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ABSTRACT

Presented here is our methodology for developing automated aids for diagnosing faults in complex systems.
We have designed these aids as multilevel-multiagent diagnostic aids based on principles that should be generally
applicable to any complex system. In this methodology, "multilevel" refers to information models described at
successive levels of abstraction that are tied together in such a way that reasoning is directed to the appropriate level
az determined by the problem solving requirements. The concept of "multiagent" refers to the method of information

processing within the multilevel model network; each model in the network is an indepcndent information processor,
i.e., an intelligent agent.
-.

1.0 INTRODUCTION

Presented here is our methodology for developing automated aids for diagnosing faults in complex systems.
We undertook this research at the Pacific Northwest Laboratory (PNL) 1 for the U.S. Department of Energy and the
U. S. Nuclear Regulatory Commission. We have designed these aids as multi,evel-multiagent diagnostic aids based

on principles that should be generally applicable to any complex system. In rhis methodology, "multilevel" refers
to information models described at successive levels of abstraction that are tied together in such a way that reasoning
is directed to the appropriate level as determined by the problem solving requirements. The concept of "multiagent"
refers to the method of information processing within the multilevel model network; each model in the network is an
independent information processor, i.e., an intelligent agent.

1.1 ROOT CAUSE ANALYSIS

Our research in fault diagnosis at PNL grew or,, of our work in root-cause analysis (RCA). RCA i:, the
process of determinil_g the fundamental cause for the 4egradation or failure of an artifact [1]. RCA consists of two
major activities: fault diagnosis and roe,t-cause evaluation (RCE). These activities and their relation with each other
are shown in Figure 1 in relation to a "plant" within which a complex process-system can be found. The purpose of
fault diagnosis is to characterize and specify faults, i.e., determine the plant events and conditions that are associated
with a specific symptom. Then RCE is used to determine the cause of the events and condition.

1.2 GENERAL APPROACH

It is our opinion that software development in general is evolving from an ad hoc activity to an engineering
discipline. At a minimum, the classical life-cycle approach to software system development includes tasks such as
problem definition, conceptual design, design, construction, certification, implementation, and maintenance.

Intelligent systems, on the other hand, modify these tasks by requiring addition',d activities to be performed. In our

1 Operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO
1830.



approach, we categorize these activities as 1) determining knowledge requirements, 2) constructirg models, and

3) developing the requirements fnr ,spresentation scheme.s
Sensor
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Figure 1. Schematic of the activities in root-cause analysis

1.2.1 Knowledge Acquisition
We group knowledge for fault diagnosis into two broad groups: cognitive task and process-system

knowledge. Cognitive task knowledge is knowledge of how to perform a task such as fault diagnosis. This
knowledge includes inference methods, control strategy, procedures, and methods or criteria for making decisions.
The process-system knowledge consists of knowledge about the process-system structure, function, constraints,
physics, and faults. Process-system knowledge is used with plant state and event data to develop information about
the behavior of the plant.

During the reasoning process, the knowledge contained in these two groups arc related to each other, back
and forth, to draw conclusions about the process-system, as illustrated in Figure 2. This paper focuses o,_ the
determination and specification of process-system knowledge.

PROCESS-SYSTEM KNOWLEDGE ) Ii • iiiii •

[
and Event Data

CONCLUSIONS ABOUT BEHAVIOR

Figure 2. Interaction between the process-system and task models

Domain knowledge is acquired in both Lhcknowledge acquisition and model construction activities.
However, the knowledge acquisition activity is the primary and initial mechanism for acquiring domain knowledge.
Mcxiel construction Is a secondary mech,'mism for acquiring knowledge. Du.,ing model construction additional
knowledge requirements may be discovered and existing knowledge ma), be refined and modified.

1.2.2 Model Construction

By model we mean a rcpresentation of a specified reali b, which captures somc essential aspecL£ ()f the reality
widlin a framework of a representation mcdlod. The model of dm reality providcs a means of exploring the
properties of that reality. This definition is an adaptation of the definition for mathematical models presented by J.L.

Czksti [2]. The important issues concerning models arc that 1) they car,:arc essential aspccts 2) iT_an approprmtc



representation 3) in order to explore properties of the reality. This means that the essential properties and the
purpose of the model must be understood, lt also means that the method for representing the model must allow for
inferencing that accomplishes its purpose.

For fault diagnosis, the essential properties are knowledge of the process-system and how to perfor:-' a

diagnosis. In our methodology for developing automated aids for fault diagnosis, this knowledge is represented as
models using quantitative calculus, a qualitative calculus, predicate logic, and intelligent agents.

As might be expected, because the major categories of knowledge are cognitive task and process-system, the
major categories of model development are the same. In this chapter, however, we only discuss the modeling of
process-system knowledge. Preliminary work on modeling the diagnosis task is presented in Stratton and Jarrell [1].
The model construction activity is used to construct fault-association models. Quantitative and agent models are
primarily developed in the problem definition activity.

1.2.3 Representation Scheme Requirements Development
Once the process-system knowledge is represented as a system of quantitative and qualitative models, it is

necessary to determine the knowledge representation requirements in order that the models can be implemented in a
software framework. Because we are using a model-based reasoning approach, the representation scheme will have a
general requirement that it provide a means for the knowledge to be organized and executed as a system of
successively abstract and integrated models which function inter'actively as required during problem solving.

Representation scheme requirements are determined by analyzing the cognitive and process-system
knowledge. These requirements generate a specification which the representation scheme should satisfy. The
representation scheme should provide methods for representing and organizing information as well as methods for
performing inference and reasoning control.

2.0 KNOWLEDGE REQUIREMENT ISSUES

Before discussing the major subjects of this chapter (knowledge determination/acquisition, roodel
construction, and representation scheme determination), we feel it is important to first discuss some general issues
associated with knowledge requirements for intelligent system. Specifically, in this section we discuss 1) knowledge
requirements for process-system control and diagnosis, 2) the relationship between knowledge requirements for
different cognitive tasks, and 3) interaction between quantitative and qualitative knowledge.

2.1 PROTOTYPE SYSTEM

In illustrating and discussing the concepts to be presented in this section and the remainder of this chapter,
we will use a cooling system of the kind used in nuclear reactor service water systems as a prototype of a process-
system. A diagram of the prototype is shown in Figure 3. The function of this process-system is to cool the
process fluid routed through the shell side of the heat exchanger. The system consists of a pump, three valves (VI,
V2, and V3), a heat exchanger, interconnecting piping, and instrumentation.

WATER B TUBE _,,_, ATER BOX
P1 P _- _ "

I
1 _..

M1 i I

ii I M2 HEAT EXCHANGER _ T2
M2

Z3

Figure 3. Sc-system, which is in the cooling mode, as illustrated in Figure 4.

In operation, the pump draws water into the system from the river and routes it through the tube side of the
heat exchanger. A different system then routes the process fluid through the she]] side of the heat exchanger. The
process-syster,_has several modes. These modesarc defined by the pump spe.cd(two speeds)and d_cSCtLingsof the
valves. The insU-umcnL_tion for this system is, as shown in Figure 3, ]abcle(_as follows: Z indicates position; for



example, Zl, Z2, and Z3 indicate the position of V1, V2, and V3 respectively. Mass flow rate is indicated by M:
M1 is the coolant mass flow rate and M2 is the process fluid mass flow rate. Pressure then is indicated by P: P1 is
the pump inlet pressure and P2 is the pump discharge pressure. Finally, temperature is indicated by T: T1 and T3
indicate the tube inlet and outlet temperatures, respectively, and T2 and T4 indicate the shell inlet and outlet
temperatures, respectively.

Initial understanding of knowledge requirements is developed via analysis of task (control and diagnosis)
scenarios. In the following, we discuss control and diagnostic scenarios with respect to our prototype process-
system, which is in the cooling mode as illustrated in Figure 4. In the figure, the process fluid is shown being
cooled; the components of the system are in the following states: the pump is running at 100% capacity, V1 is 50%
open, V2 is fully open, and V3 is closed. State variables have the present reading: M1 = 100,000 lbm/hr and T4 =
600°F.

PROTOTYPE STATE MODE & COOLING

Pump(100%) Pump(100%)

Vl (50°/.) F . _ _ Tube Vl (50%)
V2 (100%) Block State V2 (100%)
v3 (o%) v3 (0%)
T4 - 600°F T4 - 600°F
M1 -- 100,000 Ibm/br M1 - 1051bm/hr

Figure 4. Prototype ;tate vector and associated control and diagnostic results

The control task analyzes the process-system data and determines that the outlet temperature of the process
fluid has exceeded a limit value of 570°F. The control response under this scenario is to increase the opening of
valve V1 to 75%, as shown in Figure 4, the effect of which is to increase the cooling mass flow. Listed in Table 1

is a sample of the types of -knowledge needed to perform this task.

CONTROL KNOWLEDGE DIAGNOSTIC KNOWLEDGE

• Controlling variable and its real-time and setpoint values • Component operating states are unchanged
• Mass flow affects cooling • Cooling mass flow decreasesProcess-
, Valve position affects mass flow • Flow affects cooling

system • V1 controlling component and has capacity • Heat transfer area affects cooling
• Mechanism to actuate the valves • Heat rate relations

• Fault-association relations

• How to recognize control requirements • How to recognize a fault

Cognitive • How to determine controlling component and its capacity • How to localize a fault
• How to determine state change requirements • How to identify a fault
• How to change controlling component state

Table 1. Samples of types of knowledge needed to perform control task analysis

In this scenario, as the control task is being accomplished. ,he diagnostic task analyzes the process-system
data and concludes that a fault is present in the heat exchanger and that the faulty state is a tube block. The basis for
this diagnosis is that the cooling mass flow has unexpectedly decreased, and the calculated heat rates are not in

a_eement with each other. Listed in Table 1 is a sample of the types of knowledge needed to perform this task. (As
a side issue, think about an advanced control system that dynamically alters its control strategy based on diagnostic
input.)

2.3 SOME OBSERVATIONS ABOUT KNOWLEDGE REQUIREMENTS
The above scenarios provide a sample of the kinds of knowledge used to perfo,.-:n control and diagnosis.

Analysis of this knowledge implies some general conclusions about knowiedgc requirements: 1) intelligent systems



need knowleage of both the artifact reasoned about and the reasoning task itself and 2"1eacia task contains knowledge

unique to itself and knowledge that is common to some other cognitive tasks. Both of these conclusions are
illustrated in Figure 5.

Common Knowledge

PROCESS-SYSTEMKNOWLEDGE
and

COGNITIVEKNOWLEDGE

Unique Knowledge Unique Knowledge
for Diagnosis for Control

Figure 5. Characteristics of knowledge within and between tasks

Additionally; a word of caution is needed concerning knowledge resolution and its effect on task
performance. That is, having knowla:lge of the value of a state variable, such as mass flow rate, may not be
effective in the performance of diagnosis until it reaches a threshold value because of the resolution required of the
variable in the task. We will illustrate this concern in the following example of the diagnosis of a tube block in the

heat exchanger, the prototype process-system.
A block in the tube of the heat exchanger causes the mass flow to decrease due to the increase in flow

resistance. Also the calculated heat rates are not equal because the wrong value of the he.at transfer surface area is

used to calculated heat rates (the design value is use instead of the actual value). However, in practice the degree of
the degradation caused by the block may be so small that it is masked by the resolution of the measured parameters.

In the case of the tube block, if 1 tube out of 326 is blocked, this means that the cross-sectional area for

flow and the heat transfer surface area have decreased by 1/326 of their original values. The nominal value of the
mass flow rate is 170,000 Ibm/hr. A single tube block will decrease the mass flow approximately 520 Ibm/hr, or
approximately .3%, which is well below the resolution of the mass flow rate sensor. The same reasoning applies to
the heat-rate calculations based on the change in the outlet temperatures that is due to the small percentage change in
the heat transfer surface area.

:::.:::::iiilj QUANTITATIVE t ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::State PHYSICAL
I i. :iii !iI MODELS Parameters PROCESS

ii' I '
PROCESS-SYSTEM L i:iii::!:ii!:_::Ji?_ QUALITATIVE J _i:.::

_ ::!::i_::_:i._i::.i:i[::.!i_:ii::::_:i:i.71:;:,, ,. ,,, I . , i::_:ii::_ and Event Data
A I Qualitative Behavior

/Out titative Behavi°r ,_

r )COGN ITIVE TASK MODEL REASONER

Conclusions About Behavior

Figure 6. Interaction between process-system qualitative and quantitative models



This phenomenon suggests that in real world diagnostic aids the effect of sensor resolution must be
understood in context of the knowledge requirements and the cognitive task. Knowledge must be analyzed to
determine whether it has a threshold restriction. That is, the knowledge value must exceed a certain threshold value
before it can be used effectively in problem solving.

Also indicated by the task scenarios is that process-system knowledge exisus in at least two forms,

quantitative and qualitative, which interact during the process of problem solving. This interaction is schematically
illustrated in Figure 6. The process-system model shown in the figure is, therefore, composed of both quantitative
and qualitative models. This model executes based on values of process-system state variables and events. The
qualitative and quantitative models develop information about qualitative and quantitative behavior, respectively. In
some cases, the models interact based on the information they develop. For instance, a qualitative model may be
used to examine mass flow rate to determine whether it is increasing, decreasing, or constant. Based on the results of
the examin,_ion, the qualitative model may signal a quantitative model to calculate the heat rates needed to provide
further information for the diagnosis. Both qualitative and quantitative models _i11 be discussed further in Section
3.0

3.0 ACQUISITION OF PROCESS-SYSTEM KNOWLEDGE

Process-system knowledge is acquired from system documentation, operation and maintenance records, text
books, and .';ystem experts. In this section, we discuss our method for acquiring and modeling process-system
knowledge for the development of automated fault diagnostic assistants. This method consists'of two ,major
activities--problem definition and model construction-and their associated subactivities, as illustrated in Figure 7.
The problem definition activity determines initial imformation about the process-system. Model construction uses
this information to construct information models via constraint, fault-class, and qualitative analysis.

PROBLEMDEFINITION
..... _:!:::_i.::::::.i::i:i::::::::::::::::::::::

• •"." _:7.!:?!:!:!:i:....

PHYSICS .......................................................................
.ili:i:!:::!:i:!:!!:::!:::f:::: "::!:!:i:::!:ii!ii:iiiiiiii!iil!;::

i!:i_!:!i!i!:ii::!i::!:i.i:.::: . • :'-:': ''"

........ ..... . ......

ProblemDefinition

UnresolvedIssues Model
MODEl.CONSTRUCTION.... _ ::• : .: . . ......,.:.:.:.:.:.:.:...........

CONSTRAINT QUALITATIVE

: : :":i:i!i .: • - :. :..:_:!:::i:i::::i.::.. :.., . :.

Figure 7. Process-system knowledge acquisition activities .

These activities are not necessarily performed sequentially. In fact, there is a large amount of inte_la),
between activities and between subactivities within an activity. The interplay between physics and fault-class
determination serves as an example. An initial examination of the heat exchanger physics suggests that heat rate,
mass flow rate, and conservation of mass and energy are sufficient to characterize the physics. However, when
determining fault-classes it was determined that Asian clam infestation can be a principle cause of heat exchanger
blocking and that knowledge of the fluid chemistry is necessary to determine the potential for this kind of fault.

3.1 PROBLEM DEFINITION
3.1.1 Structure Determination

Structure is the actual makeup and environment of the process-system and is expressed in terms of
composition, connectivity, and object class information. Structure knowledge is used to partition the problem for
analysis, provide a list of elements that directly or indirectly participate in faults, and determine system functions.
Structure is expressed at different levels of abstraction .described as an organized collection of subsystems, com-

ponents, and parts. (Parts makeup components, subsystems are comprised of components, and subsystems are



combined to define systems.)

Composition explicitly defines the elements that makeup the process-system. The principal composition
relation between structural elements is the "composed-of" relation. The prototype cooling system is composed.of
"develop kinetic energy," "route fluid," and "exchange heat" subsystems. The exchange heat subsystem is composed-
of the heat exchanger which is composed-of shell, tubes, inlet water box, outlet water box, cooling fluid,and cooled
fluid.

Connectivity specifies how structural elements are connected via the "connected-to" relation. There are at
least two types of connectivity: physical and environmental. Physical connectivity expresses the direct or explicit
connection between elements. The system pump is connected-to inlet and outlet pipes, the pump outlet pipe is
connected-to valve (V1) and so forth. Instrumentation connected-to components are also defined by the connectivity

relation, e.g., pressure sensor P1 is connected-to the pump inlet, current sensor I1 is connected-tc the pump motor
windings, and speed sensor S 1 is connected-to the pump shaft. Environmental connectivity expresses an implicit
connection between structural elements. An uninsulated pipe may be environmentally connected-to a pump motor in

that the pipe can develop surface condensation which would drip onto the motor windings and contacts.
Object class information documents generic knowledge about structural elements from a class perspective.

The object class lmowledge is viewed as typical knowledge associated with a structural element. An example of
generic knowledge is illustrated by examining the parts that makeup components, e.g., a valve consists of a bod)',
bonnet, stem, and disk and a pump consists of a case, shaft, seals, impeller, and motor.

3.1.2 Function Determination

Function defines the purpose of an artifact. In this context, an artifact is a process-system, subsystem,

component, or component part. As an example, the function of the prototype system is to cool an internal process
fluid and the function of the pump is to move river water through the tube side of the heat exchanger. Function can
be expressed hierarchically.

Process-system functions are determined from the physics and structural elements of the process-system.
Function determination can be viewed as a combination of both goal- and data-directed analysis. In the goal-directed

analysis, the process physics is analyzed to determine the dependent and independent parameters. From this analysis,
functions are derived that abstract and relate the associations between these parameters. Data-directed analysis begins

with the process-system components and determines the functions of cach component. For further discussion
concerning the use of process-system functions in reasoning, see Stratton [5], Stricklin [6], and Moorthy [7].

3.1.3 Constraint Determination

We broadly define a constraint as a confinement or restriction. In this context, assumptions and
requirements are not constraints but they do impose constraints Constraints are developed from the problem to be
solved and the capabilities of the software system to be built. They are used to specify and bound the process and
relevant physics and impose requirements on the reasoning task.

CONSTRAINTTYPE [ CONSTRAINTSPECIFICATION
, | i

PhysicsProperties coolingfluid incompressible
coolingfluid single phase

Process Parameters temperatureT1 = constant
pressureP1> pressureP2

Sensor Capability pumpsensor set IS1,Pl, P2, I1]
$1 accuracy+5%
$1 resolution±10°F

,, ,

Table 2. Prototype s ,stems example of natural constraints

Constraints can be group as natural and synthetic. Natural constraints are developed from physics
properties, process parameters, and sensor capability. Synthetic constraints arise in consideration of the computing
environment and funding level. The synthetic constraints restrict the size and scope of the problem to be solved. In



an implicit way, the synthetic constraints impose restrictions and refinements on the natural constraints. Example:;
of natural constraints (see Table 2) are fluid characteristics (physics properties), constancy of and relation between

state variables (process parameters), and sensor set size, accuracy, and resolution (sensor capability).

Determination of constraints is performed by an analysis of the process-system characteristics and the

automation system requirements. Process-system analysis examines structure and behavior of the physical system

and process physics. Automation requirements analysis determines the desired capabilities and limits of the software
system. Constraints are then defined based on the process-system structure, behavior, and actual and desired limits

and capabilities.

3.1.4 Physics Determination

Process-system physics consists of the quantitative relations that express the process-system

thermodynamics, hydrodynamics, chemical dynamics, and electromagnetic properties. These relations are determined
from an analysis of the physical system, chemical processes, constraints, faults, and reasoning requirements. The

physics defines expected process behavior and specifies fundamental process models from which fault models are

developed. Some of the prototype process physics are illustrated in Table 3.

........

PHYSICS CLASS PHYSICS PROPERTIES Definition of Terms:
,, , ,, p= density; v = average fluid velocity at

"Mass Flow Rate Ac; Ac = fluid cross section area; Cp =

Hydrodynamics M = p v Ac fluid heat capacity; Tout and Tin are fluid
, outlet and inlet temperatures; U = heat

Heat Flow Rate transter coefficient between tubes and

q = M Cp (Tout - Tin) shell fluids; As = total tube surface area"

Thermodynamics q = U As LMTD LMTD = log mean temperature difference;
and qshell, qtubes, and qxf are the heat

Conservation of Energy rates for the shell fluid, tube fluid, and
qshell = qtubes = qx[ between fluids.

"Fable 3. Example prototype physics properties

3.1.5 Fault-class Delermination

In the context of a process-system, a fault is a condition that mars, flaws, or defects the process-system

structure or process resulting in unexpected behavior. A fault can be viewed as a dynamic redesign of the process-

system brought about by a degradation mechanism. Fault and degradation mechani'sms are varied. The purpose of
fault-class determination is to discover the types of faults and associated degradation mechanisms. Additionally, fault-

class determination specifies potential location of faults within the process-system structure.

nnn I

FAULT CLASS FAULT FAULT LOCATION
i u ,,,,, i

i , i a, ,, li

Block Flow path Shell
Leak plug Inlet waterbox

i

Fluid containment Oullet waterbox
Leak Block erosion Tubes

, ,, n

Heat Transfer Interior tube surface
Coeficient (U) Tube U degradation Exterior tube surlace
Degradation

li, l n

Table 4. Heat Exchanger fault-classes, faults, and location.

Fault-classes are discovered by component and process degradation analysis and operation and maintenance

experience. Like function determination discussed above, fault-class discovery is both goal- and data- directed. In

goal-directed analysis, 'dae components and processes are analyzed to determine what can malfunction and how these

malfunctions can be brought about. Analysis of experience gained from operation and maintcn:mcc provides a data-
directcxl method for detem_ining faults, causes, and locations.



The results of both kinds of analyses are combined to provide a specification of faults, fault mechanisms,

fault-classes, and fault locations. Table 4 specifies the heat exchanger fault-classes, faults and locations. Fault
mechanisms are discussed in Jarrell [81.

3.2 MODEL CONSTRUCTION

In the following we discuss model construction subactivities: constraint, fault-class, and qualitative
analysis. These subactivities are used to develcp both quantitative and qualitative information models of the process-
system. Additionally, we provide an illustration of how the quantitative and qualitative models interact to develop
on-line knowledge that is later used in diagnosis.

3.2.1 Constraint Analysis
The purpose of constraint analysis is to determine reasoning implications and requirements associated with

the process-system constraints. This is necessary because the reasoner must be able to recognize its limitations in
context of the constraint envelope (the set of constraints determined during problem definition). When inside the
envelope, the reasoner should be able to recognize this situation and function as per design. However, when the
constraint envelope has been breached, then the reasoner must recognize the breach, revise its reasoning capability,
and notify the user.

Constraint analysis is performed by determining the implications of the constraints, analyzing .he process-

system relations that define the constraint implication, dete.rmining constraint reasoning requirements, and
developing a strategy for handling constraint violations. Examples of the implication determination and analysis are
illustrated in Table 5. The reasoning requirement for the single phase fluid constraint is that the reasoner must
understand the relation between temperature, pressure, and fluid phase. Based on this relation and the real-time state
of the fluid, the reasoner determines whether the fluid has violated the single-phase constraint.

t | i

CONSTRAINT IMPLICATION ANALYSIS
i i , i ii

• i

Single-phase fluid No boiling Temperature-pressure relation
Tube-pressure>Shell-pressure No shell to tube leak Inter-part relation

I _ , , ,

Table 5. Example prototype constraints, Implications and analysis

The final part of constr,_Jnt analysis is to determine the reasoner response in the event of a constraint
violation. There are several alternatives for dealing with cen "traint violations. The reasoning scope can be reduced
such that reasoning domains not affected by the violation re -ain in effect and capabilities aftected are shut off. Other
alternatives are that the reasoner can continue re_oning with lower belief values and disclaimers, or the reasoner can

shut down ali together. The strategy selected is contingent on how well the constraint violation is understood with
respect to the process-systcm physics and fault-associations.

3.2.2 Fault-Class Analysis
The fault-class analysis activity develops fault-association models in context of faults, constraints, and

physical structure. This activity can also be viewed as an analysis of known fault scenarios, e.g., a block in a
system component, lt is performed by analyzing actual and calculated component behavior for known faults.

Fault-class analysis proceeds as follows. Select a known fault and determine the relevant physics. For each
physics relation, determine the actual and calculated values of the dependent variables. Then use the actual values and
their relations to determine the logical relations that exist between the calculated values. The interest in the
calculated and sensed values is founded on the understanding that these are the values the operator or automated
system see.

The actual values are determined using known theoretical behavior of the parametric variables based on the
specified fault. If the fault under consideration is a heat exchanger tube block, then the actual heat transfer area, As,

and therefore heat transfer, qxf, will decrease. However, the calculated values are determined using design ancl sensed

values of the variables. For the same block fault, the calculated value of qxf will be based on the designed value of

Asand the designed As is constant in context of any fault. The following development of a heat exchanger fault-



association illustrates how fault-class analysis is used to develop fault-associations. The fault in the f_llowing
illustration is a block of 20% of the tubes in the prototype heat exchanger.

The physics relations for determining the actual heat rates (subscript "a") are

qshell(a) = Mshell Cp ATsheil

qmbe(a) = Mtu_: Cp ATtube
qxf(a) = U As LMTD

qtube(a) -- qsheLICa)- qxf(a).

The physics relations for determining the calculated heat rates (subscript "c") are

qshcll(c) = M2 Cp(design) ATshcn(sensor) qtube(c) = Ml Cp(design) ATtube(sensor)

qxa'(c) = U(design) As (design) LMTD(sensor)

qtube(c) = qshcU(c)= qxf(c).
Using tlm above relations, we compare the actual and calculated values to determine the relation between calculated
heat rate:

Mtubes = MI

MsheU = M2
As < As (design)

U - U(design)

qtube(a) = qtube(¢)

qshell(a) "- qshell(c)

qxf(a) < qxl'(c).
The analysis results in the following logical relation:

(qtube(c) = qsheU(e)< qxf(c)) "> tube block.

The tube block fault has multiple diagnoses. One diagnosis is that the designed cross-section flow area has been
reduced or a second is that a previously existing leak is plugging.

We recognize that this analysis is not complete and that there are possibly other faults that could develop
the same relation between heat rates. Therefore, a more appropriate expression is

(qtube(c)= qshell(e) < qxf(c)) "> tube block or unknown.

Relations developed via this technique can provide direct knowledge of a fault as shown in the above expression or
indeterminate knowledge of a fault as the following illustrates. Analysis of the heat-rate expressions for blocks in
either the inlet and outlet water boxes determines that for these faults the heat rates are equal. For a non-faulted heat
exchanger, the heat rates are also equal. Therefore, logical expressions for these fault-classes must be preceded with
the qualifier "possible":

(qtube(c) = q_heU(e)= qxf(c)) "> possible inlet water box block

(qtube(c) = qshell(c) = qx.f(c)) "> possible outlet water box block.

3.2.3 Qualitative Analysis

The purpose of qualitative analysis is the same as that for fault-class analysis, i.e., to deriv,,z fault-
association models that specify process-system behavior in context of faults, constraints, and physical structure.
This activity is performed by developing qualitative models from quantitative models and then analyzing the
qualitative models in context of constraints and faults. Development of the qualitative mass flow-rate relation as it
applies to a generic heat exchanger tzemonstrates this process. The quantitative relation for mass flow is

M=pvA c.

Based on the constraint that p is a constant, the mass flow relation and its derivative can be qualitatively expressed as
M = [v Ac]

3M=[v3A c +A c3v].

The "(9" notation denotes the qualitative time derivative and expressions between brackets, El,are evaluated in a

qualitative sense [9]. The fluid velocity in a heat exchanger changes only as a consequence of a change in area, not
as a result of the device adding or removing kinetic energy in other ways, which allows the velocity term to be
eliminated. The final expression for the qualitative mass flow derivative is then

3N,I = 3Ac.



The above expression specifies a causal relation between the fluid mass flow rate and the flow cross-section area.
Analysis of this expression with the previously dctcrminecl fault classes results in the flowing logical expressions:

(bNl = 0) -> (OAc = 0) :normal behavior

(3M < 0) -> (_Ac < 0) :faulted behavior

(DM > 0) -> (DA¢ > 0) :faulted behavior.

Analysis of the relation between the fault-classes and the heat exchanger structure results in
(3Ac < 0) -> block of a design flow path or plug of an existing leak

(_Ac > 0) -> leak in a design flow path or erosion of an existing block.

3.2.4 Quantitative and Qualitative Model Interaction
The above methods of knowledge acquisition have resulted in a set of quantitative (physics relations) and

qualitative (constraint relations and fault-associations) relations that specify the process-system behavior during
normal and faulted operation. The following illustrates how these models might interact during the operation of the
prototype system.

Initially, prior to time t2, both sets of models are quiescent. At t2, the qualitative model set is activated to
analyze the new state of the mass flow rate, MI(Q), as shown in Figure 8. It is determined that the qualitative mass

flow derivative, ¢3M1, is less than zero which implies that a fault is present, fault(present,t2). The qualitative model
sends its diagnostic findings to the task reasoner and signals the quantitative model that a fault is present.

I
M1(_.),M2(_.)
T1 (t2). T2(t2), T3(t2), T4(12)

, _ M_(t2)

Quanlitalive Models
Qualitative Models

cllubes = M1 Cp ('T3-T1)
qshell- M2 Cp (T2-T4) au1[_gn(M'l(tl)-Ml(l:2))]
qxf = U As LMTD aMl(cal,t2) ,=aMl(exp,t2.) -> fault

qtubes, qshell • qxf -> tube_block or

i ..._ leak_.p_
_ _

qtube I
qshell aM 1!-]
qxf fault(present,t,?.)

taull_type((lube_block or leak._plug,t2)1
Figure 8. Interaction between quantitative and qualitative model during a block fault

The quantitative model calculates heat rates using the complete heat exchanger state vector, (M 1(t2),

M2(t2), TI (t2), T2(t2 ), T3 (t2), T4(t2)). The heat-rate information is sent to both the qualitative model and the task

reasoner. The qualitative model evNuates the new state information to determine additional diagnostic information.
Qualitative heat-rate analysis indicates that there is either a block in the tubes or plugging of a previously existing
leak. This new information is sent to the task reasoner and both models return to a quiescent mode.

4.0 REPRESENTATION SCHEME REQUIREMENTS

Subsequent tc process-system knowledge acquisition we develop the intelligent diagnostic aid conceptual
design which is th:., used to specify the representation scheme requirements. In this section, we illustrate elemenLs
c_fthe conceptual design and discuss what we mean by representation scheme requirements andhow these
requirements relate to the conceptual design and how they are developed.



4.1 REPRESENTATION SCHEME ISSUES

By representation scheme we mean a language used to L.-aplement an information processing task in
software. ( See Levesque [10] for a broad general discussion of knowledge representation and reasoning.) The

representation scheme must provide a capability for documenting and executing both qualitative and quantitative
models. This means that it nmst provide a capability for representing and organizing information and methods for

performing inference and controlling reasoning. These capabilities, shown in Table 6, specify the elements that
makeup a representation scheme.

Illll

CAPABILITY ELEMENT EXAMPLES
i lm i

Structure
Function

Representation Behavior
Documentation Task know how

Agents
OrganJza tion Hlerarct_ies

in

Irnplicauon
Inneritanoe

Inference Dlsczepancy
Fault-AssoctatJon

ii

Reasoning
Fault _nitlon

Reasocing Fault Localization
Control Fault Identification

Fault Specification

Table 6. Representation scheme capabilities, elements, and examples

Fault diagnosis knowledge and reasoning requirements piace constraints on the elements of the
representation scheme. The representation element defines the methods for recording and interpreting information
based on a defined syntax and semantics. This element must allow for documenting the process-system structure,
function, behavior, and knowledge of how to diagnose. The organization element provides methods for organizing
and abstracting information. It must allow for the specification of intelligent agents and agent hierarchies. The
inference element provides methods for knowledge computation and must provide the capability for performing
implication, inheritance, discrepancy analysis, and fault- association rea__ning. The reasoning control element
provides methods for determining what computations to perform and when to perform them. The remainder of
Section 4.0 discusses in some detail the elements of the fault diagnostic representation scheme. The discussion for
the most part will be in context of the prototype system previously defined.

Sctneme j [ ii_ Defintion .... i:'-_i_har_c'erizat'°-?')I I APPROACH_• _ .... : Conce_tualDesian _; • : li
..,,=.=1

Figure 9. End points of the representation scheme selection sp_trum



There are a large number of languages, shells, and tools--i.e., representation schemes--available for
implementing information processing systems. Each scheme potemially provides a different depth and breath of
representation scheme elements (not ali representation schemes are equal). This situation suggests that there are
multinic ways, a spectrum of approaches, in which to select a representation scheme to implement intelligent
diagnostic aids. The two ends of the spectrum _:., illustrated in Figure 9.

In Approach 1, the representation scheme is acquired prior Lodetermining what information processing task
is to be automated. In this approach, the problem and associated solution targeted for automation do not levy.
constraints on the representation scheme selection. In Approach 2, the conceptual design is developed _d analyzed
to identify representation scheme requirements. Then the representation scheme is acquirext.

The representation scheme selected for implementing a software system constrains the scope, capability,
flexibility, and efficiency of the software system. In Approach 1, the representation scheme biases the development
and implementation of the problem solution. In Approach 2, the problem and conceptual solution bias the
representation scheme, lt is our perspective that Approach 2 should be used when developing intelligent diagnostic
aids. Approach 1 is analogous to purchasing a cross-cut saw and then deciding that the purpose of the saw will be
the cut down trees. Whereas in Approach 2 you would first determine that the purpose is to cut down trees and then
specify the purchase of a chain saw.

4.2 REPRESENTATION ELEMENT

Thc representation clcmcnt defines the methods for recording and intcrpr,,._rg information based on a defined
syntax and scmantics. It is used to document the process-system structure, function, behavior, and knowledge of
how to diagnose. Tablc 7 lists the categories of process-system information to be documented and includcs examples
of each. The "How-to-Diagnosc" category contains two types of information, as shown in the table.

n

INFORMATION
CATEGORY INFORMATIONEXAMPLE

| |
i i

Structure Pump,Valves, Pipes,and HeatExchanger

Function ControlFluid Heat, DevelopFluid K.E., RouteFluid,and ExchangeHeat

Behavior HeatRates,Mass Flow, and FaultAssociations

Howto Diagnose 1. FaultRecognition,Localization,Identification,and Specification
2. DescrepancyAnalysis,Fault-Association,Meta-Analysis

Table 7. Categories of process-system information

4.2.1 Information to be Represented
Two types of information mc.cd to bc rcprcsentcd. Thc first is information about diagnosis tasks: fault

recognition, localization, identification, and specification. The sccond is information about how tasks arc
accomplished ,'rodincludes discrepancy analysis, fault-association analysis, and meta-analysis The rcladon between
these two types of information is illustratcd by cxmnining how discrepancy analysis is used in the fault-recognition
rusk. As the name implies, thc purposc of thc fault-recognition task is to determine the prcsencc of a fault in the
process-system. Discrcp.'mcy analysis is one means of dctcrmining a fault's presence. This typc of analysis
evaluates (or simulates), based on real-time smtc vector information, the stoic of the process-system. Ii then
campares this simulated state to the actual or cxpccted state _,_determine whether there is an?' disagreement which
indicates the presence of a faulL.

"' "_ Ropresentation Methods,_°_

There arc man,,' methods for rcprcscnting information. The methods that we use arc summarized in Table 8
and include a qualitative calculus, quantitative calculus, smmtured logic, and agent objects. Each methcxl has a set of
fc.aturcs defined as a set of operators and opemnds.

Thc quantitativc calculus representation uscs the rc,al number space to d_:finc its opcrands, i.e., numbers
from negative infinity to positive infinity. Operators include addition, subtraction, muhiplicauon, differentiation,
integration, and etc. The quantitative relation for thc mass flow rate, M = p v Ac, is an example of informati,m

rcprescn'cd in a quantitative calculus.



There has been extensive work done in the development of qualitative calculus [11]. The theory' of a

qualitative calculus is an ongoing area of research in artificial intelligence. The qualitative calculus we are presently

using is based on the calculus specified by de Kleer and Brown [9]. For a discussion or how we interpret and use

their qualitative calculus, see Stratton and Jarrell [1]. This representation has three symbols in its number space: -1,

0, and 1. The 0 symbol refers to values of 0, -1 symbol refers to values less than zero, and the 1 symbol refers to
numbers greater than zero.

REPRESENTATION
ME-TFE_ M-c'1"i"t£_I_::'ATURES

ii

Number space -..=to _=,
Quantitative Operators .,-J,',dx,integration, etc.

Calculus ExamDle M = p v Ac

Number space -,0,.,
Qualitative Operators subset of quantitative operators
Calculus Example aM = aAc

_=|1 i

Truth space true, false
Logic Operators conjunction, disjunction, negation, and implication

Example T>328F and P=10Opsi .> state(H20, steam)
i

Symbol space name, attributes, and relations
Agents Features

develop K.E. agent
Examole

Table 8. Representation methods and their features

The operators in the qualitative representation are a subset of the quantitative operators. Because a

qualitative calculus does not have magnitude certain quantitative operation can not be performed, e.g., the addition of

a X = [-1] and Y = [1]. An example of a qualitative expression is the qualitative time derivative of the mass flow

equation: aM = _Ac. This expression is interpreted to mean that the direction of the change in the ma_s flow is the

same as the direction in the change of the cross sectional flow area.

The logic representation is Prolog, a version of predicate calculus. Its value space consists of true and false

with operators of conjunction, disjunction, negation, and implication. The following expression is an example of a
logic expression:

T>328F and P<100psi -> state(H20,steam).

This expression is interpreted to mean that H20 molecules are in the state of steam when the environments

temperature is greater that 328°F and the pressure is less than 100 psi.
StructureKnowledge

Aoent • Composition ;
• Connectivity

Name • Procedure Knowledge "

Attribute: value FunctaonKnowledge
• Fac_

• Computable Knowledge Behavior Knowledge
• Communications • qxf = U As LMTD

Meta-Knowledge

Diagnostic Knowledge
• Fault AssocJations
• Fault Detection
• Constraint Reasoning

Figure 10. A generic process-system agent

An agent representation method consists of a symbol space in which agenm are defined with features

consist.ing of a name, attributes, value, mad relations. An example of an agent is the "Develop K.E." agent. Figure

10 illustrates a generic agent containing process-system information.



4.3 ORGANIZATION

The organization element provides methods for abstracting and organizing information. Organization is
developed around the notion of intelligent agents and hierarchies of agents. Agents were discussed in the previous
section.

Hierarchies organize information based on object description and class abstraction. There are several kinds
_" hierarchies and for each there are multiple ways in which the hierarchy can be defined, as shown in Stratton [5],
Mesarovic [12], Chandrasekaran [13], Minsky [14], and Patil [15]. Structure and content of hierarchies are influenced
by the purpose of the hierarchy and the modeler's perspective of the domain to be modelled. We presently define a
hierarchy as a tree structure in which each parent node has one or more children and, except for leaf nodes, each child

has one parent (leaf node connections are discussed later). We use both component object (based on object
description) and process-system function hierarchies (based on class abstraction).

I IComponent MECHANICAL

Object Hierarchy COMPONENTS ,,,

_ _... Kind-of relation:

di .,-_ _ V_N'_2'°+°'

i GATE I i GLOBE _i I -BALL _i

-- I VALVE ! [ VALVE

oo=.o,o,'--"/1 1-
Instances_ Valve1 ) _ (Vaive3)

Figure 1i. Example of an object description hierarchy based on components

Object hierarchies are used to organize generic taxonomical knowledge about component classesand
instances in a "kind-or" relationship, e.g., a valve is a kind-of mechanicat component as illustrated in Figure ] 1.
Component classesdescribes object types such as pumps and valves and component instances describe actual objects
that exists somewhere in the rea! world (valve 1, valve 2, and valve 3). The purpose of the objecl hierarchy is to
organize generic information about component classesand specific information about component instances. The
component class hierarchy is relatively stade and changesonly when new components classesarc determined or when
new components are constructed.

i cO_ROLI
Process-System I FLUIDHEAT I ......,-" -:-- I ' I wart-of relalonsnlp"

r.unchu. _ I "_,_-_ The EXCHANGE HEAT fun=ion
Hlerarcny _ I _ is _art-of the

i 100 =o
!ROUTE EXCHANGEq1 I [ -FLUID K E , FLUID I Ht-AT, ..DEVELOP

Compone-Sy-st-em , I . ,. . .
L_L,>o._oj Oa'v°')Ij'=v°= °=

Figure 12. Example of a class abstraction hierarchy based on function

Function hierarchies organize knowledge around process-system function in a "part-of" relationship, e.g.,
the function to exchange heat between the process fluids is part-of the function to control fluid heat (Figure 12).
This hierarchy specifies the function and sub-functions of the process-system, specifies their relationships, and as-



sociates system components to ground functions. These hierarchies are developed by decomposing the physical
system into functions and subfunctions, generally based on the notion of system and subsystem. Function
decomposition proceeds until ground functions arc determined and specified. A ground function is the function just
before the leaf nodes. Route Fluid is a ground function to which the leaf nodes Valve 1, Valve 2, and Valve 3 are
connected.

Leaf nodes arc the physical components that combined to provide for the functions specified at the ground
level. Leaf nodes can be further functionally decomposed within the node itself and be expressed as functions based
on physical parts, e.g., the pump can be modeled as a motor (develop kinetic energy), bearings (stabilize), and im-
peller (develop pressure differential).

The function hierarchy is unique for each process-system. The structure once defined is static except for
physical system design changes. However, values of the function attributes are dynamic, e.g., performance
requirements and state values. It is expected that, during system operation, components change state (on, off, failed,
etc.) based on performance demands and component condition.

We view object hierarchies as "libraries of knowledge" containing generic information about objects and

function hierarchies as models of "designed systems" knowledge containing information about a real world process-
system (Figure 13).

I II

ObjectHierarchy FunctionHierarchy
"Libraryof Knowledge.... DesignedSystemKnowledge"

MechanicalComponents Control
FluidHeat

Route Develop
Ruid FluidK.E. Heat

, I IIII

GenericKnowledge SystemSpecificKnowledoe

Name: Name:
Parts: Connectivity:
MaintenanceRequirements: Function:
GeneralDiagnosticMethods: SpecificDiagnosticMethods:

Figure 13. Relation between object and function hierarchies

Component instances exist in both hierarchies. Valve 1 in the object hierarchy, for instance, is the child of
the "gate valve" node while in the function hierarchy it is the child of the "route fluid" node. Valve 1, as an object
leaf node, contains information about the generic structure and behavior of the valve. However, as a function leaf
node, it contains knowledge concerning its function in the designed system as weil as physical connections, real-time
state, and behavior knowledge. Component nodes can be viewed as the intersection of the "knowledge contained in
each type of hierarchy.

4.4 INFERENCE

The inference element provides methods for knowledge computation by means of implication, inheritance,
discrepancy analysis, and fault-association reasoning. They are used to draw conclusions and develop new knowledge
from existing knowledge. The following discusses generic and task dependent inference methods. Generic inference
methods are fundamental methods of inference and can be of use in a wide variety of cognitive ms-ks. Task dependent
inference methods for the most part are specific inference methods used in a single or a small :ct of related cognitive
task .

4.4.1 Generic Inference Methods

Implication and inheritance are generic inference methods (reasoning task independent). Implication is a
logic operation that determines the truth of a logic expression and is either goal or dam directed. Goal-directed

inference determines the truth of a goal by determining the truth of its conditions. If the conditions are true, then so



is the goal; however, if an)' condition is false, then the truth of the goal is not known and the statement is false.
The general form of a goal statement and an example arc as follows:

General Form: (goal) is implied by (conditions)
and, the example,

Route Huid is in heat-exchanger-header mode IS IMPLIED BY

valve 1 is in the open state AND
valve 2 is in the open state AND
valve 3 is in the closed state.

Data-directed inference executes in the reverse of goal-directed. If a data clause is determined to be true, then the
reasoner fires to determine whether an), conclusion based on the data clause can be set to true. The general form of a
!ogical data statement and an example are as follows:

General Form: (data) implies (conclusion)
and, the example,

Valve 1 is in the open state AND
Valve 2 is in the open state AND
Valve 3 is in the closed state IMPLIES

Route Fluid is in heat-exchanger-header mode.

Inheritance inference propagates knowledge between classes, subclasses, and instances. The valve class
hierarchy shown in Figure 11 is used to illustrate this inference method. The class Valve has knowledge of generic
valve structure and optional implementation features of the structure (see Table 9). The parts of a valve are body,

bonnet, disk, stem and operator. Implementations features of a valve disk are gate, ball, or plug.

j III

OBJECT ATTRIBUTE VALUE
• i

Parts body and bonnet and diskand stem and operator
Valve Disk galeor ball or plug

Operator pneumaticor manualor motor

Parts body and bonnet and disk and stem and operator
Gate Valve Disk gate

Operator pneumatic ormanualor motor

Parts body and bonnet and diskand stemand operatorPneumatic
Gate Valve Disk gate

Operator pneumatic
,,,

Table 9. Inheritance of object structure and implementation features

By assigning "Gate Valve" as a sub-class of the "Valve" class, it inherits the valve class structural
knowledge and modifies it as appropriate. Knowledge of the generic parts remains the same; the disk-type attribute
is defined as a gate, and the operator attribute is a list of potential values. Valve 1 is represented as an instance of a
pneumatic gate valve. Therefore, Valve 1 inherits valve class and gate valve sub-class knowledge and modifies the
operator type (pneumatic).

!
4.4.2 Task Dependent Inference Methods

Discrepancy analysis and fault association are inference methods inherently specified by the fz_ult-diagnosis
reasoning task [3, 16, 17, 18, 19]. Discrepancy analysis evaluates the relation between the actual and the expected
state in order to infer the presence of a fault as illustrated below:

state(expected) :_ state(calculated) -> fault(present)
OM(calculated,tl) < c)M(expcctcd,tl) -> fault(present).

Fault-association inference is used to determine the location and cause of the fault using expressions that relate object
state to fault state. Fault associations are predetermined implications that relate process-system physics, faults, and
structure. An example of fault-association inference is

(]tube > qshell and qxf > qshcll "> fault(inlet waterbox,leak to atm).



4.5 REASONING CONTROL

The reasoning control element provides methods for determining which computations to perform and when
to perform them. The following discusses a generalized method for reasoning about faults and an example.

.1.5.! Generalized Reasoning Method
lt is our belief that fault diagnosis is a combination of data and gn _-:lirected reasoning and iterates between

them based on the present state of the diagnosis. Fault diagnosis consist of subtasks that recognized, localize,
identify, and specify the fault [1]. Each of these subtasks employs inference methods for reasoning about process-
system knowledge to determine conclusions about the diagnostic state of the process-system.

The function hierarchy can be generalized as three levels of agents: top, intermediate, and ground agents

(Figure 14). Diagnostic subtasks take place at different levels with in this generalized structure. Each subtask is
characterized by lhc type of analysis principally employed to perform it. Fault recogniuon is performed using
discrepancy analysis, fault localization and identification ,are performed via fault-association analysis and meta-
analysis, and fault specification is performed using meta-analysis and procedure look up.

i Top

Expected States Aaent

Analysis

Meta-Analysis ,,,
|

Discrepancy Intermediate [ Intermediate ]
Analysis Agent 1 Aaenl 3

i ! _ iii
I

- i i I

• I |

Fault Association _-Ground_

Analysis Agent 1

/ /

!
Figure 14. Generalized hierarchy of agents for performing diagnosis

The diagnosis cycle is initiated either by the notification of process-system operation requiremenL_ change
or state vector collection. Initiation takes piace at the top agent if a new operations requirement is received or at an
intermediate agent if a state vector is collected. In either case, the diagnosis aid activities fault recognition by
determining the expected state of the process-system and comp,'u-ing it to the calculated state. If a discrepancy exists,
then lower intermediate or ground agents are notified to initiate fault localization, depending on where the discrepancy
was determined.

The notified agents generate and anah, ze process-system information concerning the diagnosis. The
diagnostic findings of these agents are then analyzed by highcr level agents to determine the diagnosis. The
diagnosis is either partially or uniquely identified. If it is partially identified, the partial diagnosis is specified along
with dam collection methods that can be used to further develop the diagnosis. If the diagnosis is uniquely identified,
dmn it is specified and the diagnostic aid is quiescent.

4.5.2 An Example of Fault-Diagnostic Reasoning
Initially, time tO, the diagnostic aid is in a quiescent state polling the outside world to detem_ine changes in

systcm operation requirements or stme v,'uiables. For this example at tl, the diagnostic aid is informed thai the
pump has been switched from mode 1 to mode 2 (Figure 15). A mode change specifics a change in operationa!
req,airements. The mode change is interpreted by the "control fluid heat" agent which informs lower level agenLs of
expected process-system state changes. The "Develop Fluid K.E." agent is then informed to expect the pump speed
to double and the "E×change Hcat" agent is informed to expect the mass flow rate at tl, Ml(tl), to increase to
1.7 times the present mass flow rate Ml(t0).
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Figure 15. Prototype activity during fault diagnosis

The "Develop Fluid K.E." agent evaluates the new pump speed, motor current, and differential pressure against
expected behavior and concludes that the pump is operating as expected. However, the "Exchange Heat" agent
recognizes the existence of a fault when it determines ',hat the new mass flow rate is 1.2 time the old mass flow rate
instead of the expected 1.7.

Expected Change: Ml(tl)/Ml(t0) = 1.7
Calculated Change: Ml(tl)/Ml(t0) = 1.2
M 1(tl)/M 1(t0)[calculated] _ M1 (tl)/]VI1(t0)[expected].
After recognizing a fault presence, the "Exchange Heat" agent sends a message to subagents to initiate fault

localization. Each subagent generates additional state data which is analyzed to determine fault information. State

generation and analysis is similar for both inbox and outbox agents. Each box agent determines that, based on the
relative change in Ml, there is a potential for either the flow path being blocked or a previous leak being plugged.
Analysis of history implies that there are no leaks which is used to draw the conclusion that either or both
waterboxes are possibl) experiencing blocking in their flow paths:

State Generation:

DM1(tl ,relative) = M l(t 1)/M 1(tO)[calculated]- M 1(t 1)/M 1(tO)[expec ted]
--" "1 ."

State Analysis:
(_)M < 0) -> (_)Ac < 0)
(_Ac < 0) -> block of a design flow path or plug of an existing leak

history data -> no leaks
possible block and possible plug and no leak -> possible block.

The tube subagent also performs state generation and analysis. Tube mass flow rate analysis alone is not enough to
draw an>, conclusions. However, the tube agent "alsoevaluates and analyzes the heat rate relations. The heat rate for
the tube and shell fluid are determine along with the rate of heat exchange between the fluids. Comparison of the
heat rate is as expected, i.e., the magnitudes of all are equal. The tube agent concludes that it does not contain a
fault:

State Generation:

qsheu(tl) = M2(tl) Cp (T2-T4)

qtul-_(tl) = Ml(tl) Cp (T3-T2)

q._f(tl) = U As LMTD



State Analysis:
3M l(tl,relative) -> possible block or leak plug
history data -> no leaks
qshen(tl) = qtube (tl) = qxf(tl) -> no block

possible block or leak and no leaks and no blocks -> no fault.
Each subagent informs the "Exchange Heat" agent that its analysis is complete. The "Exchange Heat" agent cannot
identify the fault with certainty based on the collected data and generated information, lt concludes that there is a
block fault and that the fault is either in one or both of the waterboxes. The "Exchange Heat" agent informs its

parent agent of its conclusions. The "Control Fluid Heat" agent informs the user of the diagnosis and suggests some
non-intrusive non-destructive methods tbr collecting further data that can be used to develop a more specific

diagnosis.

5.0 SUMMARY

Presented here is our methodology for developing automated aids for diagnosing faults in complex physical
systems, e.g. reactor cooling system. We undertook this research at the Pacific Northwest Laboratory (PNL) for the
U.S. Department of Energy and the U.S. Nuclear Regulatory Commission. We have designed these aids as
multilevel-multiagent diagnostic aids based on principles that should be generally applicable to any complex system.
In this methodology, "multilevel" refers to information models described at successive levels of abstraction that are
tied together in such a way that a-easoning is directed to the appropriate level as determined by the problem solving
requirements. The concept of "multiagent" refers to the method of information processing within the mul:.ilevcl
model network; each model in the network is an independent information processor, i.e., an intelligent agent.

Our research in fault diagnosis grew out of our work in root-cause analysis (RCA)[1]. RCA consists of two
major activities: fault diagnosis and root-cause evaluation (RCE). The purpose of fault diagnosis is to determine
plant events and conditions that are associated with a specific symptom. Then RCE determines the cause of the
events and condition.

We use an engineering approach for the development of intelligent aids. Requirements for intelligent systems
development modify the classical life-cycle approach to software system development by requiring additional
activities to be performed. In our approach, we categorize these activities as 1) knowledge requirements
determination, 2) model construction, and 3) representation scheme requirements development.

The determination of knowledge requirements is fundamental to the development of any intelligent software
system. This activity determines what information is needed in the problem solving activity and how it is to be
used. We group knowledge for fault diagnosis into two broad groups: cognitive task and process-system l,mowledge.

Process-system knowledge uses plant (process-system) state and event data to develop information about the

plant's behavior. Cognitive task knowledge uses general process-system knowledge and behavioral "knowledge in
addition to plant state and event data to develop conclusions about the plant behavior.

We chose models as the method to document and manipulate knowledge. Important issues concerning models
are that 1) they capture essential aspects of the subject reality 2) in an appropriate representation 3) in order to
explore properties of the reality [2]. For fault diagnosis, the essential properties are knowledge of the process-system
(fixed and transient) and how to perform diagnosis. This "knowledge is represented as models using quantitative
calculus, a qualitative calculus, predicate logic, and intelligent agents.

Work supported by The U.S. Department of Energy under Contract DE-ACO6-76RLO 1830
and by the U.S. Nuclear Regulatory Commission



Representation scheme requirements are determined by analyzing the cognitive and process-system knowledge.
These requirements generate a specification which the representation scheme should satisfy. The representation
scheme should provide methods for representing and organizing information as well as methods for performing
inference and reasoning control.

5.1 ACQUISITION OF PROCESS-SYSTEM KNOWLEDGE

Process-system knowledge is acquired from system documentation, operation and maintenance records, text
books, and system experts. We present a method for knowledge acquisition that consists of two major activities:
1) problem definition and 2) model construction. Problem definition determines process-system structure, function,
constraints, physics, and fault-classes. Model construction further develops the domain knowledge and constructs
models via constraint, fault-class, and qualitative analysis.

5.1.1 Problem Definition

The problem definition activity analyzes process-system structure, function, constraints, physics, and fault-
classes. Structural knowledge is deterrnined by direction examination of the physical system. Structure is the actual
makeup and environment of the process-system and is expressed in terms of composition, connectivity, and object
class information. Composition explicitly defines the elements that makeup the process-system. Connectivity
specifies how structural elements are connected. There are at least two types of connectivity: physical and
environmental. Physical connectivity expresses the direct or explicit connections between elements. Environmental
connectivity expresses implicit connections between structural elements. Object class information documents
generic lmowledge about structural elements from a class perspective.

Function defines the purpose of an artifact. Functions are determined from the physics and structural elements
of the process-system. Function determination can be viewed as a combination of both goal- and data-directed

analysis. In the goal directed analysis, the proce_ physics is analyzed to determine the dependent and independent
parameters. From this analysis, functions are derived that abstract and relate the associations between these
parameters. Data-directed analysis begins with the process-system components and determines the functions of each
component.

We broadly define a constraint as a confinement or restriction. Determination of constraints is performed by an
analysis of the process-system characteristics and the automation system requiremcats. Process-system analysis
examines structure and behavior of the physical aystem and process physics. Automation requirements analysis
determines the desired capabilities and limits of thr software system. Constraints are then defined based on the

process-system structure, behavior, and actual and C_sired limits and capabilities. Constraints can be group as natural

and synthetic. Natural constraints consists of physics properties, process parameters, and sensor capability.
Synthetic constraints are classified as computing environment and funding-level constraints.

Process-system physics consists of the quantitative relations that express the process-system thermodynamics,
hydrodynamics, chemical dynamics, and electromagnetic properties. These relations are determined from an analysis
of the physical system, chemical processes, constraints, faults, and reasoning requirements.

In the context of a process-system, a fault is a condition that mars, flaws, or defects the process-system
structure or process. The purpose of fauh-class determination is to discover the types of faults and their potential
location. Fault-classes are discovered by component and process degradation analysis and operation and maintenance
experience. Fault-class _scovery is both data and goal directed. In data-directed analysis, the components and
processes are analyzed, to determine which can malfunction and how these malfunctions can be brought about.

Analysis of experience gained from operation and maintenance provides a goal-directed method for determining faults,
causes, and locations.

5.1.2 Model Construction

Models _,'e constructed based on constraint, fault-class, and qualitative analysis. The purpose of constraint
analysis is to determine reasoning implicatioDs and requirements associated with the process-system constraints.

Constraint analysis is performed by determi:ang the implications of the constraints, analyzing the process-system
relations that define the constraint implication, determining constraint reasoning requirements, and developing a
strategy for handling constraint violations. The final part of constraint analysis is to determine the reasoner response
in the event of a constraint violation.

The fault-class analysis activity develops fault-association models in context of faults, constraints, and physical



structure, lt is performed by analyzing actual and calculated compon.:nt behavior for known faults. Fauh-class
analysts proceeds as follows. Select a known fault and determine the relevant physics. For each physics relations
determine d_eactual and calculated values of the dependent variables. Then use the actual values and their relations to
determine logical relation that exist between the calculated values.

The purpose of qualitative analysis is the same as that for fault-class analysis, i.e., derive fault-association
models that specify process-system behavior in context of faults, constraints, and physical structure. This activity is
performed by developing qualitative models from quantitative models and then analyzing the qualitative models in
context of constraints and faults.

5.2 FAULT DIAGNOSIS REPRESENTATION SCHEME REQUIREMENTS

By representation scheme we mean a language used to implement an information processing task in software.
A representation scheme consists of methods for representing information, organizing information, performing
inference, and controlling reasoning [3].

5.2.1 Representation
Representation defines the methods for recording and interpreting information based on a defined syntax and

semantics. The representation provides for documenting the process-system structure, function, behavior, and
knowledge of how to diagnose. The representation methods that we use include a quantitative calculus, qualitative
calculus [4], structured logic, and agent objects [5]. Each method has a set of features defined as a set of operators
and operands.

5.2.2 Organization
Organization defines the methods for organizing and abstracting information. It is developed around the notion

of intelligent agents and hierarchies of agents [5,6]. Hierarchies organize information based on object description and
class abstraction. Object hierarchies are used to organize generic taxonomical knowledge about component classes
and instances in a "kind of" relationship. The purpose of the object hierarchy is to organize generic information
about component classes and specific information about component instances. The component class hierarchy is
relatively static and changes only when new components classes are determined or when new components are
constructed.

Function hierarchies are oz,-.,anizeknowledge around process-system function in a l_art-of relationship [7,8].
These hierarchies are developed by decomposing the physical system into functions and sub-functions generally based
on the notion of system and subsystem. The function hierarchy is unique for each process-system. The structure
once defined is static except for physical system design changes. However, values of the function attributes are
dynamic.

We view object hierarchies as "libraries of knowledge" containing generic information of objects and function
hierarchies as models of "designed systems" knowledge containing information about a real world process-system.
Component instances exist in both hierarchies.

5.2.3 Inference

Inference defines methods for knowledge computation and provides the capability for performing implication,
inheritance, discrepancy analysis, and fault association reasoning.

Implication and inheritance are generic inference methods (reasoning task independent). Implication is a logic
operation that determines the truth of a logic expression and is either goal or data directed. Inheritance inference
propagates knowledge between classes, subclasses, and instances.

Discrepancy analysis and fault-association are inference methods inherently specified by the fault diagnosis
reasoning task. Discrepancy analysis evaluates the relation between the actual and the expected state and concludes
the presence of a fault when tb,'re a discrepancy between the two. Fault-association inference is used to determine the
location and cause of the fault using expressions that relate object state to fault state.

5.2.4 Reasoning control

Reasoning control provides methods for determining what computations to perform and when to perform them.
Fault diagnosis is a combination of data- and goal-directed reasoning and iterates between them based on the present
state of the diagnosis. Fault diagnosis consists of subtasks that recognized, loc'ali:.e, identify, and specify the fault.

Subtasks take piace at different levels within the function hierarchy. The diagnosis cycle is initiated either by



the notification of a change in the requirements for the operation of the process-system or state vector collection.
The reasoner when activated initiates fault recognition by determining the expected state of lhc process-system and
comparing it to the calculated state. If a discrepancy exists, then intermediate or ground agents, depending on where
the discrepancy was determined, are notified to initiate fault localization. The diagnostic findings of these agents arc
then analyzed by higher level agents to determine the diagnosis. The diagnosis is either partially or uniquely
identified. If it is partially identified, the partial diagnosis is specified along with data collection methods that can bc
used to further develop the diagnosis. If the diagnosis is uniquely identified, then it is specified and the diagnostic aid
is quiescent.

6.0 CONCLUSION

Our research indicates that a useful representation scheme for physical system diagnostic reasoning can be
developed employing function and object hierarchies, task required inference, and task specified reasoning control.
Hierarchies provide a structure for representing generic and specific physical system knowledge as well as organizing
process behavioral and task knowledge. Formal modeling of the reasoning task determines the required task inference
and control.

This research has focused on the use of the representation scheme for fault diagnosis. However, preliminary
analysis indicates that this same scheme may be useful in automating control tasks. Also, because of the
concurrency of node execution, software systems developed using this representation scheme can be parallelized and
distributed.
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