

The determination of knowledge requirements is fundamental to the development of any intelligent software
system. This activity determines what information is needed in the problem solving activity and how it is to be
used. We group knowledge for fault diagnosis into two broad groups: cognitive task and process-system knowledge.

Process-system knowledge uses plant (process-system) state and event data 1o develop information about the
plant's behavior. Cognitive task knowledge uses general process-system knowledge and behavioral knowledge in
addition to plant state and cvent data to develop conclusions about the plant behavior,

We chose models as the method 1o document and manipulate knowledge. Important issucs concerning models
arc that 1) they capture essential aspects of the subject reality 2) in an appropriate representation 3) in order 10
explore properties of the reality [2). For fault diagnosis, the essential properties are knowledge of the process-system
(fixed and transient) and how to perform diagnosis. This knowledge is represented as models using quantitative
calculus, a qualitative calculus, predicate logic, and intelligent agents.

Work supported by The U.S. Department of Encrgy under Contract DE-ACO6-76RLO 1830
and by the U.S. Nuclear Regulatory Commission



Representaton scheme requirements are determined by analyzing the cognitive and process-system knowledge.
These requircments gencrate a specification which the representation scheme should satisfy. The representation
scheme should provide methods for representing and organizing information as well as methods for performing
inference and reasoning control.

5.1 ACQUISITION OF PROCESS-SYSTEM KNOWLEDGE

Process-system knowledge is acquired from system docuinentation, operation and maintenance records, text
books, and system cxperts. We present a method for knowledge acquisition that consists of two major activities:
1) problem dcfinition and 2) modcl construction. Problem definition determines process-sysiem structure, function,
constraints, physics, and fault-classes. Model construction further develops the domain knowledge and constructs
modecls via constraint, fault-class, and qualitative analysis,

5.1.1 Problem Definition

The problem definition activity analyzes process-system structure, function, constraints, physics, and fault-
classes. Structural knowledge is determined by direction examination of the physical system. Structure is the actual
makeup and environment of the process-system and is expressed in terms of composition, connectivity, and object
class information. Composition explicitly defines the elements that makeup the process-system. Connectivity
specifics how structural clements are connected. There are at least two types of conneclivity: physical and
cnvironmental. Physical connectivity expresses the direct or explicit connections between elements. Environmental
connectivity expresses implicit connections between structural clements. Object class information documents
genceric knowledge about structural clements from a class perspective.

Function defines the purpose of an aniifact. Functions are determined from the physics and structural elements
of the process-system. Function determination can be viewed as a combination of both goal- and data-directed
analysis. In the goal directed analysis, the process physics is analyzed 1o determine the dependent and independent
parameters. From this analysis, functions are derived that abstract and relate the associations between these
parameters. Data-directed analysis begins with the process-system components and determines the functions of each
component.

We broadly define a constraint as a confinement or restriction. Determination of constraints is performed by an
analysis of the process-system characteristics and the automation system requiremzats. Process-system analysis
examines structure and behavior of the physical system and process physics. Automation requirements analysis
determines the desired capabilities and limits of the software system. Constraints are then defined based on the
process-system structure, behavior, and actual and c-sired limits and capabilities. Constraints can be group as natural
and synthetic. Natural constraints consists of physics nroperties, process parameters, and sensor capability.
Synthetic constraints arc classificd as computing envirunment and funding-level constraints.

Process-system physics consists of the quanttative relations that express the process-system thermodynamics,
hydrodynamics, chemical dynamics, and electromagnctic propertics. These relations are determined from an analysis
of the physical system, chemical processes, constraints, faults, and reasoning requirements.

In the context of a process-system, a fault is a condition that mars, flaws, or defects the process-system
structure or process. The purpose of fault-class determination is to discover the types of fauls and their potential
location. Fauli-classes are discovered by component and process degradation analysis and operation and maintenance
experience. Fault-class discovery is both data and goal directed. In data-directed analysis, the components and
processes are analyzed to determine which can malfunction and how these malfunctions can be brought about.

Analysis of experience gained from operation and maintenance provides a goal-directed method for determining faulis,
causes, and locauons.

5.1.2  Model Construction

Modeis are constructed based on constraint, fault-class, and qualitative analysis. The purpose of constraint
analysis is to determine reasoning implications and requirements associated with the process-system constraints.
Constraint analysis is performed by determi:ung the implications of the constraints, analyzing the process-sysicm
relauons that define the constraint implication, determining constraint reasoning requirements, and developing a
strategy for handling constraint violations. The final part of constraint analysis is to determine the reasoner responsc
in the cvent of a constraint violation.

The fault-class analysis activity develops fault-association models in context of faults, constraints, and physical



structure. It is performed by analyzing actual and calculated compon :nt behavior for known faults. Fauli-class
analysis proceeds as follows. Sclect a known fault and determine the relevant physics. For each physics relations
determine the actual and calculated values of the dependent variables. Then use the actual values and their relations to
determinc logical relation that exist between the calculated values.

The purpose of qualitative analysis is the same as that for fault-class analysis, i.e., derive fault-association
modecls that specify process-system behavior in context of faults, constraints, and physical structure. This activity is
performed by developing qualitative models from quantitative models and then analyzing the qualitative modcels in
context of constraints and faults.

5.2 FAULT DIAGNOSIS REPRESENTATION SCHEME REQUIREMENTS

By representation scheme we mean a language used to implement an information processing task in software.
A representation scheme consists of methods for representing information, organizing informauon, performing
infcrence, and controlling reasoning {3).

5.2.1 Representation

Representation defines the methods for recording and interpreting information based on a defined syntax and
semantics. The representation provides for documenting the process-system structure, function, behavior, and
knowlcdge of how to diagnose. The representation methods that we use include a quantitative calculus, qualitative

calculus 4], structured logic, and agent objccts {5]. Each mcthod has a set of features defined as a set of operators
and operands.

5.2.2  Organization

Organization defines the methods for organizing and abstracting information. It is developed around the notion
of intelligent agents and hicrarchies of agents [5,6]. Hicrarchies organize informaton based on object description and
class abstraction. Object hicrarchies arc used to organize generic taxonomical knowledge about component classes
and instances in a "kind of”" relationship. The purpose of the object hicrarchy is to organize generic information
about component classes and specific information about component instances. The component class hierarchy is
relatively static and changes only when new components classes are determined or when new components are
constructed.

Function hierarchies are or zanize knowledge around process-system function in a part-of relationship [7,8].
These hierarchics are developed by decomposing the physical system into functions and sub-functions generally based
on the notion of system and subsystem. The function hierarchy is unique for each process-system. The structure
once defined is static except for physical system design changes. However, values of the function attributes are
dynamic.

We view object hicrarchies as "librarics of knowledge" containing generic information of objects and function
hicrarchies as models of "designed systems" knowledge containing information about a real world process-system.
Componcnt instances exist in both hicrarchies.

5.2.3 Inference

Inference defines methods for knowledge computation and provides the capability for performing implication,
inheritance, discrepancy analysis, and fault association reasoning,

Implication and inhcritance are generic inference methods (reasoning task independent). Implication is a logic
nperation that determines the truth of a logic expression and is either goal or data dirccted. Inheritance inference
propagaics knowledge between classes, subclasses, and instances.

Discrepancy analysis and fault-association are inference methods inherently specificd by the fault diagnosis
reasoning task. Discrepancy analysis evaluates the relation between the actual and the expected slate and concludes
the presence of a fault when there a discrepancy between the two. Fault-association inference is used to determine the
location and cause of the fault using expressions that relate object state to fault state.

5.2.4 Reasoning control

Reasoning control provides methods for determining what computations 10 perform and when to perform them.
Fault diagnosis is a combination of data- and goal-directed reasoning and iterates between them based on the present
state of the diagnosis. Fault diagnosis consists of subtasks that recognized, localiz ¢, identify, and specify the fault.

Subtasks take place at different levels within the function hierarchy. The diagnosis cycle is initiated cither by



the notification of a change in the requirements for the operation of the process-system or state vector colleciion.
The reasoner when activated initiates fault recognition by determining the expected state of the process-system and
comparing it to the calculated state. If a discrepancy exists, then intermediate or ground agents, depending on where
the discrepancy was determined, are notified to initiate fault localization. The diagnostc findings of these agents arc
then analyzed by higher level agents to determine the diagnosis. The diagnosis is either partially or uniquely
identified. If it is partally identificd, the partial diagnosis is specified along with data collection methods that can be
uscd to further develop the diagnosis. If the diagnosis is uniquely identified, then it is specified and the diagnostic aid
is quiescent.

6.0 CONCLUSION

Our rescarch indicates that a uscful representation scheme for physical system diagnostic reasoning can be
dcveloped employing funcuon and object hicrarchies, task required inference, and task specified reasoning control.
Hicrarchics provide a structure for representing generic and specific physical system knowledge as well as organizing
process behavioral and task knowledge. Formal modeling of the reasoning task determines the required task inference
and control.

This research has focused on the use of the representation scheme for fault diagncsis. However, preliminary
analysis indicates that this same scheme may be useful in automating control tasks. Also, because of the
concurrency of node execution, software systen.s developed using this representation scheme can be parallelized and
distributed. -
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