
AUTOMATED REASONING I N MAN-MACHINE

CONTROL SYSTEMS*

CONP-831047—7

DB83 014307
by

R. C. Stratton

E. L. Lusk

EBR-11 Project ^ 8 = | | ^ 1 ~ £
£!K-SS.S|S

Arqonne National Laboratory I 5>iL-s i * f > Ss
2 S a I "E..S 11" S

P. 0. Box 2528 l » ! i £ £ * 8 $

- ?:iFg*.i*i
Idaho Falls, Idaho 83401 3 i g s - s i l i i

1 flliiSffii
C • - t> ** C O O Si OJ

Submitted for Publication I | s "=i'l I S'iffi
in Nuclear Safety ^sltB*||°i

• 15 S CT •" 5 = o t> ̂  c

NOTICE H O S S o - C E E n S

P0RT.0NS OF THIS REPORT ARE ILLEGIBLE.

It has been reproduced from the best
available nopy to permit the broadest . .
possible availability. MH^T^D

*Work supported by the U. S. Department of Energy under Contract W-31-109-38.

^ , CiSTniJiiiiO'J Of TK!S O0CU^E?:T IS USLIMITEO

7^



AUTOMATED REASONING IN MAN-MACHINE

CONTROL SYSTEMS*

R. C. Stratton

E. L. Lusk

EBR-II Project

Argonne National Laboratory

P. 0. Box 2528

Idaho Falls, Idaho 83401

Submitted for Presentation
at the

American Nuclear Society
1983 Winter Meeting

October 30-November 4, 1983
San Francisco, CA

*Work supported by the U. S. Department of Energy under Contract W-31-109-38.



Automated Reasoning in

Man -Machine Control Systems
Ebving L. Lvsk

Mathematics and Computer Science Division
Argonne National Laboratory

Rex Straiten

Experimental Breeder Reactor II Division
Argonne National Laboratory

ABSTRACT

This paper describes a project being undertaken at Argonne
National Laboratory to demonstrate the usefulness of automated
reasoning techniques in the implementation of a man-machine
control system being designed at the EBR-II nuclear port'er plant.
We show how automated reasoning influences the choice of optimal
roles for both man and machine in the system control process,
both for aormal and off-normal operation. In addition, the require-
ments imposed by such a system for a rigorously formal
specification of operating states, subsystem states, and transition
procedures have a useful impact on the analysis phase. Finally we
discuss the definitions and rules for a prototype system which is
physically simple yet illustrates the some of the complexities
inherent in real systems.

1. Introduction
Control mechanisms for complex physical systems consist of men and

machines. The machines may include data acquisition devices, completely
automatic control equipment, and plant computers for data analysis, semi-
automatic control functions, and communication with a human operator. Both
men and machines are information processing systems) 13]. Argonne National
Laboratory's Man-Machine Control System takes the point of view that each
should be viewed as a component of the control system. Design of the control
system thus involves allocation of various monitoring, diagnosis, and control
functions to those controller subsystems which can best perform them. Recent
advances in automated reasoning technology[i6j make possible greater optimi-
zation of both man and machine controller components by reallocating some of
the above-mentioned functions to the machine component of the control sys-
tem.

In order to effectively control a physical system the controller requires a
model of the system and data about the states of various components and



- 3 -

subsystems. Also needed are rules for deducing the present and allowable
future staLes of the physical system from the system mode! and the data. (To
be more exact, the deductions lead to a conclusion about the state of the model
rather than of the system itself. How closely this approximates the state of the
physical system depends on how precisely the rules are formulated and
applied.) Finally, procrdures are needed for effecting transitions among states
of the physical system.

In classical procedural control most of the necessary deduction function is
performed by the human component of the control system. The operator main-
tains a model of the system based on his training and experience. Presented by
the machine component with data about the states of various system com-
ponents, he uses his model to deduce the overall state of the physical system.
Aided by an extensive set of rules embodied in a set of procedure manuals, he
deduces w-iat control actions should be performed. Encountering a situation
not covered by predefined procedures, he relies on rules just, the same. These
are rules he has absorbed as part of his training and operating experience, and
may have varying degrees of precision and applicability. (The precise name for
a rule with imprecise applicability is "rule of thumb.") Such rules are indispens-
able in rapid diagnosis of problems and identification of necessary control pro-
cedures.

It is desirable to make the deduction function of the controller reliable,
predictable, and complete. One way to do this is to formulate rules for state
diagnosis and procedure prescription in a form understood by an automated
reasoning system. Moving parts of the deduction function from the human to
the machine component of the control system frees the operator for other Tunc-
tions for which he is optimally suited. Other advantages of this approach
become apparent in the analysis phase of system implementation, as described
below. Work has been done in this area, and in some cases is still ongoing, at
Westinghoupe Hanford[l4], E.G.&G[ll], Combustion Engineering and System
Control IncorporatedflO], and Institut fur Atomenergi and Gesellschaft tvir Reac-
torsicherheit[l].

In this paper we describe a project which has been formulated to explore
and demonstrate the advantages of this approach. The reasoning system used is
the Logic Machine Architecture (LMA) system developed at Argonne National
Laboratory[5, 6, 7] It in turn is an outgrowth of a long-running research project
in automated deduction[2,3, 8. 9J. The system is being integrated into the man-
machine control system being designed for a subsystem of an experimental
breeder reactor operated by Arrjonne in Idaho (EBR-1I[15]). We describe here a
fictitious prototype system which is meant to illustrate the use of automated
deduction techniques; the real system model to which the techniques will be
applied is still in the definition phase.

Formal definition of the prototype system and experimentation with its
operation has demonstrated that the reasoning techniques encapsulated in LV.A
are directly applicable to the dc3ign of man-machine control systems. They can
be used as an analysis tool to formulate a system model, as a diagnostic tool to
determine system states, and as an information system to contain the system



- 3 -

rules.

2. The Reasoning Subsystem

In this section we describe more fully the reasoning subcomponent of the
control system.

2.1. System Architecture

One function of the Man-Machine Control System is the deductive function.
This function will be at least partially performed by the automated reasoning
subsystem, which will be a software subfunction of the MMC5. The reasoning
subsystem will be general-purpose one, driven by a knowledge database contain-
ing the encoding of the system model and the rules which govern the operation
of the model. The model end rules can be easily changed by modifying the con-
tents of this database. Many expert systems art implemented as special-
purpose, stand-alone systems, but we believe that a gereral-purpose reasoning
system can be even more useful, provided that it is implemented as a package of
reasoning tools which can be called upon as needed by a higher level, special-
purpose system. Additional functions to be provided by the higher-level system
would include interfacing to special hardware for data acquisition, interaction
with a human operator, generation of certain automatic control signals, etc.
These can all be performed independently of the reasoning subsystem.

Fortunately, a reasoning system with the appropriate architecture has
recently been implemented. It is Logic Machine Architecture[5,6], which we will
refer to throughout as LMA. LMA is a package of subroutines which encapsulate
functions required to perform reasoning. It is the latest implementation of the
ideas developed over the iast twelve years by the Argonne National Laboratory-
Northern Illinois University research project in automated reasoning.

2.2. Structure of the Reasoning Subsystem

The architecture of the reasoning subsystem is described in detail in [5]
and [6]. We give here a brief overview.

LMA is comprised of approximately fifty thousand lines of code, and is writ-
ten in Fascal. It was designed to be extremely portable, and has been ported
from its development environment, VAX/UNIX, to such other environments as
VAX/VMS, IBM/CMS, Apollo, and Perq. Moving it to a new environment is quite
straightforward, and can ordinarily be done in a few days.

LMA is divided into software layers. Procedures residing in one layer have
access only to those procedures residing in the next lower layer. Thus one can
experiment with alternate implementations of certain algorithms without
impact on the rest of the system. The highly modular structure increases relia-
bility and maintainability.

The lowest layer (Layer 0), which is the one layer accessible to all higher
layers, implements certain abstract data types not provided by the host
language. Some; of these are indefinitely extendible character strings and vec-
tors of integers. Such data types free the higher layers from dependencies on



- 4 -

limits to the size or complexity of problems considered by the system.

Layer 1 contains primarily the database support functions required to
manage large knowledge bases of logical formulas. It allows rapid access to the
relevant facts which meet certain requirements imposed by the higher layers.

Layer 2 provides the inference mechanisms themselves: procedures which
implement a wide variety of clause-based inference rules, subsamption.
simplification and canomcalization of formulas, etc. The procedures which make
up Layer 2 provide the moat general yet complete set of reasoning tools
Descriptions of the principal features implemented can be found in[l6]. Above
this level, multiple reasoning systems are being implemented.

At Layer 3. an interactive clause-based theorem prover has been com-
pleted!^]. It has provided the environment, for experimentation which has
resulted in the representation of plant processes described in this paper. It is
anticipated that a special-purpose layer 3 reasoning program will be required to
interface the LMA-based reasoning component to the overall Man-Machine Con-
trol System. Such a layer 3 mechanism is now being designed,

3. The Prototype system

3.1. System Description

The prototype system chosen for experimentation and demonstration pur-
poses is shown in Figure 1. This system was constructed to provide some
aspects of a real system while limiting the degree of complexity for tutorial pur-
poses. The function being modeled is a temperature control function. The phy-
sical components supporting this function (in this particular abstract model)
are a parallel pair of electromagnetic pumps in the secondary loop, controlled
by one of two parallel automatic flow controllers. In addition, we postulate the
operator as a third potential flow controller, with the idea that in the event of
failure of both automatic flow controllers, the operator can manually perform
the flow control function by reading the output of the temperature sensor and
manually controlling the secondary loop pumps. For the purposes of exploring
this model we will assume that the behavior of the reactor itself is normal at all
times. We will not include the heat transfer functions of the model (the reactor,
the pump in the primary loop, and the heat exchangers.

The objective of the system, during reactor power operations, is to keep
reactor inlet temperature (Tin) constant. This objective is achieved by varying
the rate of flow, via the pumping function, of the heat transfer media in the
secondary loop The temperature control function senses Tin and adjusts the
electrical current to the electromagnetic pumps as necessary. The variation in
the pump current creates an increase or decrease in the media flow rate. This
change in the media flow varies the system heat transfer capability and there-
fore the value of Tin.



- 5 -

r—

-P~ '
•j Opero+e r*

FUCUl

J

Figure 1.

3.2. Illustrative Features of the Prototype

Simple as it is, this model captures severed features which will be found in a
more realistic model of an operating plant.

The first is that there is a natural decomposition of the system into subsys-
tems. We treat the parallel pair of pumps in the secondary loop as a subsystem.
as well as the control function provided by the two parallel flow controllers and
the operator. The notion of a subsystem composed of parallel components, in
which only one component out of a set is needed to perform the subsystem's
function, is a tjpical one. The primary reason that the notion of subsystem is
needed in a real system, however, is to deal in a coherent manner with the com-
plexity provided by a large number of individual components.

We will allow our prototype system three normal system states: On (operat-
ing), Stdby (startup), and Off (shutdown). Appropriate responses to events will
depend on both actual and intended states of the system, as would be true of a
real, more complex model.

The prototj-pe contains elements of varying levels That is. immediate sub-
systems of the system include both indivisible components like the primary loop
temperature sensor and subsystems like the secondary pumping system, which
has an internal structure. We will not distinguish among high-level systems, sub-
systems, and individual components, referring to ail of them as elements. This
allows a degree of uniformity in our rules which describe the system which would
otherwise not bo possible, and also allows us to change a component into a sub-
system with minimal impact on other rules. (An example of this change might
be the division of the electromagnetic pumps into their mechanical and elec-
tronic subcomponents.) The allowable states for each element are given in Table



- 6 -

1.

Allowable System, Subsystem, and Component States !
Element
System
TempSensing
FlowControl
Pumping
Tin
EMI
EMS
Controller 1
Contro!ler2
Operator

On

X

X
X

X

X

X

X

X

X

X

OfT

X

X
X

X

X

X

X

X

X

X

Stdbv
X

X

X
 

X
 

X

Ma;nt
x

X
X

X
X
 

X
 

X
 

X
 

X

Isolated
X

X
X

X

X
 

X
 

X
 

X
 

X

Failed !
X

X
X

X

X
 

X
 

X
 

X
 

X

Table 1.

4. A Short Introduction to Automated Reasoning
In this section we describe informally the language used to make state-

ments about the system and the principal mechanism for deducing new state-
ments from existing ones.

4.1. Notation

We employ a standard functional notation for assertions. Thus

State(EMl.Failed)

means that the state of element EMI is "Failed." Compound statements can be
made from these assertions, for example,

if State(EMl,Failed) then 3tate(SecPumpSys,Inoperable).

Compound conditions are allowed:

if State(EMl.Operating) & State(EM2,Operable)
then State(SecPumpSys,Operating);

We impose the following restriction on compound statements. We allow only
"and" connectives (abbreviated by "&") in the "if" part of compound statements
and only "or" connectives (abbreviated by "I") in the "then" part. This means
that each statement is a clause, vhich is the type of statement processed by the
inference mechanisms of LMA. The restriction is not a serious one in the sense
that "if-then" statements which are not clauses can be converted to one or more
clauses without losing their meaning.

A further characteristic of clauses is that when variables appear, they are
assumed to be universally quantified. This means, for example, that the state-
ment



- 7 -

if State(x.Maint) then State(x,Inoperable)

means that for any element x. if x is in the maintenance state, then x is inoper-
able.

4.2. Kesolution-based Deduction

LMA provides a variety of rules for inferring new clauses from existing ones,
thus expanding the knowledge base. The rule relied on most heavily is called
hyperresolution. It corresponds to the normal human reasoning operation of
inferring the conclusion of an "if-then" statement when all of the hypotheses are
satisfied. It does not produce intermediate results when only some of the
hypotheses are satisfied. For example, from the five clauses

1. if Need(SecPumpSys.On) & State(x.Operable) & Paired(x.y) &
State(y.Operable) then Need(y.On)

2. Need(SecPumpSys.On)
3. State(EMl,Inoperable)
4. Paired{EMl.EM2)
5. State(EM2. Operable)

the system derives, using hyperresolution,

6. Need(EM2.0n).

Note that partial deductions are in theory possible from subsets of the above set
of clauses. For example, from 1. 2. 3. and 4, we could legitimately infer

if State(EM2,Operable) thenNeed(EM2,0n).

Such deductions are made by some resolution-based inference rules. In the
interest of efficiency and because they are not necessary, we block derivation of
such results by using hyperresolution.

4.3. Relationship of LMA to Other Types of Reasoning Systems

Various types of systems have appeared to make it easier for end users to
apply automated reasoning techniques to their specific problems. In this sec-
tion we briefly explain the relationship of the mechanism just described (resolu-
tion) to two othor families of systems, namely "logic programming" and "expert
systems."

Logic Programming (of which the PROLOG system is the best-known) is
quite similar to the resolution approach, but with some very specific and impor-
tant differences. It starts with a collection of facts expressed as clauses, with
the restriction that compound conclusions in "if-then" statements are not
allowed. This initial collection of facts is not expanded, as in the resolution
approach. Rather, specific queries are submitted to the system, and the system
determines whether the answer can be deduced from the available information.
Thus the reasoning is more algorithmic, being directed toward a specific goal. It
is anticipated that some of the deductions required in the Man-Machine Control
System can be made more efficiently using this approach, and a PROLOG-like
subcomponent L; being added to LMA.



- 8 -

Expert Systems are computer programs which provide "expert" advice to
humans engaged in some activity. In that sense, any procedure prompting sys-
tem, including the one being described here, is an expert system. The term as
most often used -ilso identifies a particular style of program characterized by a
sophisticated user interface, a large number of relatively specific rules (similar
to "if-then" clauses), and a simple reasoning component. Sometimes the reason-
ing component is capable of drawing probabilistic conclusions when making a
diagnosis.

LMA corresponds to the reasoning component of an expert system, but is
much more powerful than the reasoning components typically employed in
expert systems. It does not contain a general-purpose user interface. For
experimentation and demonstration purposes, intthp[4j provides such an inter-
face. In the project under discussion, a special-purpose interface to the reactor
operator will be provided by other components of the MMCS.

5. The Prototype Knowledge Base

In order to control an element the controller requires a model of the ele-
ment, rules that describe the relationships among the states of an element and
the states of its subelements and how to effect changes of ,;tate, and finally facts
about the current state of the element. The clauses which the automated rea-
soning subsystem of the MMCS operates fall into three categories: facts, model
structure, and rules

5.1. Facts

The basic facts which the system reasons from are the states of the various
components in the system. The automated reasoning subsystem relies on the
rest of the MMCS for these facts, and is not concerned with the sources of such
information. The facts come from the plant administrative and parametrical
status. Some of these facts come from the Component Isolation Control System
(CICS) currently being developed at EBR-II; others from the plant Data Acquisi-
tion System. Still other facts may come from operator input, such as the
desired operating mode of the system. The reasoning system may even deduce
that it must ask the operator for a specific item of information. In each case, it
is the function of the special-purpose interface to translate the incoming infor-
mation into clause form. Typically such clauses will be simple assertions, rather
than "if-then" statements, but there is no restriction on clauses obtained in this
way.

5.2. Model Structure and Rules

The most demanding aspect of the project is to formulate the clauses which
correspond to rules for deducing the states of elements from their subelements.
for deducing the correct sequence of operations necessary to achieve a desired
state, and choosing new goals when original ones cannot be reached. It is
justified by the end result of having a flexible and easily modifiable representa
tion of knowledge about how to operate the plant.



- 9 -

Each element of the system will be able to assume a finite number of
different states and the element's behavior will be described and controlied by
unambiguous transitions and inter-element relation rules covering all transi-
tions between (hose states as affected by the states of the element and its
subelements[12'|. To develop transition rules, element structure and slat«
definition must be established. The element model provides the structure and
definition of the system. The states define the allowable configuration of the sys-
tem elements and their interrelationships. Rules are then denned using the
model and the states. The model structure and the rules are naturally
integrated in the clause formulation we describe here.

In this section we describe briefly the families of rules which were
developed in Vnn course of studying the prototype system. As in the case of the
design of the prototype system itself, we have made certain assumptions about
the prototype system whose primary purpose is to illustrate how certain realis-
tic configurations might be represented without introducing unnecessary com-
plexity. We do not give here the complete set of rules, but indicate the sorts of
rules used.

5.2.1. Rules about Families of States

It is useful to collect some of the possible states into groups, representing
certain more abstract states. In many oases rules do not need to specify one of
the basic states for an element, but rather one of these abstract states. This led
to a collection of clauses of the following type.

if State(x,On) then State(x,Operating)
if State(>,Off) then State(x.Operable)
if State(a.Stdby) then State(x.Operable)
if State(x.Iso) then State(x,Operable)
if State(a.Maint) then State(x,Inoperable)
if State(jt.Failed) then State(x.Inoperable)
if State(3(,Operable) then State(x.NotOperating)
if State(x.lnoperable) then State(x.NotOperating)

Note that this sLructure makes it relatively easy to add new states if experimen-
tation shows thay will be useful. Rules which utilize the more abstract states
need not be changed.

5.2.2. Rules about Subsystem States

Another set. of rules govern the deduction of the stale of a complex element
(one with subelements) from the states of its subelements. Some of these are.

if State(Plowl.On) & State(Flow2,Notoperating) &
State(Nan.Operable) then State(SecFlowSys.On)

if State(Tin.On) & State^ecPumpSys,Operable) «t
State(SecFlowSys,Operable) then Ftate(System.Startup)

Again note that stating the requirement for subsystem states JX clause form
rather than embedding them in the code cl a special-purpose program makes it



- 10 -

easy to modify such definitions.

The "Need" predicate was introduced to designate requirements. Thus

Need(EMl.On)

means that a condition has arisen that requires that EMI be in the On state. In
order to express the ability or ability to respond to such a requirement, the
"Cando" and "Cantdo" predicates are introduced. This leads to clauses such as

if Need(x.On) & State(x.lnoperable) then Cantdo(x.On)
if Need(x.On) & State(x, Operable) then Cando(x.On).

The "Paired" predicate is used to express the fact that a set of components
operates in parallel, with only one required to perform the function of the sub-
system they comprise. Thus rules about such components can be stated in a
general form. In our prototype system, we have

Paired(EMl,EM2)
Paired'EM2, EM l)
if Need(SecPumpSys,On) & State(x,Inoperable) & Paired(x.y)

thenNeed(y.On).

When it is deduced that a component can be put in a desired state and operator
action is required to do so, communication with the operator must take place.
We represent this with the special predicate "SOUT," whose implementation can
be customized. A typical use might be

if Need(Pump,On) & Cando(Pump.On) then $OUT( "Turn Pump on").

If the clause

SOUT("Turn Pump On")

is deduced, the message will be conveyed to the operator.

5.2.3. Rules about State Sequences
The final collection of rules describe the sequence of states to be

attempted, in the case it is discovered that a desired state cannot be achieved.
It contains such rules as:

if Need(System.Operating) & Canldo(5ystem,Operating)
then Need(System,Startup),

if Need(System,Startup) & Cantdo(System,Startup)
then Need(System,Shutdown).

We can include the rules for notifying the operator of deductions make about
changes of goal by using the SOUT predicate with variables. When a list of values
is to be communicated to the operator, SOUT uses the LMA representation of
lists, using the C (for concatenation) function. The list containing a, b, and c is
represented by C(a,C(b,C(c.NlL))). Thus we have clauses like



- 1 1 -

if Need(x,y) & Cantdo(x.y)
then $OUT(C("Cannot puf'.C(x,C("in",C(j',C("state",NlL))))))

6. Conclusion
There are two principal conclusions that can be dmvm from this develop-

mental work. Automated reasoning can play a significant role in the Man-
Machine Control System and can be effectively utilized in the design phase of the
machine part of the control system.

Automated reasoning, when applied to the Man-Machine Control System,
optimizes the man and machine roles by absorbing part of the deduction func-
tion traditionally performed by the human subcomponent of such a system. The
reasoning system integrates the system facts with the model structure arid
rules, and provides the automated output of a system control response to be
executed by some other component of the MMCS.

The use of em automated reasoning system is an effective analysis tool that
can be utilized during the design phase cf electromechanical control systems to
enhance and trouble-shoot the design logic. The formal language used by the
reasoning system forces rigor in the rules and model definition of the control
system. Also, subsequent to the system implementation the designer can
interactively operate and manipulate the control system to determine if any
unforeseen normal or off-normal operating conditions are unaccounted for in
the design. It should be noted that the above can be done prior to any hardware
development.

References

1. Vf. Bastl an* L. Felkel, "Star, A Disturbance Analysis System and its Applica-
tion to a PVTR-Station." pp. 285-392 in Conf-800403. (1960).

2. E. Lusk and R. Overbeek, "Data structures and control architecture for the
implementation of theorem-proving programs," in Proceedings of the Fifth
Conference on Automated Deduction, Springer-Verlag Lecture Notes in
Computer Science, v. 87, ed. Robert Kowalski and Wolfgang Bibel, (1980).

3. E. Lusk and R. Overbeek. "Experiments with resolution-based theorem-
proving algorithms," Computers and Mathematics xuith Applications 8(3) pp.
141-152 (1982).

4. E. Lusk and R. Overbeek, A/i LMA-Based Theorem Prover, (preprint).
November 1982.

5. E. Lusk, William McCune, and R. Overbeek. "Logic machine architecture:
inference mechanisms," pp. 85-108 in Proceedings of the Sixth Conference
on Automated Deduction, Springer-Verlag Lecture Notes in Computer Sci-
ence, v. 138. ed. D. W. Loveland, (1982).

6. E. Lusk, William McCune, and R. Overbeek. "Logic machine architecture:
kernel functions." pp. 70-84 in Proceedings of the Sixth Conference, on
Automated .Deduction, Spring er-Verlag Lecture Notes in Computer Science,
v. 138. ed. D. W. Loveland, (1982).



-12-

7. E. Lusk and R. Overbeek. Logic Machine Architecture Inference Mechanisms
- Layer P User Reference Manual, (preprint). 19B2.

6. J. McCharen, R. Overbeek. and L. Wos, "Complexity and related enhance-
ment?! for automated theorem-proving programs." Computers and
Mathematics tuith Applications 2 pp. J - 1 6 (1976).

9. J. McCharen, R. Overbeek, and L. Wos. "Problems and experiments for and
with automated theorem-proving programs." IEEE Transactions on Com-
puters C-25(B) pp. 773-732 (1976).

10. C. H. Meijer, B. Frogner, and A. B. Lang, "A Disturbance Analysis System for
On-Line Power Plant Surveillance and Diagnosis," in IAEA/NPPCSpecialists
Meeting on Procedures and Systems for Assisting an Operator During Nor-
mal and Anomalous Nuclear Poiver Plant Operation Situations (GRS-19).

0.
11. W. R. Nelson, "Reactor: An Expert System for Diagnosis and Treatment of

Nuclear Reactor Accidents," EGG-M-09782, (1982).

12. John von Neumann, The Theory of Self-Reproducing Automata. University of
Illinois Press (1966).

13. J. Rasmussen, "The Human as a System Component," pp. 68 in Human
Interaction-with Computers, (1980).

14. E. Seeman, R. W. Colley, and R. C. Stratton. '"Optimization of the Man-
Machine Interface for LMFBR's," HEDL-SA-2727, (1980).

15. R. G. Staker and D. W. Cissel. "EBR !I: More Than a Decade of Experience
with an LMFBR Power Plant," in Proceedings of the American Power Confer-
ence, (1976).

16. L. Wos. S. Winker, and E. Lusk, "An automated reasoning system," Proceed-
ings of the AFIPS National Computer Conference, pp. 697-702 (1981).



- 1 3 -

Appcndix A
A Sample Session

In this appendix we show some output from the prototype system. sti!l util-
izing the interface provided by intthp.

In the first example, states of components are entered which correspond to
startup mode for the system. The operator specifies that operating mode is
desired. The reasoning system correctly deduces the current mode of the sys-
tem and provides instructions on how to reach operating mode. System
responses are grven in bold face; user input is given in normal type.

Modes of Plant are Operating. Startup, Shutdown
Enter desired mode of operation
> Operating;

States of components are On. Off. Iso. Stdby. Failed. Maint
Enter state of KM1
>Off;
Eater state of EM2
>Off;
Enter state of Tin
>0n;
Enter state of Howl
>Off;
Enter state of Flow2
>Off;
Enter state of Han
> Stdby;

System is in Startup mode

TtornEHl on
Tkum Flovl on

In the second example, we enter states of components corresponding to a
situation in which the system was in operating mode when pump EY! failed. The
automated reasoning system deduces that the system is in an off-normal mode,
and recommends action to place it back into the desired mode.



- 1 4 -

Modes of Plant arc Operating, Startup, Shutdown
Enter desired mode of operation
> Operating;

States of components arc On. Off. Iso. Stdfay. Failed. Maint
Hater stale of KMl
> Failed;
Enter state of EM2
>Off.
Enter state of Tin
>0n;
Enter state of Howl
>0n;
Enter state of Flow2
>Ofi;
Enter state of Man

> Stdby;

System is in off-normal mode

Turn EK2 on


