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ABSTRACT

Optimal double-T bundle divertor configurations have been obtained

for the Fusion Engineering Device (FED). On-axis ripple is minimized,

while satisfying a series of engineering constraints. The ensuing non-

linear optimization problem is solved via a sequence of quadratic pro-

graming subproblems, using the VMCON algorithm. The resulting divertor

desig; > are substantially improved over previous configurations.

I. INTRODUCTION

Bundle divertors are being studied as one means of active control

for impurities, as well as for shielding the first wall from particle

and heat fluxes. External magnet coils create a field that opposes the

tokamak toroidal field. Divertor control is then a result of plasma

particles following the field lines past the separatrix and into a

collector/pumping zone (1). In comparison to poloidal divertors (2),

bundle divertors are more compact and do not link other magnetic coils,

allowing size reductions in the toroidal field (TF) and poloidal field

(PF) coils. Although there is a large, local perturbation due to the TF

null of a bundle divertor, access is easier for vacuum pumping and

maintenance. Also, a bundle divertor appears capable of protecting the

first wall throughout a burn cycle. However, the operation of a poloidal

divertor is sensitive to variations in both the plasma and PF coil

currents, making wall protection difficult.



Past bundle divertor studies have concentrated on engineering

aspects of bundle divertor design (see, for example, Ref. 3), but more

recent works have also included the physics effects of magnetic ripple

(4-9). While only Refs. 4-6 assess the qualitative effects of ripple on

plasma transport, all agree that adverse effects decrease with lower

ripple. In their study of ergodicity and magnetic island formation in

the plasma equilibrium as well as fast ion confinement, Yang et al. (7)

demonstrate markedly reduced ripple effects by examining various bundle

divertor configurations. Bateman and Theriault (8) have studied a

variety of hybrid bundle divertor designs to obtain low ripple config-

urations. However, Refs. 7-8 do not consider ripple optimization of a

fixed configuration. Our previous study (9) focussed on engineering-

constrained ripple optimization of the double-T bundle divertor and

obtaining very low ripple designs with minimal ripple effects. More-

over, we showed that divertor-created, on-axis ripple above 0.3% causes

the loss of most banana-trapped fast ions. These losses would be un-

acceptable in the Fusion Engineering Device (FED) using quasi-perpen-

dicular injection or ion cyclotron resonance heating. In addition,

these designs (of Ref. 9) require large, expensive copper coils, which

would dissipate >100 MW of resistive power. Consequently, a bundle

divertor is now considered only as a backup option to a poloidal diver-

tor in FED.

The present work extends the effort of Ref. 9, using an improved

optimization technique. The ripple optimization model is summarized in

Sect. II, and the resulting optimization problem is described in Sect.

III. The results are presented in Sect. IV along with our conclusions.



II. RIPPLE OPTIMIZATION MODEL

Both fast ion and background plasma confinement may be degraded

by divertor ripple. Nonaxisymmetry in a diverted tokzunak causes fast

ion losses due to particle trapping in localized magnetic wells. In

one process, an ion can be collisionlessly trapped due to its finite

orbit size when there is insufficient parallel velocity (at a banana

tip) to escape from a ripple well. Such a ripple-trapped ion oscillates

within the well, while drifting vertically into larger ripple, and is

lost to the wall. Another process is collisional ripple trapping due to

pitch-angle scattering at a banana tip. Collisional detrapping can

occur by the inverse process. There is also banana-drift diffusion

because large banana-width orbits fail to close exactly in the presence

of ripple. This arises from a ripple-induced variable lingering period

as the banana tip passes through a magnetic well. Usually, the bundle

divertor produces a local maximum in B on each side of the ripple well,

yielding a new ripple-induced trapping process. In particular, a

particle can become banana-trapped between the divertor-created maximum

and the usual 1/R increase in the toroidal field and then rapidly drifts

out of the tokamak. These mechanisms cause outward radial transport

and loss of fast ions, thus degrading plasma heating by neutral beams,

fusion products, and rf heating.

Also, ripple degrades background plasma confinement by enhancing

the coefficients for ion heat conduction and spatial diffusion. A

badly designed diveztor may ergodize the equilibrium field lines,

causing further deterioration in plasma confinement or even inducing

plasma disruptions. While these deleterious influences are not well



tested experimentally, it is prudent on theoretical grounds to assume

that such effects are important. Consequently, minimizing divertor-

induced ripple leads to a conservative set of optimization criteria.

The optiiaization model minimizes on-axis ripple by varying nine

design parameters, subject to the following engineering constraints (see

Fig. 1):

(1) a magnetic coil current density of 6 kA/cm2,

(2) the front T-coil lying outside the scrape-off zone,

(3) the (a) vertical and (b) horizontal hole clearances through

the divertor coils larger than chosen values,

(4) no interference between the front and back T-coils, and

(5) the innermost edge of the flux bundle lying beyond the back

T-coil.

Although the algorithm of Ref. 9 imposed several equality restrictions,

such equality constraints are unnecessary. However, in the course of

minimizing ripple subject to these constraints via the present method,

several of the constraints (2 and 3a in the front T-coil) are satisfied

as equalitites within 10"3-10~l*. The coil currents are chosen so that

the separatrix joins the plasma edge far from the divertor. The total

magnetic field is the sum of an axisymmetric, noncircular equilibrium

field and the vacuum divertor field, which is calculated using the Biot-

Savart law assuming filamentary coils. Toroidal field ripple is pre-

sently excluded, making the current results pessimistic. Details of the

model are presented in Ref. 9 and will not be repeated here.



The ripple is calculated by integrating toward the divertor along

a field line, beginning at a point far from the divertor. The resulting

peak-to-average ripple 5 is ( B ^ - Bmin)/(B|nax + B B i n ) , where B ^ and

B . are the maximum and stinimum values of the field strength along thenun

field line. The positive ripple & is defined as (B - B )/B ; simi-

larly, negative ripple 6" is given by (BQ - 3min)/Bo. Here, BQ is the

average field strength along the field line. For the best ion confine-

ment, Bateman et al. (4) suggest that more weight be given to minimizing

6" than &*. However, our work shows that minimizing either 6+ or 6",

while holding 6 below a fixed value, yields essentially the same

optimum as minimizing 6. In addition, confinement studies cf such

minimum-6 designs show excellent fast ion confinement (9). Therefore,

we have chosen to minimize 6, subject to the above engineering con-

straints.

III. COMPUTATIONAL PROBLEM

A computer code DIVOPT has been developed to solve the double-T

bundle divertor optimization problem. The code in its original form

(9) required 60-90 cpu min on the CDC7600 at the Magnetic Fusion Energy

Computer Center (MFECC) at Livermore, California. By changing the

code from the CHATR compiler (10) to the F7N compiler (11), the compu-

tational speed was increased by a factor of 4-5. An additional two-

fold speed improvement was obtained by calculating the vacuum divertor

field from current loops using the BLOOPS routine (12) rather than

from the simple sum of many straight wire filaments. Finally, the



NAGLIB optimizer E04UAF (13) was replaced by VMCON (14), which yielded

a further speed increase of 4-5 fold, accompanied by substantially

lower ripple divertor designs. The remainder of this section discusses

some of the present optimization techniques and the considerations that

led to the use of VMCON for the FED divertor optimization.

The general nonlinear programming problem (NLP) can be written as

Minimize f(x)
subject to

ci(x) = 0 i = 1, ..., k (1)

ci fx^ — ® i = k + 1, ..., m ,

where x is an n-vector of unknown variables, i.e., x e R . Each of

the functions f: R •*• R and c : R •+ R are assumed the be continuous

and differentiable. Frequently, in order to assure convergence rate

properties for an algorithm, it is necessary to assume continuous

second or higher order derivatives.

There are many special cases of Eq. (1) that are useful in them-

selves and easier to solve, e.g., linear programming, quadratic pro-

gramming, and linearly constrained nonlinear programming. We will have

occasion to deal with convex quadratic programming (QP) subproblems

later in this section. These problems have the form

IT TMinimize y x Qx + c x

subject to

Ax # b , (2)

where Q is an n x n positive definite matrix, c is an n-vector, A is

an n x n matrix, b is an m vector and # is an m-vector of relations.



The components of # are 'V', "_<", or "=" and denote the nature of the m

linear constraints in Eq. (2). One of the virtues of QP problems is

that unlike a Newton's method algorithm (which involves an infinite

sequence of iterations), algorithms to solve QP exist that require only

a finite number of steps (15).

A solution x* to NLP must satisfy the first-order necessary condi-

tions. Furthermore, algorithms to solve NLP attain convergence by

satisfying the Kuhn-Tucker (KT) conditions (16), which are

m

Vf(x*) - £ X?7ci(x*) = 0 (3a)

X. > 0 i = k + l , . . . , m , (3b)

X±ci(x ) = 0 i = 1, .... m , (3c)

c,(x*) = 0 i = 1, .... k , (3d)

c^x ) ^ 0 i = k + 1, ..., m , (3e)

where X is the vector of Lagrange multipliers. Notice that Eqs. (3d)

and (3e) provide for feasibility of x*. Equation (3c) ensures the

complementary nature of X. and c.(x*). Equation (3a) can be interpreted

as

VxL(x*, X*) = 0 , (4)

where



L(x, A) = f(x) - £ A.c.(x) . (5)
i - 1 X

See Ref. 16 for further discussion of the KT conditions.

With the above background we can now consider algorithms to solve

NLP. The field of algorithm and software development for solving NLP

is an active and dynamic one. While we will mention only two approaches,

there are many more (e.g., see surveys of Refs. 15 and 17). Techniques

for solving NLP frequently deal with generating sequences of easier-to-

solve subproblems. The first approach begins from the observation

that in solving NLP we are simultaneously trying to do two things:

minimize f(x) and satisfy the constraints. If we could formulate a

single function to minimize, or even a sequence of such subproblems,

then unconstrained minimization techniques could be applied. This

approach is the basis of penalty functions (18) and augmented Lagrangian

(15) methods. The augmented Lagrangian techniques are more recent and

do not possess asymptotic ill-conditioning properties that penalty

functions possess. In either case, a sequence of unconstrained problems

are generated and can be solved (16) using standard techniques (usually

conjugate-gradient, quasi-Newton, or Newton-like algorithms).

The second approach to solving NLP deals with solving sequences

of QP subproblems. After each QP is solved a line search is conducted

(i.e., a function of a single variable is minimized) to determine

the new solution estimate. There are various specific algorithms

based on this approach, some of which are discussed in the surveys

of Refs. 15, 17, and 19. The specific algorithm that we will discuss

is based on one given by Powell (15) and implemented in the software

package VMCON (14).



The QP subproblem is obtained by approximating the Lagrangian

in Eq. (5) with a positive definite quadratic function and linearizing

the constraints about the solution estimate for the j iteration (x3}.

The solution of QP provides estimates of the Lagrange multipliers XJ and

a search direction vector 6^. The line search involves minimizing a

function $(x? + aS"*), which is chosen to balance the desire to minimize

f(x) and to satisfy the constraints. Note that a controls the step-

length in the direction & and is the independent variable in the line

search. The specific form of the function is

k m

<Kxj + ot6j) = f(x) + £ u:?|c.Cx)| + £ i4|min[0,c.Cx)]| , (6)
i = 1 x x i=k+l x *

where x = x** + a6 and u is an m-component vector defined as

j j \ f j j > l . (7)

u is chosen to ensure that as j increases the constraints will be more

nearly satisfied. The function in Eq. (6) is nondifferentiable, and

this complication is dealt with in VMCON. After a new point is found

with an a? that improves Eq. (6) sufficiently, we use x 3 + = y? + a?6^

for the next QP. Notice that it is not necessary to minimize Eq. (6)

but just to find an improved point.

To conclude the description of the VMCON algorithm we return to

the QP subproblem. If the objective function in QP was truly a

quadratic approximation of the Lagrangian, it would be necessary to



provide second-order information about f and c , i.e., V f(x) and
1 JUt

V_.-.c. (x) at each iteration. Instead, we use quasi-New ton methods to

update the matrix Q. Thus, Q is a quasi-Newton estimate of 7 L(x, X),

and we only need f(x), ci(x) and their gradients to use VMCCN. (For the

FED optimization we use finite-difference estimates of these gradients.)

At the conclusion of the line search we have x-1* and xJ available in

the form:

5 = x j + 1 - xj, y = V L(xJ+1, X^) - 7 L(xj, Xj) . (8)V x L ( x , X ) Vx

A standard unconstrained quasi-Newton method (16) is then used to

obtain an updated value of Q, QMP W, for the next QP subproblem:

For use in VMCON the formula for y is modified to ensure that Q remains

positive definite (see Ref. 14). The initial estimate of Q is any

positive definite symmetric matrix. While the identity is used as a

default-starting matrix in VMCON, it is important to take the actual

problem scaling into account in generating this initial estimate of

VxxL(x, X).

Finally, we conclude this section with some comments about algor-

ithm evaluation. The process of evaluting algorithms and software for

solving NLP is quite complex and is, in itself, an important research

subject. Clearly, no single software package will outperform all

ethers on all problems. Thus, when examining evaluation data one



should be careful to examine the nature and structure of the test

problems etc. (see Refs. 20 and 21). Nevertheless, in terms of func-

tion and gradient evaluations, which are the sources of most of the

computational cost in the FED optimization, VMCON requires from 3-20

times fewer evaluations than a reduced gradient method (20). In com-

paring VMCON-like techniques with penalty/augmented Lagrangians,

Schittkowski (21) obtains similar statistics. These results are con-

sistent when we consider the nature of the algorithms involved. The

penalty/augmented Lagrangian methods use function evaluations to obtain

an accurate minimum to each unconstrained subproblem and then generate

a completely new unconstrained problem to solve. VMCON-like methods

do not use function evalutions while solving the QP subproblem. The

reduced gradient methods, which are a third approach to solving NLP (16)

and have been popular during the past decade, spend a large portion of

their function evaluations in retaining feasibility as the algorithm

proceeds. VMCON-like algorithms gradually attain feasibility and thus

use their function evaluations more efficiently.

IV. RESULTS AND CONCLUSIONS

For FED (22), constrained optimization of an unshielded, double-T

bundle divertor yields very low ripple designs, as shown in Fig. 2.

Nuclear shielding is not required for the divertor because FED is a

subignition device. Optimal designs were obtained for a high-beta

(6%) FED equilibrium so the magnetic axis is shifted outward into the

higher ripple region by 0.2 m. Compared to the results of Ref. 9,

the ripple values in Fig. 2 are lower by a factor of 2-3 for the



0.3 x 0.4 m bore designs. However, 0.05-0.08 m of structure would be

required around the coils (not included in the model of Ref. 9). The

corresponding bore size would then be an unrealistically small value

of 0.14 x 0.24 m. The optimal 0.5 x 0.6 m bore divertor was not

obtainable using the optimization method of Ref. 9. This design (see

Fig. 3) has a realistic bore of 0.34 x 0.44 m when structure is included,

having a magnetic scrape-off thickness of 0.22 m. The corresponding

power dissipation is 86 and 161 MW in the front and back T-coils,

respectively. However, there is sufficient space to add nuclear shield-

ing to the back T-coil for superconducting operation. This design

would fit between two adjacent TF coils; additional coils would be

needed to expand the diverted flux bundle near or beyond the outer

legs of the TF coils. The resulting contours of constant ripple (see

Fig. 4) are nearly vertical, with an exponential decrease from the

outboard plasma edge (6 = 30%) to the magnetic axis (6 = 0.093%).

The confinement of collisionless, neutral-beam-injected, 150-keV

D ions has been calculated using a field line orbit code (23). For

nonoptimal divertors with on-axis ripple above 0.3%, most of the

bananas are lost; circulating ions are well-confined. For the optimal

cases, only bananas with tips in higher ripple regions (6" > 0.4%) are

lost; see Fig. 4 for results from the large bore case, described

above. These loss orbits are usually D-shaped or small bananas, having

tips outboard from the magnetic axis. Evaluation of collisional confine-

ment for fast ions in a diverted plasma is in progress. Fast ions

resulting from near-tangential injection are expected to be well

confined.



In conclusion, significant improvements in low ripple bundle

divertor configurations have been obtained, yielding much better

designs than previous efforts. Such designs are compact and fit

between adjacent TF coils. While experiments using high ripple

divertors on DITE will clarify the deleterious ripple effects, the

present lack of definitive results should not prejudice future work

on advanced divertor designs.
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FIGURE CAPTIONS

Fig. 1. Schematic drawing of double-T bundle divertor, including the

optiudzable dimensions: R., L., D., R~, L-, and D~; the coil

heights Hj and H 2 are not shown.

Fig. 2. On axis-ripple, 5, for an optimized double-T bundle divertor

on FED versus scrape-off thickness T for 0.3 x 0.4 m and

0.5 x 0.6 m (width x height) free bores through the coils.

Fig. 3. Detailed configuration for the large-bore, double-T bundle

divertor, showing field lines and coil parameters.

Fig. 4. Contours of constant ripple for the large-bore divertor of

Fig. 3 with a high-3 (3 = 6*0 FED equilibrium. Collisionless

confinement of 150-keV D ions has been calculated; each

letter indicates the position of the banana tip for ion

orbits that are ripple trapped (R) and lost, well-confined

(C), and ergodic (E) for which confinement must be evaluated

collisionally.
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