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AN INTERPOLATION METHOD FOR THE TRANSPORT THEORY

AND ITS APPLICATION IN FUSION NEUTRONICS ANALYSIS

J. Jung

ABSTRACT

This report presents an interpolation method for the solution
of the Boltzmann transport equation. The method is based on a flux
synthesis technique using two reference-point solutions. The equa-
tion for the interpolated solution results in a Volterra integral
equation which is proved to have a unique solution. As an applica-
tion of the present method, tritium breeding ratio is calculated for
a typical D-T fusion reactor system. The result is compared to that
of a variational technique.

I. INTRODUCTION

It is quite frequent that nuclear designers face a situation where a series

of similar transport calculations are required for scoping possible parameter

variations of interest. Over the last decades, a great deal of methodologi-

cal sophistication has been developed to provide useful means for such a situa-

tion. The methods most frequently utilized are the variational and perturba-
2—23

tion theories. These methods feature: (1) evaluation of integral quanti

ties such as eigenvalues in fission reactors and tritium production rates in

fusion reactors; (2) requirement of, at least, two basic values of the forward
24

and adjoint (or its variant) solutions of the Boltzmann transport equation;

and (3) the associated error prediction of the second order in the sense of a

norm, in fact, Ref. 14 shows that several variants developed based on the

variation and perturbation theories are all equivalent with respect to the

accuracy as well as the required effort involved in obtaining the solution.

Several authors extended their methods to high-order approximations (see e.g.

Ref. 17) to improve the accuracy of the solution. It appears, however, that

the effort needed to increase the accuracy by increasing the order of approxi-

mation, is not less than the effort required to solve the original Boltzmann

equation.



The method presented in this report is based on a simple flux synthesis

technique ' using two reference-point solutions. In this regard, the basic

computational effort required for the present method is-not more than that for

the lowest-order variational or perturbation method. However, an attempt is

made in the present method to fully utilize the information given at the two

reference points in order to construct the energy- and space-dependent flux

solution of the Boltzmann equation. In consequence, a variety of intergral

(response rate) calculations can be done by a simple multiplication algebra.

The mathematical formulation of the present method is given in Chapt. II,

along with proofs of the existence of solution and of uniqueness of the solu-

tion. Chapter III is devoted to a numerical comparison of the present method

with the exact transport calculation. A comparison is also made with a varia-

tional method. Conclusions and a brief discussion of the present method are

given in Chapt. IV.

II. MATHEMATICAL FORMULATION

The time-independent particle (neutron/photon) transport in a reactor

system is governed by the Boltzmann transport equation,

L(j> = S . (1)

along with an appropriate geometrical boundary condition. S and <(i are the

external source and the flux solution, respectively, and the linear operator

L is expressed as:

(2)L = ft • v" + Z (r,E) - / dft' dE' Z (r, E' •> E, ft' •* ft) ,t J s

where Z and Z are the total and transfer cross sections, respectively,
c s

Given the two reference (point) solutions +1 and <J>2 of equations,

L V - S1 , i - 1.2 i (3)

let's construct the solution of Eq. (1) by

* - a*1 + (1 - a ) * 2 . (4)



In general, the angular flux +, and hence the coefficient a, is energy E,

angle Q- and position r dependent. Assume that in an infinitely small spatial

domain, &, a is weakly dependent on angle, i.e.,

<f> 2i a(E)*1 + [1 - a(E)]<j>2 , r e A . (5)

Substitution of Eq. (5) into Eq. (1), using the relationship of Eq. (3),

results in:

/ dE' dft* a E ^ 1 - a f dE' dfl' E ^ 1

+ / d E ' dfi'U - a)2s<f>2 - (1 - a) fdE' dft' (6)

The angular flux and the transfer cross section can be expanded with the
27

spherical harmonic functions as follows:

/2

£s(r, E* -> E, $' •* & = 2~i Ko(*> E' "* E)Pc(u) (8)

assuming that the angular transfer of I is dependent solely on the cosine of

scattering angle of y » fl • ft'. The spherical harmonic functions used satisfy

the following orthogonal relations: v

A - i U * 1 U 00-1-1 ^ ^

./' \

with Kronecker deltas of 5 , and <5 ,. \

Substitution of expansion1 (7) and (8) into Eq. (6), followed by integra-

tion of the resultant equation over the whole solid angle, ft yields a slowing-

down-type equation,



rA(E)a(E) - I dE' B(E' -> E)a(E') + Q(E) , (10)

where

A(E)

']•E)#g(E')J , (11)

B(E' + E) = ren(E' - E)U!.(E') - •$(£') , (12)

/ dE' Z80(E- •• E) - Z2?(E' •• E M ( E ' )

- k(E) - Z2(S)

Q(E) 80 ?

k 2 1 2 (13)

* 0 ( E ) = / d^ +X^,E,^) i = 1,2 , r e A (14)

and

£^0(E' •+ E) = / dr S*(r, E' •* E, if' •*• jj) , i » 1,2 r e A . (15)

Upon the derivation of Eq. (10) it is assumed that S - S1 = S 2 for simpli-

city. In addition, the r dependence of all the quantities is omitted, impli-

citly assuming that the equation is to be solved only within the spatial domain,

A.

Equation (10) is solved for the parameter a(E) that is, in turn, used for

the flux interpolation of

*0<E) - a(E)4>l(E) + [1 - a(E)]<|.2(E) , r e A (16)

derived from Eqi, (5).



The solution technique described above can be regarded as a flux synthesis

method in which the variation of the solution flux with angle and space is

largely represented by the reference-point fluxes, and the transport equation

is solved for the unknown a which is supposedly very weakly dependent upon

angle and space. In fact, the magnitude of the term which is omitted and

thereby introduces a primary error in deriving Eq. (10), i.e.,

R = /d^(ij)1 - 7a

will determine the accuracy of the present methct.

A. Existence of Solution

This section presents a proof of existence of the solution for Eq. (10).

ing A(E)

rewritten as

Assuming A(E) f 0 for an energy interval of 0 _<_ E < E , Eq. (10) is
max

f max
ct(E) = I K(E,E')ct(E') dE' + q(E) , (17)

E

in which K(E,E') and q(E) are defined as

K(E.E') = B(E' -* E)/A(E) (18)

and

q(E) = Q(E)/A(E) . (19)

28 29
Equation (17) is a Volterra integral equation ' of the second kind.

Following the procedure of Ref. 29, the existence of solution can be verified

as follows: Assume that q(E) is continuous and bounded in 0 < E < E and
— — max

that K(E,E') is continuous and bounded in 0 < E, E' < E . Consider an
~— — max

equat ion
r max

a(E) - \ I K(E,E')a(E') dE' + q(E) (20)

E

and a series expansion



a (E> • (21)
n=0 n

The question is whether a bounded series of a 's exist. Substitution of Eq.

(21) into Eq. (20) results in

/ * X to. (E) - I
n=1 I U JE

max

q(E) = oQ(E) + JLU X"jcn(E) - I K(E,E')an_1(E') dE'} . (22)

Therefore,

ao(E) = q(E) (23)

tmax

an(E) = / K(E,E')an_1(E') dE' , n = 1,2, . . . (24)

Defining M and N as the maxima of |q(E)| and |K(E,E')|, respectively, in

the variable range of interest, one finds that

/

max

dE'j a i ( E ) | < M • N I dE' * MNfE - Ej (25)
1 X 1 — • \ max »

r^max /E _ \2

(E - E') dE' = M • N2 • \max~ f . (26)
^ max / 2

E

In general,

]E E)n

< ^ n \ max ~ / < ( 2 7 )

n!

Consequently,



cx(E) < na (E)
n

n-0

,n V max

n!

< M
N nE n |max'

n=O n!

= M • exp [N|X|E "1
T ' ' max!

(28)

Therefore, the series expansion of Eq. (21) converges uniformly in

0 < E < E , which completes the proof.
~~~ IT13-X

kind,

When A(E) = 0, Eq. (10) results in a Volterra equation of the first
28,29

imax
dE' B(E' •* E)a(E') = Q(E) .

29

(29)

It is knovm that the first kind Volterra equation can be transformed to

its second kind equation under certain conditions. Let us assume that

a(E') is integrable over 0 < E < E" < E , i.e.,
— — — max

£ a(E') dE' » Y(E) . (30)

By a partial integration of Eq. (29), it follows that:

rmax i aax
dE' B(E' •> E)a(E) - -B(E •* E)y(E) +r 3E'

under the condition that B(E' •*• E) is differentlable. Assuming another property

of B(E •+ E) + 0, Eq. (29) results in /



J B(E f E) 3E' B(E ->• E)
E

which is a Volterra equation of the second kind already studied. All the func-

tional properties assumed for B(E' •*• E), such as the differentiability and

B(E + E ) ) I O will hold provided that £cn(E' •* E)[<|>
1(E') - ^(E)] is continuous

and the two reference fluxes, <f>g and <£? are distinct which seems to be the

case in most of the practical problems of interest.

B. Uniqueness of Solution

Since the existence of solution has been proven for both cases of

A(E) } 0 and A(E) = 0, it is sufficient to assume A(E) + 0 for the proof in

this section. Suppc

then from Eq. (20),

this section. Suppose that a (E) and a (E) are two solutions of Eq. (17),

E
t max

8(E) = aI(E) - aIi;(E) = X I K(E-,E)B(E') dE' . (33),

This is a special case of q(E) = 0 in Eq. (17). Therefore, from Eqs. (23) and

(24),

Bn(E) = c£(E) - o"(E) - 0 , n - 0, 1, 2, . . . , (34)

and then,

fJ(E) = ar(E) - a n(E) - 0 , (35)

which completes the proof that Eq. (17) has a unique solution.

G. Multigroup Formulation

This section provides a multigroup formulation of Eq. (10) in order to

utilize existing cross-section libraries of multigroup format. Dividing the

whole energy interval of 0 < E < E into multigroups such that
~~ *~ mdx



and integrating Eq. (10) over E .. <_ E £;E , one finds that
© -JO

g

A8a -v 2Ll B8 ̂ a o . + (f , (36)
g " g-»i

 8

where

L

a8 - — / o

and

Equation (36) can be rewritten as

g

Q8 -

6g _ I *0(E) dE , , (40)

(E) dE (Al)



g « 1, 2, . . . (43)

assuming A - B ^ 0.

Once a 8 is solved, the interpolated flux solution is obtained by

*0 " A ! 8 + I1 - a 8 X 8 ' g - 1, 2, .-. . (44)

The formulation given here assumes that the system under consideration does not

involve neutron multiplication due to fission and the neutron energy transfer

is purely downward (slowing down). In the case of multiplication problems,

Eq. (36) must be iteratively solved.

III. NUMERICAL EXAMPLES

As an application of the present method, a tritium production problem is

considered for a D-T fusion reactor based on a one-dimensional infinite-

cylindrical model. The system dimensions and material compositions used are

as follows: j;
/'

i.l^ ^ _ Material Compositionone

1.

2 .

3 .

4 .

5 .

Radii (m)

0-2.00

2.00-2.20

2.20-2.21

2.21-2.71

2.71-2.91

,1
D-T source neutron (14-^4eV) region; vacuum

Scrape-off region; vacuum

First wall, Type 31# stainless ^rel (SS)

Blanket: 852 liqui/d lithium + 15% SS

Shield: 45% B^C f 45% SS + 10% He
!

The transport calculations for the reference fluxes as well as for the

exact solutions which are to be compared with the present nethod, were performed

bv a one-dimensional discrete-ordinate code, ANISN with the S8-P3 approxlM-
i 31 32

tion. The transport cross-section library and response function library
•̂  0 3

used are both based on ENDF/B-IV. It should be noted that Ref. 34 shows that
the ENDF/B-IV data for the 7Li(n,n'o)t cross section are about 10-15% higher

10



than those experimentally measured. Since the liquid lithium blanket analyzed

in this section has a relatively hard neutron spectrum, it is expected that the
7Li breeding ratios (BR's) calculated here are subject to an adjustment. How-

ever, the numerical verification of the present method itself should not be

affecred within the consistency of the data libraries used.
i

i •

Figure 1 shows the isotopic tritium BR's due to the 6Li(n,a)t (T6) and
7Li(n,n'a)t (T7) reactions as a function of

 6Li enrichment. In this example,

the two reference-point calculations are made at 6Li enrichments of 7.52 (natural

lithium case) and 90%, and all other enrichment cases are interpolated from the

reference points, based on Eqs. (43) and (44). The number of energy groups used

is 46 for neutron and 21 for photon. Also shown in Fig. 1 for comparison are

the BR's obtained by direct ANISN calculations. It is found that the interpola-

tion method can predict the nonlinear T6 variation wtihin a maximum error of

^2.5% for a very wide range of 6Li enrichment. With regard to T7 BR, there is

no appreciable difference («1%) between the present method and the exact cal-

culation by ANISN.

1.0

0.8

a:
o
z
Q
U
UJocm

0.6

0.4

0.2

Q INTERPOLATION
EXACT

r- •

40 60 80 100

Li ENRICHMENT, %

Fig. 1. Tritium breeding ratio by the interpolation method
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The interpolation method can predictnot only integral quantities such as

a system total BR as shown above, but also space- and energy-dependent solutions

in between the two reference points. The example shown in Fig. 2 presents the

spatial variation of the specific T6 and T7 BR's in the lithium blanket, which

is interpolated for a 6Li enrichment of 50%. The reference points are the same

as those used previously. One notices an excellent agreement between the pres-

ent method and direct ANISN calculations for both T6 and T7. Figures 3 and 4

show, respectively, the interpolated neutron and photon spectra for the same
6Li enrichment of 50%. The spectra are plotted at the midpoint of the lithium

blanket <>26 cm from the first wall surface). It is seen that the difference

in the neutron spectrum between the two calculations is negligible at energies

above ̂ 100 keV and below VLOO eV. The maximum error in the energy range between

VLOO eV and ^100 keV is about 15%. In the case of the photon spectrum, the

difference is quite trivial. Figure 5 illustrates the energy-dependent inter-

polation factor a used to construct the particle spectra shown in Figs. 3 and 4.

As shown, the variation of a with energy is very substantial, ranging from ̂ 1

to -vlO~5. It is inferred from this result that the effect of the transport

operator change (due to the 6Li enrichment variation in the present case) on

the solution flux is mostly represented by its variation with energy, and is

much less dependent upon its angular and/or spatial variation, at least for

the present example.

Table I shows a comparison of the tritium BR's calculated by the present
12 13

method and by E. Cheng and R. Conn's variational interpolation method. '

In Refs. 12 and 13, they have numerically proved that their method can yield

much more accurate functional evaluations for a broad range of parameter varia-

tion than can conventional perturbation and variational methods. They have

derived two forms of the two-point variational interpolation functional, viz.,

linear (Roussopoulos ) form and fractional (Schwinger ) form. Both of them are

compared in Table I with the present interpolation method as well as the exact

numerical values of ANISN. The two reference 6Li enrichments chosen for their

method are also 7.5% and 90%. Due to the unnormalized functional characteris-

tic, the linear form solution shows nontrivial deviations from the correspond-

ing exact calculations. The maximum error amounts to ̂ 14% for the T6 calcula-

tion, at 25% 6Li enrichment. The result of the present method favorably com-

pares with the Schwinger form calculation, their respective maximum deviations

being only -2.5% and +1.8% relative to the ANISN calculations.

1(12



o.2 0.3 o:4
DEPTH IN BLANKET, m

Fig. 2. Spatial dependence of tritium production.
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Fig. 3. Neutron spectrum by the interpolation method.
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Table I

Comparison of Present Method with Variational Method

in Tritium Breeding Ratio Calculation

1.

2.

3.

Method

Variational interpolation

i. Linear form

ii. Schwinger form

Present method

Exact

25%

0.749

0.883

0.845

0.867

0

0

0

0

- BR

50%

.832

.939

.915

.928

*Li-

75%

0.916

0.959

0.951

0.955

Enrichment

25%

0.297

0.293

0.293

0.293

T7 - BR

50%

0.197

0.192

0.191

0.191

75%

0.0938

0.0939

0.0938

0.0938

Ref. 13; Eq. (11).

3Ref. 13; Eq. (12).

S8-P3 ANISN calculation.

IV. CONCLUSIONS AND DISCUSSION

An approximate solution technique for the Boltzmann transport equation has

been presented based on a flux synthesis method. The Volterra integral equa-

tion derived has been proven to have a solution which is unique. The present

interpolation method can provide not only integral response rates such as BR,

but also energy- and space-dependent particle fluxes. Basically, two forward

transport solutions are required for the present method. The tritium BR cal-

culated for a typical D-T fusion system shows an excellent agreement with the

exact transport calculation by ANISN. The present method calculations also

favorably compares with the result of Cheng and Conn's Schwinger form calcula-

tion of the two-point variational interpolation functional. It remains to be

further studied whether the method presented can be applied to a broader class

15



of problems such as (1) variation of any blanket material compositions includ-

ing structural material, coolant, etc.; and (2) different zone thicknesses

(e.g., accommodation of a neutron multiplier in a fixed blanket thickness).

The choices of L1 and L 2 given in Eq. (3) depend upon specific problems

one wishes to solve. The present method allows interpolations for changes in

cross sections as well as in geometries provided that a consistency among ij)1,

<J>2, and $ is guaranteed with respect to the energy group structure, and the

system boundary configuration. The present method has, however, no capability

to provide the prediction of errors involved except for the two reference points.

In this connection, the error term R shown in Sec. It, will merely afford an

approximate posterior estimate on the solution precision. Prediction of errors

inherent to the present interpolation also remains to be further investigated.
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