
MASTER

>;s»44

Bv accaptinca of this article, tha
publiihar or raciplant acknowladgas
tha U.S. Govarnmant'l right to
rat«in a nonaxcluiiva. rovalty-fraa
licartM in and to any copyright
covaring tha articla.

A MICROPROCESSOR MULTI-TASK" MONITOR

C. A. Ludemann
Oak Ridge National Laborato.-y*

Oak Ridge, Tennessee 37830

COMF-830576—2

DE83 012590

Summary

This paper describes a multi-task monitor program
for microprocessors. Although written for the Intel
8085, it incorporates features that would be benefi-
cial for implementation in other microprocessors used
in controlling and monitoring experiments and acceler-
ators. The monitor places permanent programs (tasks)
arbitrarily located throughout ROM in a priority
ordered queue. The programmer is provided with the
flexibility to add uew tasks or modified versions of
existing tasks, without having to comply with previ-
ously defined task boundaries or having to reprogram
all of ROM. Scheduling of tasks is triggered by
timers, outside stimuli (interrupts), or inter-task
communications. Context switching time is of the
order of tenths of a millisecond.

Introduction

The speed and architecture of 8-bit microproces-
sors are adequate for most control and monitoring
applications in the laboratory. These devices can be
found incorporated in hardware systems of varying
complexity. At the one extreme, they are integrated
into a single circuit board with limited input and
output capability. Programs are in ROM. At the other
extreme, they support, or are supported by, a broad
range of peripherals such as disks, printers, and
graphics generating CRTs. The latter implementation
typically provides the capability to "download" indi-
vidual applications programs into RAM for execution.
This flexibility in changing software makes these
systems ideal for acquiring and processing data at
moderate rates. The volatile nature of the software,
however, can make such systems unsuitable for predict-
able and safe operation of equipment.

Our use of microprocessors in accelerator control
applications involves a "black box" approach. This
means that programs reside in ROM only and the full
capability of a unit is initialized upon application
of power or by use of a RESET switch. All perform
well-defined functions with no operator involvement in
software decisions. They are used to emulate hard-
wired controllers, or monitor and report the status
and safety of equipment. They are essentially of the
single circuit board configuration. Use of microproc-
essors in the control and monitoring of experiments is
usually relegated to the operation of a major piece of
equipment (target chamber, spectrometer, etc.). Here,
again, a "black box" approach is desirable. This is
particularly true at a multi-user laboratory. Users
should be provided with well defined operational
characteristics (and well-tested firmware!) and
perhaps a few optional features preprogrammed in ROM.

Raison d'Etre

The usual method for programming a control and
monitoring application, without a multi-task monitor,
is to embody all of the software within the bounds of
a single program. Typically, this program is a
repetitive sequence of operations, e.g.: read data,
display data, check to see if the operator has entered
a command (via key-board, switch panel, etc.). If a

•Research sponsored by the Division of Basic Energy
Sciences, U.S. Department of Energy, under contract
W-74O5-eng-26 with the Union Carbide Corporation.

command Is present, the program branches back to the
beginning co read data again. If there is a command
present, rhe program branches to the appropriate sub-
routine to execute it, and then back to the beginning.

Implicit in the use of a sequence Is the element
of time. Consideration must be given In the program
to such factors as the refresh rates of the data pre-
sented on displays, delays between the detection of an
alarm situation and the beginning of the corrective
action, and response times of the hardware. In order
to avoid timing problems, it Is imperative that the
complete control and monitoring application be defined
at the outset of programming the sequence. In this
way, an evaluation can be made of the time dependence
of each path in the program and Its effect on the
application as a whole. If this is ignored, a great
deal of programming may have to be redone in order to
introduce additions.

An example of how quickly difficulties arise with
the sequential approach might be to examine the
programming of the control software for a magnetic
spectrograph and Its ancillary equipment. To start
out, one might just wish to read the status of valves;
the pressures in the beam line and target chamber; and
the current in the magnet. This information would
then be displayed on a CRT terminal. It would be hard
to see why the data could v.ot be refreshed several
times per second. Realizing that the resources of the
microprocessor are being underutilized, you might now
like to introduce a command from the terminal to set
the current in the magnet. Because of the various
time constants involved, this operation might take on
the order of minutes, especially If one wished to
cycle the magnet to minimize the effects of hystere-
sis. In the sequence outlined above, however, data
would no longer be refreshed on the CRT until the
operation has been completed.

To remedy this unacceptable situation one would
most likely implement a hardware clock that could gen-
erate interrupts. The initial steps of the subroutine
that executes the operation would set up the clock,
enable interrupts, and then return to the beginning of
the program to read data. The current in the magnet
would be altered as each interrupt is recognized-
Encouraged by the Increased capability of the system,
one now decides to add a command to rotate the
spectrograph to a specific angle. This procedure,
again, involves times on the order of aany seconds to
complete. Depending upon the microprocessor it night
be possible to add another hardware clock. However,
attention would have to be given to the enabling and
disabling of interrupts in order to permit angle and
magnet current setting to occur "simultaneously". If
a single clock and interrupt is used, the capabilty
of "simultaneity" would be handled in 8 somewhat
different manner.

It is prudent to step back and observe what has
been programmed in the example above. Essentially
code has been generated to permit four separate
programs to run "simultaneously" (read and write data,
interpret commands, set the magnet current, and set
the angle). In addition, the details of the clock
interrupt code include many of the considerations that
are found In a multi-task monitor. Unfortunately,
this code is buried in the text of a specific

OF IS

application. It would be very difficult to sort out
i f someone wished to use it for some other purpose.
Furthermore, any changes or additions that one would
like to make require a detailed consideration of the
entire code. It would be possible to add correct
software for a new command that could introduce errors
in previously operational routines. Finally, it is
likely that reprogramming of all of ROM would have to
be performed for every change.

The usefulness of the multi-task monitor to be
discussed in the following sect Ions depends upon the
compexity of the application. However, such a monitor
permits the generation of control and monitoring soft-
ware far more complex than the spectrograph example
discussed above. Such application can be accomplished
in a more transparent and modular manner than by using
the standard sequential approach.

Monitor Basics

The monitor was designed for thu "black, box" mode
of operation discussed earlier. It permits programs
to rjn in RAM. but this mode of operation is generally
use', for software check-out prior to placing the code
in ROM. The only hardware requirement for the monitor
t j operate.- is that the microprocessor have one
continuously running hardware clock which generates an
i nterrupt.

The following definitions should make the

discussion of the monitor more readily understandable.

Task A task is a complete program. It can be a
repetitive loop such as the "read and display data"
program in the spectrograph example. It also can have
a "single-shot" nature as the program used to set the
magnet current.

Task Control Block The monitor builds a Task Control
Block (TCB) In RAM for ear.h task in ROM. This block
of data includes information such as the starting
address of the task and its status (e.g., whether it
is capable of running or is dormant).

Queue The monitor links the TCBs in a continuous
chain. The first link in the chain is labeled TCBO
and is the "top of the queue". Within TCBO is the
address of TCB1. TCB1 has the address of TCB2, TCB2
points to TGB3, and so forth to the last link in the
chain. The last TCB points to TCBO.

Taskmaster Within the monitor is a section of code
that examines the TCB chain and determines how the
microprocessor should be spending its time. This code
is the Taskmaster. It looks at the status word in a
task's TCB. If it finds the task is supposed to be
dormant it locaLes the address of the next TCB In the
chain. If this task is capable of running, the
Taskmaster restores the contents of all registers to
their values when the task was last operating. It
then turns control of the CPU over to the task at the
point where it last left off.

Common Services Within the monitor Is a set of sub-
routines that all tasks can use. These are called
Common Services. They permit a task to interact with
the Taskmaster without having to know any details of
the monitor. Almost all Services cause "context
switching". The Taskmaster records all pertinent
information about the calling task in Its TCB (status,
address where the contents of all operating registers
and point of return are stored). Then it will turn
over the CPU to some other task depending on the
Service that has been called. Two of the Services
are the activation of another task (the command

Interpreter starting the magnet current-setting
program In our example), and the setting of a timer
(the t Lme interval the current setting program would
like to have between current Increments). If none of
the tasks in the Queue uses the Services, the Task-
master gives each task an equal time slice within
which to operate. One has, in effect, a round-robin
or circular queue where ther-i is no sign! f icance
attached to being at the "top of the queue".

Monitor Initialization

The monitor is act ivated immediately upon the
application of power to the microprocessor or after a
RESTART occurs. It clears all RAM, sets up the TCB
Queue and register save areas for the tasks (push
stacks), starts the clock, and enters the Taskmaster.
The Taskmaster begins Its operation by examining the
status of the task associated with TCBO. The system
is running!

TCB Queue Set Up In order to establish the Oueue, the
monitor must, know how many TCB's are required. It
determines this by searching all of ROM for tasks. A
task is Identified by five bytes of informat ion coded
immediately before the program's starting location.
There are two possible forms:

I AM A TASK
MY PRIORITY IS 'N'
START ME WHEN MY TIME COMES

DB
DB
DB

'TSS
N
OOH

DB
DB
DB

'TSS1

N
80H

I
MY
I'

AM A TASK
PRIORITY IS

M INITIALLY
'N1

DORMANT

The uniqueness of such byte patterns is perhaps ques-
tionable. They were chosen with two coding rules in
mind: a) do not use message labels that contain the
consecutive characters "TSS", and b) do not generate
bizarre software ("TSS" = MOV D,H; MOV D,E; MOV
D,E). Correspondence of these bytes wich a table of
addresses is not possible since the systems we have
been using do not have valid memory addresses in the
range 5000H to 9000H. This leaves the possibility of
confusion with data tables in ROM, a one in — 2 x 10^
chance.

The value of "N" in the fourth byte determines
the position in the Queue to which the task is
assigned. If N = 0, the task is at the "top of the
queue" and as one might expect has the highest
priority. The monitor searches for the largest value
of "N" and creates a TCB Queue with N(max) + 1 nodes.

It is not necessary for the tasks to be
programmed in ROM in their priority order or at any
specific addresses. Furthermore, It Is permitted to
have two tasks in ROM with the same value of "N".
However, only one will be linked in the Queue as the
monitor assumes the task located at the highest
address is the desired version. This permits modified
versions of "old" tasks to be placed in an empty ROM
socket (usually at a higher address) without having to
reprogram the chip that contains the original. It Is
also possible to create more TCB's than there are
programs in ROM by having fewer tasks than N(max) + 1.
These vacant TCB's are useful for linking tasks which
need to be checked out in RAM.

The Information contained In the fifth byte is

used by the monitor to set the initial scatus In the

task's TCB. The Taskmaster will start a task on its

first pass If it was coded with the first form of

header. Use of the second form will cause the task to
"be bypassed until such time as another task requests
it.

Register Save Area In the course of the TCB Queue
search procedure, the monitor determines the storage
area in RAM required for saving each task's
"environment" (register contents and return address)
during context switching by the Taskmaster. A "push-
stack" of 64 bytes is reserved for each task. While a
typical cask usually uses —20 stack locations, special
circumstances required a larger allotment. An excel-
lent —2500 byte "debug" program vith CAMAC test
routines was obtained for checking software and
hardware. The original program h<id paths that per-
mitted the stack to grow. Rather than reprograra the
code, a patch was inserted in a common path that
resets the stack pointer to the value established by
the monitor upon initial operation. This experience
is mentioned to make two points. First, programs
written for non-multi-task use can be run with this
monitor. Second, in using a multi-task monitor such
as this, one must be exceedingly careful in stack
maintenance. If you PUSH, you had better POP. It
does not take very long ti appreciate this fact.

Specific Common Services

Access to a specific Common Service provided by
the monitor is gained by a subroutine CALL statement.
While direct coding of the appropriate instruct ions
and address is possible, '-hat is requested becomes
more transparent if the assembler being used supports
Macro statements. The desc ript ions to follow use
Macro names.

RELINQ This statement is used when the task has
nothing useful to do for a while - it is relinquishing
its CPU time. It instructs the Taskmaster to look
down the queue for the next task that is capable of
running. An example of its use is a task that is
writing to a terminal at 9600 baud. A character has
been sent to the UART and approximately one milli-
second will pass before another can be sent.

A portion of the second task's code could be:

DOES TASK3 NEED SOMETHING?

OUT UARTWR
RELINQ
IN USTAT

SEND CHARACTER
GO AWAY FOR A WHILE
CAN I SEND ANOTHER?

When the task again has CPU time it will test to see
if the next character can be sent. If the answer is
negative, it would RELINQ again.

RELTOP This Service is used when a task has discovered
or created an "event" that some higher priority task
should know about immediately. The Taskmaster goes to
the "top of the queue."

RELTIL The task relinquishes tts CPU time until the
byte in the RAM location specified by a register pair
becomes zero. This Service provides a means for tasks
to communicate with each other through a mutually
agreed upon memory cell. Consider two tasks: the
first task1s only function is to monitor the pressure
in a gas-filled detector. If it falls below a speci-
fied level, the program is to turn the detector*s high
voltage off and notify the experimenter. The second
task's function is to write messages for a number of
tasks. The code in the former program, after the
voltage has been turned off might look like:

LXI H,C0MCEL3
MVI M,23
RELTIL

WE AGREED UPON THIS CELL
WRITE MESSAGE 23
I'LL WAIT HERE TIL WRITTEN

TST3 LXI H.C0MCEL3
XRA A
CMP M
JZ TST4

CALL WRITIT
MVI M,0

TST4 LXI H.C0MCEL4

JUMP IF IT DOES NOT
WRITE MESSAGE

TELL TASK I'M DONE
DOES TASK4 NEED SOMETHING?

In this illustration the subroutine WRITIT would pre-

serve the value of the register pair and also Identify

the message.

If the progammer knew that all messages to be
written had starting addresses 10GH or above, the use
of this Service could be made more powerful. Rather
than place a message code in the communication cell,
tasks would Insect the message address in two adjacent
memory locat ions. The most significant byte of the
address would be placed in the communication cell.
The wri ting task could then be made more completely
general. There would be no need for It to know all
present or future messages. In addition, the
programmer could set aside some surplus communication
cells that future tasks could use. These cells would
be cleared during monitor Initialization and the
overhead for the convenience would be stnal 1 •

This Service is also useful in single- and
double-buffering applications. If one task acquires
data but another processes it, then RELTIL can be used
to prevent the acquisition task from writing over the
data before it can be processed, as well as prevent
the processing task from begi fining to operate on the
data before the acquisition Is complete.

TIMER A task can utilize the monitor's clock by the
TIMER Service- It can be used in two ways. A single
eight-bit register specifies the number of clock
"ticks". If the most significant bit is set, the time"
is "absolute"•

MVI A, 80H + TICKS
TIMER

If TICKS is equal to the number of "ticks" In one
second, the task will resume execution when the moni-
tor clock, strikes the second mark, even If the call
was made a hundredth of a second prior to the event.
If the most significant bit Is reset, an "interval"
tiijer is established. The task will resume execution
after the interval has expired regardless of when the
call was made with respect to "absolute" time.

As an example how TIMER might be used, consider a
task that tunes the frequency of a laser with the
voltage generated by a DAC and records the current
through a photo-diode with an ADC.

DIODE DATA START HERE
INITIAL DAC SETTING
WRITE DAC
SIXTY MILLISEC TIMER

READ AND STORE DATA

JUMP IF NOT DONE

LXI
MVI

AGAIN CALL
MVI
TIMER
CALL
I NX

I MR

H.DATBUF

B.O
WRTDAC

A, 6

READADC

H
B

JNZ AGAIN

This case assumes eight-bit resolution and accuracy,
as well as a combined settling time of the laser and
diode of sixty milliseconds.

EXIT If a task has completed its operation it may
become dormant by using the EXIT Service. The task
is not removed from the Queue and may be brought back
into service at some future time. If this happens,
the Taskmaster begins execution of the task at Its
starting address• The register storage area is ini-
tialized to the point assigned by the monitor when it
started operation. This Service is used when a task
must be assured that certain hardware or software
Initial conditions are met before it executes its
purpose.

SUSPND This Service performs a function similar to
that of EXIT. A task which has completed its opera-
tion can become dormant by using SUSPND. However,
when some other task requests that it be brought back
into service, it cont inues its operation at the point
it left off. All registers are preserved and the task
can bypass or perform whatever port ions of initlaliza-
t ion it wishes.

ACTIVA A task may request the execution of another
task by using ACTIVA. The desired task is specified
by entering its priority ("N") in a register. This is
the only Service that modifies the contents of a
register between the time of its call and subsequent
return to the calling task. This change indicates the
status of the desired task at the time ACTIVA was used
(task non-existent, already started, etc.). ACTIVA
is usually called to activate tasks that have become
dormant via the EXIT or SUSPND Services, or which have
never been active.

This Service would be used by a command inter-
preter such as would appear in the software for the
control of the spectrograph in our earlier discussion.
This task would determine the magnet current desired
by the experimenter, place the appropriate DAC setting
in RAM where the current setting task could find it,
and then activate that task-

Taskmaster Operation

The Taskmaster has the responsibility for deter-
mining which task is to use CPU time. It also must
maintain each task's environment during a context
switch. This means that when a task releases its CPU
time (voluntarily If it calls a Service; involuntarily
if, for example, a timer expires), the Taskmaster must
save all operating registers and the location to
return to when the task Is brought back Into service.
Once the decision is made as to what task to start or
restart, the Taskmaster must restore all operating
registers to the entering task's saved values and
begin execution at the correct location.

The Taskmaster uses the tasks' TCBs to store
and retrieve all pertinent information about the pro-
grams . The structure of the TCB is shown :!.n Table 1.

Table 1- Task Control Block (TCB) Structure

BYTE

11,12
9,10

7,8
5,6
3,4
2
1
0

USE

NEXT TCB ADDRESS
INITIAL STACK POINTER

"RELTIL" CELL ADDRESS

STARTING ADDRESS
CURRENT STACK POINTER
TIMER IDENTIFICATION
I/O IDENTIFICATION

STATUS

The Taskmaster identifies the departing task's TCB by
referring to the Current TCB (CTCB) cells in RAM that
It maintains. It also knows the reason for any con-
text switch and stores this In the departing task's
TCB status byte. Each task has its own stack space in
RAM, and the value of the stack pointer is stored In
TCB(3,4).

The Taskmaster examines the CPU Status Word
(CPUSW) to decide in which direction to go in the
Qr.r-ue ro find the next task to use CPU time. If, for
example, a timer has expired or the departing task has
called the RELTOP Service, the Taskmaster will immedi-
ately examine TCBO. If there is no request to "go to
the top", it will extract the next TCB address from
the departing task's TCB (bytes 11 and 12).

The decision to start a task is based upon the bit
pattern found in the status byte (see Table 2) . If
the task is dormant (bit 7 set); because it has never
been started, or has called the EXIT or SUSPND
Service, the Taskmaster will immediately move on to
the next task in the queue. If the task is not dor-
mant, the remaining bits are examined In sequence to
determine if it can be restarted. If the task is
waiting for an I/O operation to come to completion, or
a TIMER to time out, bits 6 or 7 will be set. In the
former case, the bit found In byte TCB(l) Is compared
with cell IOSTA, and in the latter, the bit found in
TCB(2) Is compared with cell TMSTA. These cells
record the completion status of I/O operations and
timers, respectively. If there is agreement in either
case the appropriate bit is cleared both In the cell
and the TCB. The appropriate "wait" bit In the status
byte Is cleared and the task is restarted. If there
is no agreement the next TCB is inspected.

The next bit to be tested, bit 4, would be set if
the task had been interrupted by the completion of an
I/O operation or any timer expiration. It would have
been set by the task itself had it used the RELINQ,
RELTOP, SUSPND, or ACTIVA Service. If the bit is set,
the Taskmaster will start the task.

If the task had used the RELTIL Service bit 3
would have been set. The Taskmaster will test the
cell whose address is recorded in TCB(7,8) to deter-
mine whether or not to resume this task.

Table 2. Bit Assignments In Status Byte

BIT

7
6
5

3
2
1
0

IF BIT SET, TASK IS

DORMANT

WAITING FOR I/O
WAITING FOR TIMER

RELINQ OR INTERRUPTED

RELTIL
STARTING UP

LOADED

(UNUSED)

Description of Timer

The TIMER Service allows the programmer to use
the clock without having to be concerned about the
details of the hardware or the enabling or disabling
of Interrupts. However, In order to reduce the
overhead involved to provide this convenience, certain
compromises had to be made.

The monitor has only eight timers that it can
allocate to tasks. These are assigned on a first-
come, first-served basis. If all have been allocated,
the ninth task's TIMER call is treated as a modified
RELINQ request. It is modified in the sense, that
when the Taskmaster returns to the task, it will
restart it at the TIMER call. The potential for
introducing delays of high priority tasks is allevi-
ated somewhat hy the fact that the expiration of any
timer causes e context switch to the top of the Queue.
If the ninth task happened to be the one with the
highest priority, it would automatically aqulre the
first available timer.

One other timing feature is built into the moni-
tor. There is a PUMP CLOCK that Is reset on every
context switch. This clock will time-out, however,
and force a switch if none has occurred after a
specified period of time.

I/O and Interrupts

Up to this point, very little has been written
about I/O operations except that,

a) there is a RAM cell labeled IOSTA that identi-
fies the completion status of up to eight I/O
operations,

b) there is a bit in the TCB status byte that
indicates that the task is waiting for I/O
completion, and

c) there is a byte in the TCB that the Taskmaster
can compare with IOSTA to determine which I/O
operation Is being sought by the task.

Furthermore, nothing has been written about
interrupts, except that the TIMER service permits
access to the clock without having to deal with them.

In many applications, timers and I/O status
checking are all that is necessary to implement a suc-
cessful control and monitoring system. However, there
are ca.-̂ es in which sophisticated I/O and Interrupt
handling are required. Since the programming of these
Important elements are hardware specific, no attempt
has been made to incorporate any options within the
monitor (e.g., CAMAC READ or (TRITE Services); rather,
a general approach is outlined.

There are two aspects of the monitor that must be
understood before one implements I/O or interrupt
routines. First, Interrupts are disabled during the
entire time the Taskmast.r is performing its delibera-
tions. The period of time they are disabled depends
on what caused the context switch (Service call or
timer completion) and the number of TCBs scanned
before the Taskmaster enables Interrupts upon its
restarting of a task. Empirically, one can expect to
be able to handle Interrupts at a kHz rate and still
have the system perform its function.

The second point to be understood, Is that the
IOSTA cell and the status bits mentioned at the
beginning of this section, are designed for message
completion purposes. If a single interrupt, or a
single byte received by a USART, represents a message,
these "hooks" into the monitor should be used.
However, it is doubtful that reliable data transmis-
sion would take place at a kHz rate, if the monitor
message completion features are used for every
interrupt. Furthermore, low priority tasks would most
likely be locked out.

The I/O and interrupt software can be embodied
within the framework of a task. This task can be
structured in several ways. It could opera., e

completely Independent of tha monitor by making Itself
dormant (EXIT) after it performs its initialization
process. An example might be an Interrupt-driven
routine that continuously refreshes a CRT with data
from RAM which are updated b" some other task.
Another structure could be that of a task and an I/O
handler combined. The handler would manipulate IOSTA
and the task's TCB status and I/O identification
bytes. The monitor would resume the task at the
completion of the I/O operation. Other tasks could
make use of this I/O capability by calling the ACTIVA
Service.

A third structure could be that of either of the
previous forms but it would manipulate IOSTA and the
TCB of any task. This task would provide one or more
Common Services. A discussion of this form of task
will not be entered here as it involves detailed
knowledge of the Taskmaster .-

Actual Implementation

The monitor was first Installed in a Kinetic
jystems Model 3885 Microcomputer. The code uses 831
bytes of ROM. The amount of RAM required by the moni-
tor depends on the number of tasks to be handled.

RAM Storage = 29 + (N + 1) * (1 3 + 6 4)

where "N" is the priority of the lowest priority task.
These locations are allocated from the top of memory
downward. The first 29 cells are CPUSW, CTCB, timers,
etc. The remaining storage is for the TCBs and push
stacks. Since this hardware implementation starts RAM
at location 0, the clock interrupt and Service vectors
are "down loaded" to the first 64 locations.

The hardware clock was set to provide a ftick"
every 10 milliseconds. Therefore, the maximum inter-
val the TIMER Service can furnish is 1.27 seconds.
Longer intervals must be obtained by repetitive calls
for the Service. The PUMP CLOCK expires after five
"ticks" or 50 milliseconds.

The amount of time to perform a context switch
depends on whether a Service or timer expiration
caused it. In order to provide an example of the time
periods Involved, the following measurements were made
using two tasks that produced timing pulses on an
oscilloscope. The first task cleared a memory cell,
generated a pulse, then called RELINQ. The second
task was waiting for the cell to clear (RELTIL). Once
the task was restarted by the Taskmaster, it generated
another pulse and stored data in the communication
cell. Each task was a consecutive loop. The time
interval between pulses was —190 (isec The second
task was then moved down the queue with dormant task

, TCB's in between it and the first task. Each decrease
In priority resulted in an ~18 jzsec Increase In the
Interval between pulses.

The K.S. 3885 is in a CAMAC crate with an
auxiliary crate controller. The crate is on a serial
highway of the Oak Ridge Isochronous Cyclotron control
system. Part of the application was to replace a
digital voltmeter and mechanical eross-bar scanner
with a faster, more modern, piece of equipment. The
system was to permit the control computer to continu-
ously scan the 96 data channels at a 100 Hz rate (the
old system permitted one channel every two seconds and
could not be operated continuously). A manual control
panel and LED display were also to be provided for
off-line operation. The actual digitization of the
analog signals Is performed by an Integrating ADC at
a 15 Hz rate. These are incorporated Into eight

i 1 ^ -••

commercial data scanners^ that provide tUe information
in ASCII form over a 9600 baud 20 mA current loop.
The command-reply sequence to poll each of the scan-
ners and the structure of the messages is such as to
keep almost continuous traffic on the loop. The goals
of the project, as well as some additional features
are easily handled by the monitor. Its usefulness can
be demonstrated by a description of each of the tasks:

- a data acquisition task that interrogates the eight
scanners.

-'data acquired by the previous task are double buf-
fered. This task performs checksum verification of
the data in one buffer while the other is being
filled. It also interprets error codes f ,*om each
scanner.

- the data are converted to binary for use by the
control computer.

- a communication task that passes the d^ta-to the
control computer when requested.

- a task that supports the manual control panel and
display- The operator can view any channel's data
at a 1 Hz refresh rate.

- a task controls a phoneme-based voice synthesizer.
This hardware is in a CAMAC module and can vocalize
messages locally or over the public address system.
These messages can be initiated by the control
computer or the task described next.

- the status of 64 alarm indicators is examined by a
task that passes the informat ion to the voice
synthesLzer task if the operator has enabled the
feature via the control panel.

- the debug program, *• which was expanded to permit
the manipulation of the Queue. The ability to
allocate TCBs to RAM-resident tasks provides a
valuable means for program check-out.

A measure of the effect of the entire system's
overhead on a low priority task can be seen in the
following example. When the system is operating, the
debug program will display a CRT page of memory cells
In 11% more time than it would in a non—multi-task
system.

Acknowledgements

The author wishes to express his appreciation to
B- J. CasStevens of the Computer Sciences Division for
useful discussions during the development of the moni-
tor and D. C. Hensley for the time he has taken to
understand this work, improve the manuscript, and pre-
sent it at the Conference•

References

1. C. N. Thomas, private communication.

2- C. A. Ludemann, ORNL Technical memo (to be

published).

3- Manufactured by Kinetics Systems Corporation,
Lockport, Illinois.

4• Manufactured by Analog Devices, Norwood,

Massachusetts

•8 k- c h

iJllHjs

w

• ^

IS
C

L

Q

>
c

Oi

c
t<3

w
n.

so
re

d

~ *

o
?

c

1

;p
ar

*
2,u

T
hi

:

•£

g

:n
t

no
r

a

' E
c

3

at
e

«
u

. t ;

Z

en
t.

b
o
O

. •

1
• £

1,
or

 a
ss

L

jj>

"S.
e
o

o

I
1
!-

1
 c-.2
«

of
 a

ny
 i

S
c

* 3

5

co
m

]

&

ur
,

ac
e

th
e

bi
lit

O

"a

•c
C-

c*

no
t

in
fr

i
2

1

•£

1
°

1

ic
e

o

k.
D.

*M

E
E

1

g

it!

>,

m
p]

•

o

1
u

• d

c

o
c
-A

o

w
is

e

o

o

ur
er

,

«
s
c
n

u
c
0 >

• CO

>l

cre
o

er
nm

en
t

sa
u

Sl
ai

•s1)1

c
D
4>

J :

ri
ng

o

<2
o
c
o

id
at

1

o
V

i3

I
o

%
c

1
S3
w
D-
x:
w

it
ho

io
ns

c

op
:

•o

o
u

<u

>
c

u

>
«

en
t

o

U
iU

J

ve
:

3

:a
te

s

vi

Le
d

U
ni

i

