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PREFACE

Oak Ridge, Tennessee was the sife of the May 13-14, 1981, EBT
Stability Theory Workshcp. It wes attended by more than 80 partici-
pants, including cssentially all of the physicists who have worked
and/or are presently working on stability (theory and/or experiment)
relevant to the EBT configuration.

The workshop urganizing committee members were:

N. A. Uckan, Chairman, Oak Ridge National Laboratory
C. L. Hedrick, Chairman, Oak Ridge Mational Labcratory
D. E. Baldwin, Lawrence Livermore National Laboratory
H. L. Berk, University of Texas at Austin

H. Grad, Courant Institute, New York University

N. A, Krall, JAYCOR

D. A. Spong, Oak Ridge National Laboratory

The purpose of the workshop was to provide a forum for (1) discus-
sion and review of the status of the EBT stability theory not often aired
at more academic conferences and (2) assessment of the various models
used as well as the importance of modes predicted from these models on
the operating regimes of past, present, and future experiments.

The first part of the workshop was devoted to presgentations of 15
papers describing the status and various aspects (theory and/or experi-
ment) of the EBT stabiiity. The second part of the workshop was devoted
te enthusiastic open-session discussions of (1) critical evaluations of
existing models and (2) the influence of predicted beta limits on reactor
performance.

These proceedings include (1) workshop summaries prapared by the
session chairmen (N. A. Uckan, D. E. Baldwin, H. L. Berk, H. Grad,

C. L. Hedrick, N. A. Krall, and D. A. Spong) and (2) full-length manu-
scripts that were submitted to the workshop and presented at the
following workshop sessions: Overview (3 papers); Experimental Obser-
vations (2 papers); Ring-Core Coupling, Low Frequency Modes (4 papers);
li1gh Frequency Modes (2 papers); Equilibrium and {alculational Formalism
of Stability (3 papers); and Reactor Implications (1 paper). An Author

Index, the Attendance List, and the Agenda conclude the proceedings.
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(Because of the camera-ready publication, the variations in style and
format were inevitable.)

The workshop was sponsored by the Fusion Energy Division (FFD) Oak
Ridge National Laboratory (ORNL) and could not have been successful
without the efforts of many dedicated individuals — the Workshop
Organizing Committee, Session Chairmen, Authors, participants, and last
but not least, the workshop secretaries.

The chairman wishes to acknowledge a special appreciation to four
delightful coworkers: Caila Cox, the workshop secretary, who handled
a myriad of details prior to, during, and after the workshop in an
efficient, complete, and professional manner; DelLena Akers, her secre-
tary, who handled all aspects of the abstracts and preliminary program
along with the preparation of many of the drafts and/or incomplete
manuscripts submitted by some of the authors while simultanecusly
performing her ORNL work in exemplary fashion; Susan Stockbridge, who
handled all of the art work and designed the covers of the abstract
booklet (distributed during the workshop) and these proceedings; and
Ethel Cagle, who coordinated the assembly of the papers. Thanks are

also due to the staff of the FED Reports Office, the editors, and graphic

artists who handled much of the workshop paperwork.

Nermin A. Uckan
Oak Ridge, Tennessee
June 1981
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1. INTRGDUCTION

The first workshop on the ELMO Bumpy Torus (EBT) stability theory was
held at Oak Ridge, Tennessee, May 13-14, 1981. It was attended by about
80 participants, including essentially all of the physicists who have
worked and/or are presently working on stability (theory and/or
experiment) relevant to the EBT configuratioa in one way or the other,

The organizing committee members who arranged the workshop were:
C. L. Hedrick and N. A. Uckan (Chairmen), D. E. Baldwin, H. L. Berk,
H. Grad, N. A. Krall, and D. A. Spong.

The purpose of the workshop was to provide a forum for (1) discussion
and review of the status of the EBT stability theory not often aired at
more academic conferences and (2) assessment of the various models used as
well as the importance of modes predicted from these models on the
operating regimes of past, present, and future experiments.

The first part of the workshop was devoted to presentations of 15
papers uescribing the status and various aspects (theory and/aor
experiment) of the EBT stability. The second part of the workshop was
devoted to enthusiastic open-session discussions of (1) ecritical
evaluation of existing models and (2) influence of B8 1limits on reactor
performance.

The proceedings containing the summary of the workshop and the
full-length papers presented will be published by the Oak Ridge National
Laboratory [EBRT Stability Theory, Proceedings of the Workshop,
CONF-810512, 0Oak Ridge, Tennessee (1981)]. It is convenient to review the

workshop under subject headings chosen for the sessions,

2. OVERVIEW (Chairmen: N. A. Krall and N. A. Uckan)

There 1is perhaps more background information on EBT stability, both
theoretical and experimental, than most of us realize; thus, the workshop
began with an overview session that described a good bit of this
background. Theoretical reviews were given by Guest and Spong. A brief

survey of experimental investigations was presented by Haste.



The EBT has several features that make the theoretical treatment of
its stability difficult and quite different from other confinement
devices. This 1is due largely to the presence of high-g, hot electron
rings that modify the magnetic field to produce a local magnetic well 1in
each mirror sector. Stability problems often fall into two general
categories, macrostability and microstability. However, in EBT these
distinctions are somewhat complicated by the requirement of kinetic
treatment for traditional macroscopic modes (interchanges, for example)
because the requirements for MHD (large scale length, long time scale,
slow drift velocity, etc.) are not satisfied by the hot electron rings.
This also results in a given class of modes being called different names
by different authors in the literature, and the clarification of mode name
definitions was one of the lengthy and fruitful discussions in the open
forum({). Kevertheless, there are macrostability properties that
influence 8 limits, stable opcrating regimes, acceptable geometries, etc.,
and there are microinstability properties, that influence boundary layer
behavior, radial transport, ambipolar potentials, possible impurity
transport and heating, etc. Both of these aspects of stability were
treated in the workshop.

Thers 1is a large body of stability work relevant to EBT, including
studies based on mirror machines, Z-pinch, 6-pinch, and general high-g8,
hot electron, and strong curvature studies, in addition to studies
specific to EBT. The gerneral form of these results is to determine the
limits of density (mp/wc)o beta (B), anisotropy (TL/T"), ete.: theories in
increasing layers of complexity have attempted to derive these limits,

Instabilities considered by the early MHD work, reviewed by Guest,
include anisotropy driven modes and loss cone modes, which predict a
steble window of density, centered around Wpe ¥ Weeo surrounded by
instability at both much lower and much higher densities. Another
ingtability of this type is the UWhistler, which 1limits the anisotropy
TL/T" of the ring plasma. The most amrnoying instability in early MHD work
was the ring interchange mode, which in simple model predicted instability
even at B » 0 for global modes and at higher B for ballooning modes, which
is contrary to the experimentally observed stability. later work has
provided an explanation for ring stability im that the inclusion of a cold
plasma background stabilized the global ring interchange, and the high



precessional drift frequency of the hot electrons uyy, (which i3 comparable
to ion cyclotron frequency “ci) permitted stabilization of ballooning
modes. Conventional fluid or gulding center theories were inadequate
because thr. kinetic effects were expected to be 1important due, for
example, to the observation that the hot electron diamagnetic drift was
comparable or greater than the thermal speed of the background plasma and
larger than characteristic frequencies for typical MHD of interest.
Further, the ring width was not a great deal larger than few hot electron
and cold plasma 1ion gyroradii, and the perpendicular wave length of the
flute modes can be comparable for relatively low poloidal mode numbers,

During the past several years, EBT stability calculations have
evolved with respect to treatment of ring-core plasma coupling effects.
Some effects, reviewed by Spong, of treating the multispecies problems and
of including kinetic effects were that (1) the core is unstable against
interchange instability at low ring B (bad curvature), and rings stabilize
the toroidal core 1if ring pressure 1is high enough to create a local
magnetic well (e.g., Bring $ 28/<Ry>, where A and <R > are the
characteristic ring scale length and average magnetic radius of curvature,
respectively), (2) ring stability requires a finite level of core density
(e.g., Nao1d’Mhot > Some number), (3) core plasma becomes interchange
unstable if core g is larger than a few A/R,, (4} high m modes (where m is
the poloidal wmode number) are dominated by kinetic effects, (5) core
density is limited by compressional Alfven waves, and (6) ring density is
limited by ring interchange instability at high ring B.

On the experimental side, there is a wealth of cbservations of
fluctuations on devices related to EBT. These devices include simple and
minimum-B wmirrors, canted mirrors, and toroidal geometries. A brief
survey of results from these experiments, presented by Haste, indicated
that fluctuations from very low frequencies ({100 kHz) to frequencies in
the few GHz range are observed, with peaks that can be related to
theoretical prediction, For example, fluctuations are observed in the
plasma core, which disappear when the ring B reaches a value consistent
with theoretical predictions of average min-B stability. Anisotropy
driven modes of hot electrons were also observed, however, they were
stabllized by the addition of upper off resonance heating. Theoretically,
the stabilizing cffect of upper off resonant heating was shown to be due



to the reduction in temperature anisotropy of the hot electrons and the
relativistic broadening of the particle cyclotron spectrum. It would be
far too sanguine to imply that all or most of these observed fluctuations
correlate with theory. The diagnostics of most of these experiments would
not be sufficient to demonstrate such correlation even if it existed, The
details of this overview, contained in three papers by Guest, Spong, and
Haste of this workshop, provided the framework for the ongoing research,

which was the business of the workshop.
3. EXPERIMENTAL OBSERVATIONS (Chairmen: W. B. Ard and H. Crad)

Nearly twenty years of experimental investigations of instabilities
exist in hot electron plasmas; much of it was surveyed in the overview
session and much of it was compiled in the EBT Ring Physics Proceedings
[1]. 1In this session two specific papers were presented by the Qak Ridge
group (Bighel et al.) on fluctuation measurements in EBT and by Alexeff on
a small scale hot electron ring experiment,

The study of plasma fluctuations could play an important role in
understanding EBT transport as well as stability. Fluctuations in EBT
have been measured with several techniques, including rf measurements with
loop antennas, movable Langmuir probes, and visible light sensors. As
described by Bighel, several features of the fluctuations have been
observed: (1) they are predominantly low frequencies (<200 kHz), (2) the
C-T-M mode hierarchy can be correlated with the fluctuation activity where
the [luctuation amplitude decreases at the C-T transition with the
formation of hot electron rings and increases near T-M transition, (3)
high frequency fluctuations, especially in the T-mode, are generally found
outside the rings, and (4) enhanced fluctuations near the T-M transition
may have some correlation with the increased high energy ion-tail
densities and deep potential wells [2].

In a small magnetic mirror experiment, a hollow ring has been formed
by electron cyclotron heating (~2.8 GHz) in close proximity to the wall.
Mexeff pointed out that the ring was stable and the ring stability was
not due to "line tying;" however, moving the ring from the wall caused
instability. It was pointed out that there was not enough cold plasma to
stabilize the ring.



4. RING-CORE COUPLING, LOW FREQUENCY MODES
(Chairmen: D, E. Baldwin and C. L, Hedrick)

The theory of Van Dam and Lee, developed two years ago and presented
at the Ring Physics Workshop [1], which limited the core plasma g-value
that could be MHD stabilized by a hot electron ring, had profound
implications for the EBT reactor concept. It also has an important
bearing on certain elements of the tandem mirror thermal barrier concept.
That theory (which was an extension of the theory by Nelson) concluded
that the plasma, or toroidal core, g-value was 1limited by a value
proportional to the ratic of ring thickness to the vacuum magnetic field
radius of curvature (8 ~ A/Rc). Thus, an important EBT reactor design
concept, that the rings could be made thin to minimize ring power losses,
appeared to necessitate low plasma g values.

AMlthough 1{ir arriving at this result a number of simplifications and
approximations were made, which 1led to some ambiguity in the
interpretation, the qualitative validity of the result has by now been
generally accepted, and much of the ambiguity has been removed in the past
year. Attention has shifted to detailed calculations of beta-limits,
including effects of proper line averaging, radial mode structure, hot
electron distribution funection, and general sensitivity to the several
physics parameters entering the theory. This has uncovered other modes of
instability, as described in the papers of this session, but the original
Van Dam-Lee limitation appeared to be the most important.

Interest in this problem for tandem mirror application relates to the
implications for the 1low frequency behavior of the hot, anisotropic
electrons now seen as necessary in versions of thermal barriers, viz.,
those formed by sloshing ions such as in TMX upgrade and MFTF-B. Roughly
speaking, the Van Dam-Lee result shows that for plasma 8 below the
eritical value, the hot electrons are rigid in the sense of not
participating in the low frequency modes. For plasma R above the critical
value, the hot electrons behave as a MHD fluid. Correspondingly, the hot
electron pressure should not or should, respectively, be included in MHD
stability analyses. The desirability of doing so will depend on whether

the hot electrons are in a well of bad or good -curvature. Again,



determination of the critical B value and its dependence on parameters is
important for assessing design options.

The four papers of this session were given by two sets of authors,
each separately presenting analytic and numerical results,

The papers by Van Dam et al. and Spong et al, extend the original
slab calculations to shortwave length modes (1L to B) in general geometry,
giving a local condition with appropriate line averages, These results
confirm the result that B values and curvatures are to be measured at the
location of the hot electron ring rather than the field 1line average of
the curvature as had been assumed in the early interpretations of slab
models. Since the curvature in a bumpy cylinder changes sign, the 1local
value is 1larger than the average value; hence, the newer B limits can be
significantly larger, The authors then map the EBT problems to & related
Z-pfnch configuration in order to examine radial mode structure iu a model
cylindrical geometry. They find modifications to the 1local results;
however, the quantitative implications for the original EBT configuration
are not clear. In particular, a new region of instability, when Woi =
Wyp should be strongly influenced by the axial nonuniformity of mod-B in
real geometry.

Cheng and Tsang, in two separate papers, examined a wider parameter
survey of the original theory (following the formulation of Nelson),
including finite hot electron drift speeds and a variation of the hot
electron distribution function. They found sensitivity to these effects,
and they calculated different shaped, and perhaps wider, 8 (core) versus 8

(hot electron) windows of stability.
5. HIGH FREQUENCY MODES (Chairmen: H. L. Berk and D. A. Spong)

The paper by Gladd et al. was a discussion of microinstabilities of
the core plasma in the steep gradient region and of the hot electron
rings. It was pointed out that in the edge region, where gradients are
the steepest, anomalous transport could be present due to instabilities,
such as the lower hybrid drift mode and the drift cyclotron instability.
These could alter the fraction of a cold-to-hot plasma density, which 1is
an important factor in the stability of the ring-core system. A local and



it was concluded that the presence of the diamagnetic well produced by the
hot electrons could lower the growth rate for this mode.

The Whistler instability of the hot electrons was also examined to
determine if it persisted at relativistic temperatures (because earlier
work indicated relativistic stabilization of Whistlers). This mode is
driven by the extreme temperature anisotropy of the ring and could result
in an enhanced energy drain on the ring electrons above classical values.
A locali.ed dispersion relation was solved for the mode, assuming a model
hot electron distribution function that is not necessarily characteristic
of the EBT ring, but it may well represent tandem mirror, including
relativistic effects. Although relativistic effects were stabilizing,
growth rates remain finite at relativistic temperatures for sufficiently
large anisotropy (Tl/T“ > 10).

In a paper by Nevins et al. preliminary numerical results were
discussed of a bounce-averaged, Fokker-Planck code that solves for the
energetic electron tail formed by electron cyclotron heating at the second
harmonic. The distribution functions were non-Maxwellian and indicated
that at high 2nergies, the frictional drag rrom Coulomb collisions was
less than that from rf collisions. Estimates of these critical energies
were made both with fundamental and second harmonic heating. The
calculations were based on a nonrelativistic model with the distribution
function going to zero at the speed of light. There was discussion about
what effect properly including relstivistic corrections would have on the
results, and it was difticult to maxe any projections. Although the study
was focused primarily on mirror-confined electrons, it was felt that a
bounce-averaged Fokker-Planck code would be very useful in studying the
electron distributions in EBT as well as for analyzing both the stability

and power balance of the hot electron rings.

6. EQUILIBRIA AND CAI.CULATIONAL FORMALISM OF STABILITY
(Chairmen: H, Grad and N. A, Krall)

This session featured work on equilibria and stability, particularly
the approach to equilibrium and a variational-like technique for stability

analysis.
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In treating the approach to equilibria, Sanuki and co-workers of
Nagoya presented a numerical solution of the nonlinear time evolution of
double, adiabatic (anisotropic) macroscopic equations in a bumpy cylinder
configuration. Artificial viscosity (uv2v) and damping (vv) allow an
approach to static equilibrium. These time-dependent equations are not
used for stability study, but the resulting equilibria are examined for
stability by an assortment of currently available theoretical criteria
(interchange, Van Dam, etc.). The ring and core are fully interactive
with regard to equilibrium and the approach to equilibrium. The stability
interaction (ring with core) depends on what is built into the package
used to calculate stability. It was pointed cut that the g estimates,
which were lower than predicted earlier, should be considered as
tentative.

in contrast to the standard approaches of normal mode analysis of the
Vlasov-NManrwell equations to predict stability, a variational-like
technique was discussed, which could eventually combine some of the
ccmplexities of EBT geometry, along with kinetic effects. In this light,
a fully kinetic formulation was presented by Dominguez and Berk,
applicable to the core-ring stability interaction in a bumpy cylinder
configuration. The work is preliminary, involving an ingenious reduction
of the complicated coupled Maxwell-Vlasov system to a form that should
involve less numerical work than other techniques to approximate global
eigenfunctions and their related eigenvr.iues. The simplification is
obtained daspite the noa-self-adioint character of the system and not (as
is claimed) by a2 reduction to self-adjoint. Numerical results are not yet
avallable.

In an attempt to derive a generalized, marginal stability condition
of ballooning instabilities in toroidal geometries (tokamaks, multipolas,
stellarators, EBTs, elc.), Yoshikawa pointed out that the EBT geometry 1is
very simple 1in that it 1is a closed field line device, and stability

analysis should reduce to one obtained from $de/B.
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7. REACTOR IMPLICATIONS AND OPEN-SESSION DISCUSSIONS
(Panel: N. A. Uckan, D. E. Baldwin, H. L. Berk, C. L. Hedrick,
H. Grad, G. E. Guest, and N. A. Krall)

In order to provide a focus for open-session discussions and point
out the difficulties involved in interpretation of results from the
present theories, the paper by Uckan considered the influence of core 8
limits on EBT reactor performance and discussed the uncertainties involved
in the extrapolation.

In the present experiments the plasma core g8 1is 1limited to
Beore & 0.5% because of transport and heating (small size as well) rather
than stability, whereas Bring ~ 10-40% 1is routinely attained, and the
stabilization of a low Bcor

demonstrated. Experimental confirmation of high Bcore predictions are not

e plasma by the hot electron has beer amply

poscible at the present. However, the next planned device, the EBT
Proof-of-Principle (EBT-P), is expected to have Beore vValues on the order
of a few percent and should be able to test some of the predictions
discussed at the workshop.

At present, EBT stability calculations have indicated the existence
of three modes that can limit the core g, core density, and ring density;
these are the core interchange (Van Dam and Lee), the compressional
Alfven, and the hot electron interchange modes. Although the most
limiting modes depend on which models and/or assumptions are used, all of
the analyses indicate that a stable finite B8 operating regime does exist.
however, estimates on the core 8 limit range from a f2w percent to 10-20%
for reasonable but different parameters within the same model. Some of
the parameters that enter into these 8 limits (a/R,, "cold/"hot' Thot/Ti'
“dh/“ci' wdh/kVA' ering' etc,) change significantly in going from
present-day experiments to reactor-like devices. Results from a
parametric study that include boundaries of the operating regime for an
EBT reactor indicated that the overall reactor QElectric velue range from
as low as 2-5 to ~50 depending on the uncertainties, mostly in ring scale
lengths (A) and limiting core B8, It was pointed out that providing
stability against the hot electron interchange mode will require a certain
minimum value of wyp/w.y, which requires large Thot ©or small A. of
course, there 1is a trade-off between the hotter electrons, which cause

large radiation losses, and smaller &, which lowers ring volume and core

B.
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The rest of the discussions in the open session were centered on the
follewing: (1) detailed understanding of the models used, (2) validity of
the approximations made, (3) applicability of the results obtained, and
(4) clarification of the definitions used. It is difficult to draw any
conclusions from these discussions. It should be pointed out that in the
absence of experimentzl data, theoretical analyses have been undertaken to
establish the limits of core 8. These analyses require simplification of
the physics (although considerable progress has been made in numerical and
analytical treatment of the ring and core coupling), since the full
problem involves a multispecies, kinetic, and finite gyroradius effects in
3-D geometry. However, these simplified models give a qualitative picture
of EBT stability and are a valuable guide for experiments, not only
because of the possibility of finding optimization paths but because of
the interesting conjecture that deoptimization might permit experimental
verification of theory at modest 8 values. It is also fair to say that at
the present time, the theory is in a state of flux. There is agreement on

general features, but details and the quantitative predictions will

require perhaps another year's work.
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RUDIMENTARY THEORIES OF THE STABILITY OF
MICROWAVE-HEATED PLASMAS

G. E. Guest

Applied Microwave Plasma Concepts
Encinitas, California 92024

The ELMO Bumpy Torus poses several difficult problems in the theory
of plasma stability whose resolution affects important practical issues
such as the extent of stable operating regimes, limits of the maximum
stable core-plasma pressure, and so on. The difficulties arise largely
because of the importance of both microscopic and macroscopic properties
of the system, such as kinetic effects, multiple-species effects, and
specific aspects of the magnetic configuration. Limitation:s in readily
available theoretical techniques have led to the evolution of a patch-
work of theoretical predictions for idealized models of EBT, with in-

complete and generally qualitative or indirect empirical confirmation.

Here we review briefly the main results from early theoretical
studies of two obvious sources of plasma instability; viz., anisotropic
distributions of particle velocities and locally unfavorable curvature
in the magne.ic lines of force. We identify three distinct components
of the underlying theoretical models and assess the degree of realism
or completeness achieved in each: the basic equilibrium model; the

set of field equations and polarizations assumed; and the plasma con-

stitutive relations used.
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RUDIMENTARY THEORIES OF THE STABILITY OF
MICROWAVE-HEATED PLASMAS

G.E. Guest
AMPC

1. INTRODUCTION

The thecry of plasma stability has played an important role in the
evolution of the ELMO Bumpy Tcrus concept, starting with the fundamental
assumpticn that the ELMO rings could stabilize low-frequency modes in a
bumpy torus, and continuing to the present efforts to predict the value of
core plasma pressure at which that stabilization might break down. Indeed,
many of the relevant theories date to the earlier days of fusion research
when various notions of '"line-tying'" were invoked to explain the empirical
stability of mirror-confined, hot-electron plasmas, the forerunners of the
ELMO rings. Despite this long history, the stability theory for EBT remains
an unsatisfactory patch work of idealized models and specific modes, with

relatively little experimental validation.

Thz difficulties in achieving greater scope and predictive capability
in EBT stability theo.y arise largely from the simultaneous importance of
both microscopic and macroscopic properties of the EBT plasma configuration.
‘This 1is particularly true with respect to curvature-driven instabilities
such as Interchange and ballooning modes. Ideal, single-fluid models of
these instabilities generally predict the ELMO ring plasmas to be unstable,
whereas the experiments generally exhibit a stable plasma, provided the
ambient gas pressure is above a critical value. This striking disparity
between thecretical predictions and empirical fact has spawned roughly two
decades of theoretical effort to develop models that described more accurately
the basic experimental observations. These models were usually based on
more microscopic descriptions of the plasma response than in the fluid
pictures, in order to include in the model a number of physical phenomena

expected to contribute to the observed stabilization of "flutes”: the
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response of cold electrons, particularly in plasmas of finite axlal extent;
the finite gyroradius of plasma ions and the finite radial dimension of

the plasma; the broad distribution in energy of hot electrons in ®CH plasmas,
and so on. In order to describe these phenomena theoretically, it ‘sjas
necessary to use greatly simplified models of the plasma equilibrium; so
that, although many stabilizing tendencies were found, the predjctive

P

quality of the theory became questionable. ;
3,

This possible loss of predictive capability is, again, most likely in
regard to the curvature-driven modes. For example, in the cagse of "balloon-
ing” modes, the essential physics thought to govern the on-ser of instability
is the competition between growth of the wave in a region of unfavorable
curvature and damping of that same wave in regions of favorable curvature.

As long as the local growth rate is less than the rate at which the (shear
Alfven) waves can communicate between the two regions, the plasma is expected
to remain stable. Since the local growth rate increases with beta, while

the Alfven speed decreases with beta, the local growth rate will exceed the

effective damping rate above some critical value of beta.

In the more microscopic description of the finite-beta plasma, it has
not yet been possible to include this stabilizing coupling to the shcar
Alfven waves. The current theoretical models are forced to treat slab models
without regions of favorable curvsture, and generally Jinvestigate only the
compressional Alfven waves in the flute limit (k“ = 0) in which they are
decoupled from the shear Alfven waves. This unsatisfiactory theoretical

situation is the object of a very intensive effort al the present time.

Fortunately, the simplified models are more likely to provide a reliable
description of the vavry high frequency, velocity-srace instabilities that
can also be important to the EBT concept. We ther:fore wish to provide a
brief review of some of the anticipated modes for ECH plasmas in general
and EBT plasmas in particular. For a more complete discussion, the reader

is urged to see Ref. 1 and other works cited there.
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2. QUALITATIVE FEATURES OF MICROSCOPIC MODES
IN ECH PLASMAS

It is a fundamental property of electron cyclotron heating to produce
a plasma with two distinct groups of electrons, one of which is very ener-
getic and generally anisotropic in velocity space, while the other is much
lower in temperature and m~ie nearly isotropic. Since the plasma icns are
heated only indirectly by ECH, they are also generally isotropic and low
in energy. In such a plasma, the propagation of waves at frequencies near
the electron gyrofrequency is determined mainly by the colder, isotropic
electrun group. Whether these waves will grow or decay is determined largely
by their ability to extract the excess free energy of the hot-electron
group. In anticipation of modes with wavelengths comparable to electron
gyroradii (and thus much smaller than the dimensions of the plasms), we
will use infinite, homogeneous, uniform magnetic field strength models of
the plasma equilibrium. We can ther describe the plasma dynamics with the
Vlasov equation, and adopt some limiting case of Maxwell's equations to

describe the fluctuating fields of the waves. Because

2 2 2 2
w W v 9]
pe__._pe & _e _,
czk2 QZ c2 kzvz

for plasna parametevrs and waves typical of ECH situations, we shall comsuder
electrostatic and electromagnetic modes separately [2], starting with the

electrostatic modes.

The essential results ot the dispersion relation for electrostatic
modes near the electron gyrofrequency are shown in Figure 1. Normal
modes of the plasma must satisfy the cold-electron dispersion relation
shown there, while the growth or damping is determined by the real part
of the longitudinal conductivity. This 1is simply because the work dome by

the field of the wave is
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1 2
= fIEI ReOZ

If ag > 0, the wave dces net work on the plasma, and the wave will
damp if its characteristic energy is positive. If Cy < 0, the plasma does
nat work on the wave, and a positive—energy wave will grow. Since all waves
satisfying the cold-electron dispersion relation are positive-energy waves,
we shall only be concerned here with identifying the conditions necessary
for gy < 0, i.e. conditions for negative dissipation. The sign of Oy is
determined by the weighted moments of the distribution function, Cn and
Dn. These have been discussed extensively in Ref. 3, and illustrative

examples are shown in Figure 2 and 3.

We first consider waves propagating nearly perpendicular to the mag-

netic field so that k“ is small in the sense that
H= k,a,/Q <<1
1" e

llere, o is the parallel thevmal speed of the hot-electron group and Qe is
the 2i~ctron gyrofrequency. 1In this limit, the contributions to O¢ from
the infinite series of gyroresonances are well separated and can be adequately

approximated by the two harmonics bracketing a given frequency, as shown in

Figure 4.

If the temperature anisotropy is extreme, T” << Tl (or T << 1 in the

language of Figure 4), Oy can become negative if

(w/S - N)Cn <0 s

and

InTD_| < | (w/2 - mc_|
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PROPERTIES OF MODES WITH LONG PARALLEL WAVELENGTHS

H= ko /2, <<1

i e

=3
i1
Dl
1
=
]
Nf—

Figure 4
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In Figure 5, we show frequencies near the first gyroharmonic and wave-

lengths for which Rec2 < 0, using the temperature anisotropy, T, a3 a param-

eter and fixing A = 0.69 to maximize Cl' Strong negative dissipation is

thus possible 1if
(i) w/f2 2 0.5
(ii) k"a” ~Q-wc<Q/2
(iii) kLaL/Q > 1

The conditions under which normal modes of the appropriate frequency and

wavelength will exist are determined from the cold-electron dispersion

relation
wZ
ec 3 1+ 8AT
Q2 ~ 4 3 - 8AT

Ever. if the hoct-electron distribution is as nearly isotropic as per-
micted by collisiruless confinement in a magnetic mirror (T + 1), negative

dissipation is still possible if

NTD < 0 .
n
and

| (/2 - ™c_| < |n1D_|

For modes near the first gyroharmonic, and specializing to the illustrative
distribution function for which Dn has been shown here, negative dissipation

is possible if

(i) w/2-1%<50.67 T
(ii) k"a” =~ w -

(111) ko /@ 2 1

The appropriate normal modes are upper hybrid waves:
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The characteristics of these two distinct classes of modes can be

summarized on a Brillonin plot, as in Figure 6. The solid lines show
the normal modes, while the dashed :1inds indicate conditions for strong

growth. Note especially that anisotropy-driven modes can occur if the

density exceeds a threshold value,

ro

for anisotropy-driven growth,

T
9]
1%

™l
L\lb—»

while the loss-cone modes can occur if the density is less than a critical

value,

w

- 9
gg < 1.34 T+ 0.45 T for loss-cone driven grewth,

'\

Therz is thus a stable intermediate :ange of cold-electron densities, as

shown in Figure 7.

On Figure 7, we also show a curve obtained bv numerical solution of
the dispersion relation for an artificial case in which all electrons are

hot. The general conclusions are not altered, indicating a rather weak

dependeuce on temperature of .he normal mcde dispersion relation. 1In fact,
the character of these modes has been analyzed in great detail and the

interested reader is referred to Ref. 1 for additional detail.
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Unstable electromagnetic waves propagating in the whistler mode are
known to occur in ECH plasmas [4] if the pressure is sufficiently anisotro-
pic. Here, we shall only cite a few key criteria. In particular, the

growth changes from absolute to convective if [5]

3/2 fw
2 p i) _ 1/2
T"/Tl > (3) ( Qc ) = (88,/27) ’

and growth ceases if [6]

. 1/2
T, /T > (B /2)
The unstable whistler modes are also stabilized by the relativistic spread
in electron mass in hot-electron ECH plasmas. Stability criteria have been

obtained only for specific distributions.

To this point, we have used the temperature anisotropy simply as a
parameter, without any regard for its relation to other system parameters.
However, electron cyclotron heating permits some useful conclusions regard-
ing this contribution to the hot-electron free energy, since heated electrons

tend to be confined within the resonant surface:

B = Bu = 21rfu m/e .

Here, B. is the magnetic field strength at which the electron gyrofrequency

equals the applied microwave frequency. Since heated electrons turn within

that surface, the individual electrons satisfy

=lm

On the mid-pla~e, where B = Bo’ the electrons lie in a region of velocity

space given by
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N

—N= N
”|
o =

Thus it is reasonable to suppose that

!

A
Ty

uqtm
1
Y

T <

(o]

If the magnetic field strength and microwave frequency are such that

Bu > Bo, T will be small and instabilities may occur. If, on the other
hand, BU/BO exceeds a certain critical value, the anisotropy may be
moderate enough to circumvent some of these modes. Moreover, as the plasma

beta increases, Bu/Bo will increase, roughly as

and the anisotropy will diminish still further.

We conclude this material with a brief summary in Figure 8 and 9.
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SUMMARY

1.0 MICROSCOPIC MODES

1.1 Temperature Anisotropy

0.5 <w/@, <1

2 2
mpe.C/Qe > 1/4

T“/TL < 1/6

1.2 Loss Cone/Anisotyropy

w/Qe > 1

2 2 2,42
weg /% < 1.38 T /T + 0.45 To/T]

1.3 Whistlers

1/2
T,/ < (8,/2)

Figure 8
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SUMMARY (Continued)

2.0 MACROSCOPIC MODES

2.1 Mirror Instabilities

/T

3&% - 1)< ] for stability

I
But,

Ty Rl

7, SR -] 77z " !

L= (- )
Therefore,

Ruo > 1.2 for stability

2.2 Curvature Driven Instabilities

2.2.1 Fluid Models {Bumpy Cylinder)
o realistic geometry, arbitrary beta, non-local

o generally unstable: interchange at low beta
ballooning at high beta

o models Jack

FLR stabilization
cold-plasma stabilization
other kinetic effects

2.2.2 Microscopic Models {cf Don Spong)

Figure 9
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REVIEW OF RECENT EBT COUPLED
RING-CORE STABILITY THEORY

D. A. Spong
Oak Ridge National Laboratory
Oak Ridge, Tennessee

During the past several years Elmo Bumpy Torus (EBT) stability
calculations have evolved with respect tc treatment of ring-core plasma
coupling effects- This evolution began with recognition of the
important role of ring compressibility and paramagnetic effects on core
beta 1limits. Since then, models have continued to 1increase 1in
sophistication, including ring~core frequency coupling, velocity space
and hot electron distribution function effects, and radially dependent
models. Some of these features have resulted in wide variations 1in
predicted plasma performance limitations. A number of the models will
be reviewed and assumptions to which they are particularly sensitive

will be discussed-

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract W-7405-eng-~26 with the Union Carbide

Corporation.
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I. Introduction

Elmo Bumpy Torus (EBT) stability theory has become an area of
increasing interest recently due to the recognition of a number of
novel nonmagnetohydrodynamic effects associated with a hot electron
annulus and its coupling to the core plasma. Such effects are of
importance both in understanding the various operating regimes of the
present device and in extrapolating to future larger devices.

The earlier calculations of EBT stability tended to decouple the

ring and core plasmas and treat them as separate components for

3 generally assumed cold,

simplicity. Ring stability calculations!”
pressureless core plasmas, whereas core stability calculations often
used rigid noninteracting ring models."™> Ring-core coupling effects
were first included in slab models®™7 which treated the ring as an
interacting charge and current element but which did not retain the
full frequency coupling between ring and core due to the assumption
that their temperatures were widely separated. Such calculations
indicated the importance of ring compressibility and paramagnetic
effects on the core beta limits. That 1is, the magnetic well and
resulting maximum in d: df /B can only stabilize interchanges up to some
maximum core beta at which the ring and core begin to interact. More
recent calculations®™!* have included the ring=core coupling in greater
detail. This has resulted in the appearance of a new mode involving
interaction between the compressional Alfv:an wave of the core plasma
and the free energy of the hot electron component, which leads to an

upper limit on the core deunsity. In addition, the core interchange® ™7

3

and hot electron interchange!™ modes still remain. These set upper
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limits on the core beta and lower 1limits on the core density,

respectively.

It this review, the development of EBT coupled ring-core stability

work will be traced over the past several years, beginning with the

early slab models®™’ aund going through some of the recent nonlocal
y

models which treat the radial dependence of the modes.

II. Vlasov-Maxwell Slab Model

The first detailed treatments®™ of ring-core coupling in EBT were
made In simplified slab geometry in order to isolate the coupling and
kinetic effects from the geometry. The analysis 1s normally localized
to the outside half of the annulus where magnetic field gradients are
fully reversed. This 1s related to the fact that only in this region
can substantial core pressure gradients be stably supported. In the
normal magnetic gradient region (i.e., B < 0), a finite pressure
gradient can stably exist up to a certain value. However, this is not
usually the limiting region for overall stability; rather, the outside
region is. The slab models continue to be investigated as they provide
a useful framework in which qualitative effects of wvarious changes in
the model may be investigated.

The slab geometry 1is displayed in Fig. 1. It normally consists
of a wave propagating in the y direction, an artificial gravity in the
-x%x direction, a magnetic field in the z direction, magnetic field and
density gradieunts in the x direction, and a guiding center drift in the

y direction. The B field is modeled as
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Fig. 1. Directions of gradients, B field, artificial gravity, drift
velocity, and wave propagation in Vlasov-Maxwell model.
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ES

B =B, (1l + ex)e, (1)

In this geometry the constants of the motion are: H, the total energy;

X the guiding center position; and v;, the velocity component along

g!
the magnetic field line. An equilibrium distribution of the following

form may then be chosen:

2 2
_ -3 _-(v% + 2 .
£o(H,x,) = Ny (arm)™3 e (v gx) /e 4 ¢ xg) (2)

Taking moments of this distribution and wusing charge neutrality
(Poisson’s equation), the momentum balance equation, and Ampere’s law,

the parameters € and €° are obtalned as

er =L+ 2
L, R
Br 1 2
==t @
n c
For the configuration shown in Fig. 1, the single particle orbits
are
; = vlsin X
y ==vjcos x +vp (4)
where
2
vie
1

—_— X
29 20R
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The perturbed distribution 1s then obtained by solving the
linearized Vlasov equation. For the model un'/er consideration, the
perturbed electromagnetic fields may be described by the electrostatic
potential ¢ and the vector potential A . In this case the kinetic

equation may be written as

of of
1 o 9 iqw
5t U3 3t m (6 - va,) ()

where

Sfo Kk 3fo

D=m

The perturbed distribution 1is then obtained, using standard orbit

integration techniques, as

1(m-n)6
qNf v J J e
£ = -—= (L+ex) {o[l - (w-wy £ 208
a4
373 el(m-m8
+1v A (0 - wy) I } (6)

n,m kvd -w - mQCJ

From this the perturbed charge and current may be obtained as

2
In

o [1+ (-wy | dbvey =

QN |'UEN

ka - W —mQC
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2

iw v, J°J
P 2 1m"m
- = W - d“vEy I N
o2 A «) | B kvy - 0 - mf2
2 ’
iw viJd J
P 2 L m%m
= —— w - W devf z
Iy 3 ¢ ( 2 ) B e p——— e
wg | 9 VEJ&Z 8)
- = A (w - wy) dvi, L (
u2Ax B kvg = w - m@,

Combining Eq. (7) and (8) with Maxwell’s equations one obtains the

following dispersion relation:

2 _
D Dep + CT“ = 0 (9)
2
w 2
P J
D= [(1+ (w=-w) [ 2, 5 m
es kzmz ViR kvd - - ch
2 2 72
wp 2 vy Jm
Doy = 1 + (w = wy) Jd “vig Z S
k2c2a2 kvd -0 = mf,
2 ’
w v J J
CT=2?2)2(“’““””‘)1dz"fﬁzk lmmsz
c“k“a Vg - W T ome,
where
42v = 2ﬂvldvldv"

We shall now discuss several of the approximations that have been
made in solving the above dispersion relation in recent years and theilr

relationship to each other.
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A. NVL Approximation

In work by Nelson’ and Van Dam and Lee® (referred to here as NVL)
Eq. (9) is reduced to a quadratic equation in w by assuming Wai» Wgy <<
W << Way, Waps Qci" where the | subscripts refer to the ions and the H

subscripts refer to the hot electrons. The resulting dispersion

relation 1is

aw? ¢ bw + C=0 (10)
where
3 8 wa:
A=ik2021+52—10';%](2 2 )?
2 2 “dH
CH
B = — [”ﬁi = Wgg + BDep(Uag = wgq = wpy) X ( WK - 1]

D 1 B lC B
= B <+ S
em i 3%h
2 “ qH

Two models for the hot electron distribution were considered in this
vork, a delta function! ™ and a Maxwellian.’ In the case of the delta
function, the constants Cl’ C2D and C3 are all equal to unity. For the

Maxwellian, they may be expressed in terms of exponential integrals:
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Ww
Cy = - [1 - aF(a)] (1
w
BH
Ww
Cq = _aH [1 +a - azF(a))
w
BH
where

F(a) = e 2Ei(a)

mgH

QA & - e

YaH

The resulting stability boundaries, obtained by requiring B2 - 4AC > o,
are plotted in Fig. 2 for the delta function and in Fig. 3 for a
Maxwellian. These show that the BH threshold for stabilization of

flute modes 1in the core is similar to that obtained from some of the

earlier noninteracting ring models; 1i.e.,

48 /R,
I + 2 /R

1

Bi + BH > 15-20% (12)

where
4 = ring half width

RC = radius of curvature

However, the upper limit on B, is now in the 20-30% range for a delta

function and in the 10-15% range for the Maxwellian. For the delta

function this 1is gilven approximately by:
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Fig. 2. Stability boundaries as predicted by Eq. (10) for a delta
function hot electron distribution with nﬂ/nc = 0.05, kay =
0.1, and A/RC = 0.05.
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44 /Re
So78C 13
e < 1 + B" (13)

whereas for the Maxwellian it is

2A/RC
—— 14
BC < 1 + 6A/Rc (14)

In applying the above results, there is some ambiguity over what value
to use for the magnetic field-line radius of curvature R,. Energy
principle calculations, which will be mentioned latter, have indicated
that the curvature at the rings, rather than the field line averaged
curvature, is the appropriate value to take.

The upper limits of B e 8iven by Eqs. (13) and (14) are related

cor
to the ineffectiveness of the self-dug well of the hot electrons in
stabilizing perturbations in the core plasma. At very low BC the well
stabilizes the core plasma by reversing the ion drift velocity to the
opposite direction from the 1ion diamagnetic drift. As BC is raised,
the {fon drifts begin to be influenced!* by GBZ such that the drift
reversal which 1s stabilizing at low BC can no longer be attained. As
a result, the plasma response to the perturbation changes phase and the
well is ineffective. In terms of Eq. (10), Dem becomes very small due
to a near cancellation of terms near the stability boundary, and the
magnetic field perturbation GBZ is greatly enhanced. This effect
depends on the presence of the hct electrons and can also be viewed as

an enhancement in their compressibility1 since BLH scales directly as

GBze
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B. Inclusion of Rimg-Core Frequency Coupling

As mentioned earlier, the NVL approximation is based upon the
ordering gy, Wp; << W << Wup, W4p, 2.,. From the results of this
calculation, it would be expected that a breakdown of this ordering
should occur near the stability boundaries. For example, at the
bouridary in the lower left-hand corners of Figs. 2 and 3 (i.e., where
the hot electron beta 18 just sufficient to produce a well and
stabilize the core interchange mode), Wgy and w4y pass through zero and
reverse direction. Thus, the assumption that Wiy << @ << wyy is
inadequate in this region. Also, near the upper limit on Bcore’ the
frequency w becomes large and is comparable to the hot electron drift
and diamagnetic frequencies. These considerations motivated a more
accurate treatment of the frequency dependence in the slab model
dispersion relation.

A dispersion relation which retains w relative to the hot electron

driftc and diamagnetic frequencies i{s given below:

2
DesDem 4+ CT“ =0 (15)
where
2.2
ns le. W = U)*s k ps
= F 2 _= - 1 -
Deg = I o T {1 ™ [Faxg) +—; (1 - x_F(x)]}

8 8 2
=z ] « L — % 11 + - xX%F
Pen s 2ug [ Xg ~ Xg (xg) ]

CTe/ 2% g -2
2

% ar Tum [1 - xF(x)]
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gs Q_R

A
Wy = ——v (1 + 2 —
*s zszsA( RC)

L = sum over specles s
s

s° TS = density and temperature of species s

4, R, = ring half-width and B field radius of curvature

2
ag = 2TS/mS

The stabllity boundaries for this dispersion relation may be examined
by plotting the zeros of Eq. (15) for w real and looking for points
where two rtoots coalesce into a single root. An example of this is
gliven in Fig. 4 where zeros of Eq. (15) are plotted for To = Ty,
TH/Ti = 500 and 1000, ka; = 0.1, nH/nc = 0.001, By = 0.5, and A/Rc =
0.05 along with the zeros of the quadratic dispersion relation of Eq.
(1) for a Maxwellian hot electron distribution. As may be seen, the
instability boundaries of Eq. (15) are somewhat lower than those of
Eq. (10). Also, there 1is now a scaling with TH/Ti present when W,

wyg» and Wyy are retained as being of similar order. It may be seen
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Fig. 4. Roots of dispersion relation (15) vs Bc for TH/Tc = 500, 1000
as compared with the roots of Eq. (10). Here, k.ai = 0.1,
“H/nc = 0.001, BH = 0.5, and A/rc = 0.05.
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from this figure that the B, limit is related to a coupling between the
core interchange mode (the upper half of the solid curves) and the hot
electron drift frequency (ng/“’*i %= -~ 90, f.e., the lower half of the
solid curves).

This observation of coupling between two disparate frequencles
then motivated the inclusion of additional physics in the model, namely
the fon cyclotron harmonics and the core A.lfv;n wave.8™¥ Such terms can
be of importance in EBT since the hot electron drift frequency in the
present device is on the same order of or larger than the ion cyclotron
freqluencyols Including these effects then results in the following

modifications to the dispersion relation given in Eq. (15).

2 2
kpe (W = was)(w = w_,)
D’ =D, + 1 e gi (16)

es €8 2 2 _ 2
(w =wg1) szci

Bﬂ_ (w ~ mﬂ-i) (w - mgi)

D, =D (17
em em 2.2 2 2
k pﬂ, (U) = wgi) = Qci
By (W = Wy, ) (w - w_,)
1’ = CT +X/—:’: 1 > gi (18)
(w = wgi) = ch

where Des’ D and CT are given in Eq. (1i5). This dispersion

em’
relation then Incorporates the first ilom cyclotron harmonic. Higher
harmonice have been imcluded,® but generally the first is sufficient to
accurately describe the resulting modes. In Fig. 5, the zeros of this
dispersion relation have been plotted against the core beta for several

values of the pearameter § = kvdh/ﬂci" This parameter controls the

fmportance of the ion cyclotron terms. That is, for Q << 1, @, is
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effectively infinite in comparison to w, and one returns to the
approximation given in Eq. (15); however, when Q@ = 1, Eq. (15) is no
longer adequate and w is comparable to ﬂcio As may be seen from Fig.
5, for small Q the results of Fig. & are recovered. However, as Q is
raised a new type of frequency coupling enters 1in, resulting in a
higher frequency mode which goes unstable at lower values of Bc than
the NVL mode. This mode has generally come to be known as the
compressional Alfv;n wave mode and is related to a coupling between the
hot electron drift frequency and the core Alfvén wave, as may be seen

from the figure.

This 1instability results in an upper limit on the warm core
density and was first recognized within the past year.8 2°11712 rThe
original estimates®™ 2211 of the density limit from this mode were quite

low (i.e., Bcore < 10”4 to 10=3) and, in some cases, less than that
obtained in the present experiment. This led initially to speculation
that the Alfvén mode could possibly be a cause for the T-M transition.
However, subsequent work!1s1371%  resylted 1in significantly higher
values for the density 1limit which were well above the achieved
densities in the existing device. A number of factors are responsible
for this change and will be mentioned briefly here. For one thing, the
earlier estimates generally used the 1lowest azimuthal wave number
(m = 1) which would fit in the machine since this resulted in the most
limiting density. However, the localized theory should only be
expected to be valid when the radial wavelength is small compared with
the azimuchal (the direction the small way around the torus)

wavelength. Since the earlier localized theories took the radial

wavelength large compared to the amnulus half width (kr = 0), they are
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not really applicable to low m modes. Another problem with the

original estimates is that they assumed the ratio of the hot electron

11 have allowed

to core density was quite small. Later calculations
this ratio to be finite and have maintained a self-consistent relation
between it and the other free parameters: 8. ..., By,¢» and Thot/Tcore'
Also, recent calculationslz-13 have 1included finite wvaiues for the
radial wave number. This can enter in through factors of (kl/ky)z,
which scales as the aspect ratio of the ring squared, (ap/A)z. This is
a large factor (=100) and significantly increases the limiting density.
Such calculations will be discussed in more detail 1in Sect. Iv.
Finally, a number of detailed refinements have been made 1in the
calculations involving such things as: retaining the full
two-dimensional energy and pitch angle dependence of the hot electron
drift frequency11 [in Eqs. (15)~(18) only the energy dependence Iis
included], using both the delta function and the Maxwellian and
anisotropic Maxwellian distribution functions!! for the hot electrons,
and taking into account!” the shift from particle position to guiding
center position in evaluating the perturbed distribution £y The
importance of the latter effect was first pointed out in Ref. 5 for
the hot electron interchange mode and is generally important for high
frequency modes when inhomogeneities are present. Sensitivity of the
results to the form of the hot electron distribution function was
investigated in Ref. 11 where both delta function and Maxwellian
models were used. It was found that coupling between the hot electron
drift frequency and the core Alfvén wave was not present when a delta

function hot electron distribution was used; however, with the
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Maxwellian this coupling again entered in for sufficiently high Bhot
(1.e«, Bpoe 2 0:15).

In addition to the Alfvén compressional mode, most of the more
recent calculations mentioned abovel!l™!"* also find lower limits on the
ratio of nc/nH due to the hot electron interchange mode. The different
models presently predict a range of results which will not be reviewed
in detail here, except to point out that this mode is presently
expected to be responsible for the T-M transition.

In conclusion, the Vlasov slab models generally predict a finite

operating window with the upper limit in B due to either the Alfven

core
mode or the NVL mode and with the lower limit due to the hot electron
interchange. This 1lower 1limit 1s relatively easy to satisfy by
providing sufficient “core/nhot‘ Estimates of the upper 1limit depend
on the model used, and there 1is presently some controversy as to
whether this 1s ultimately determined by the Alfv;n mode or the NVL
mode. The scaling of the NVL mode boundary was givemn 1in Egs.
(13)=(14). Some specific estimates of the Alfv;n mode boundary will be

given 1in Sect. IV, and others are contained in the references quoted

earlier.

IITI. Generalized Kinetic Energy Principles

Paralleling the development cof the VlasowMaxwell slab models,
work was underway on generalized kinetic energy principles which could
be applied to the hot electron rings 1in EBT.12713518717 rghege

calculations also indicated the existence of a compressional Alfvéu
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instability arising from similar terms in the energy principle, which
resulted in the mirror instability.

These calculations differ from previous work on energy principles
for guiding center, anisotropic 1plalsma318"21 in that the magnetic lines
of force are not assumed to be frozen in the plasma. This assumption
is not applicable to the energetic electron rings in EBT where energies
can be in the 100-500 keV range. The earlier energy princ‘lplesls'21
may generally be derived from the condition that the single particle
magnetic moment (p = mv%/2B) and longitudinal finvariant (J ~ b e vy)
be conserved during the period of a fluctuation.i’ In the generalized
energy principle y, J, and the magnetic flux invariant (¢ = b E . dg
are assumed conserved by the perturbationol7 This avoids the assumption
that the plasma is tied to the magnetic field 1lines. The drift orbits
are free to leave magnetic lines provided the magnetic flux they
enclose 1is comserved. This will be satified 1f the frequency of the
fluctuation 1s 1low compared to the drift frequency of the hot
electrons. Such an approximation 1is appropriate for the core
interchange modes but not necessarily for the compressional Alfven mode
or the hot electron interchange.

Application of the generalized energy principle to EBT geometry 1is
discussed in detail in Refs. 12, 16, and 17 A few of the results

given there will be mentloned here. First, the interchange mode 1is

found to be stabilized if the fellowing inequality is satisfiled.

1)

g3 B2 B B2 <0 (19)

(pg *+ Po)’

I

o gL, ,
PC¢B3+2¢T1<+
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-+ +
Here k = ¢ © V¢, « 1s the field-line curvature, P and py are the core

and hot electron pressures, and prime denotes derivatives with respect
to VYo Equation (19) has not been evaluated wusing computed EBT
equilibria yet; however, a local approximation to this equation
indicates BC < 15%,22 which is in reasonable agreement with the earlier
slab models.®™’ Evaluation of Eq. (19) also provides insight as to the
value of the magnetic field-line radius of curvature RC, which qhould
be used in the local models.’? This {ndicates that the radius of
curvature at the ring location (near the midplane) is the appropriate
value rather than a field-line-averaged curvature. The generalized
energy principle further provides a stablility condition for the 1lower

Bhot threshold to reverse the magnetic drifts and stabilize the core at

low BC:17
4 ¢ QBE k
8 > 20
hot {2 dZ\ ’ ( )
(B ¢—3;(pﬂ/pﬂ)
B

This again 1s in rough agreement with slab model results.®™

Unfortunately, the generalized kinetic energy principle 1is not
adequate to treat high frequency modes where w > Y4, hot due to the use
of the flux invariant. Also, 1t has been shown® 3 recently that it only
provides a necessary condition for stability in the case of equal
temperature Maxwellian 1ions and electrons, which 1is not the case 1in
EBT. It indicates the presence of a purely magnetic mode (i.e., the

compressional Alfven mirror mode) precisely when Eq. (19) 1is

satisfied.!’ It would therefeore prediczt no stabflity window since the
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Alfvén mode would be unstable when the core interchange 1is stable and
the core interchange would be unstable when the Alfvén mode 1s stable.
This lack of stability 1is a result of the fact that the Alfv;n mode
occurs at a higher frequency than Eq. (19) is wvalid for. A
longitudinally dependent normal mode analysis of this instability has
been given 1in Ref. 17 which indicates that a frequency shift 1is
introduced by retalning terms of order w/ud. The resulting stability

condition given there!” (for the isotropic case)

’

’ de | r 4R p . d
NiMi (PH)3 d";; IVQIZ d’? (Zk "'BTZS) < NHZ (,6 _B")Z (21)

indicates that there 1s a finite window where both the core fnterchange
[Eq- (19)] and the Alfven mode [Eq. (21)] will be stabilized.

To summarize this sectlion, the generalized kinetic energy
principle provides a useful means for taking into account the variation
of quantities along the field 1line without actually solving the
longitudinal problem. Its applicability is limited to low frequency
modes such as the core interchange for which it is 1in approximate
agreement with slab models. For higher frequency modes, such as the
compressional Alfvén instability, it must be supplemented by a suitably

field-line-averaged normal mode analysis.
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IV. Radially Dependent Normal Mode Analysis

The radial structure of eigenmodes in EBT has become of interest
since both modes which are localized within the annulus (Alfven mode,
hot electron interchange) and modes extending intoc the core plasma
(core interchange) have been predicted to be unstable. The localized
models cannot yield any information on how such modes connect to the
inner core and outer surface plasma regions. Several radially resolved
calculations have recently been attempted.1°’13 They are generally
based on using either the Vlasov or drift kinetic equations for the hot
gpecies, coupled with fluid-like equations for the core plasma.

For example, in Ref. 13 the momentum balance equation with ion

inertial effects 1is used:

(22)

©

B
o4
X
w +
1
<+
o

k]

This 1is augmented by the drift kinetic equation for the hot electron

pressure tensor: P = p; bb + p; (L - bb) where

Py dHduB (P
(F%) = 22222 (1Y) F(rL,E,W) (23)
Py Ipyl uB

and F 1s described by

+ -+
oF E x B > + + +
— + (v,b + + . . 3B
T (vib " Va) P+ (E - v 4 2 1;:‘ - o
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Now 1if the ¢ componeni of Eq. (22) and the result obtained from
+ +
operating on Eq. (22) with B * 9Vx are combined and 1f a

transformatic~ is made from a bumpy cylinder to a z pinch geometry, a

purely radial eigenmode equation results:

2. 9%
E.JL arB“T _r 2 «
r dr [(a - 'I‘J ar] * & {pw (a - 'I‘J
2
T B°R
- PA (a - TJ - ;'3;(Pu +p,) ‘:3;

(24)

Here, A = w222 /(@2 - w?), a = A/k?V2, and £, = L(E x B)_/uB?; T, S,
and R are kinetic integrals, the details of which are given elsewhere
in these proceedings.z“ Equation (24) has been solved both locally, by
using a WKB approach, and nonlocally, using numerical shooting methods.

The stability criteria which result from the 1localized, short

wavelength approximation are as follows:

2
kg R
T [
2 2 (25)

kg v
kl wciA
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(compressional Alfven mode)

2 2
v kZ4gR
2A < B ¢ 5 (26)
V, v ke
kil kil
o (1 (2]
W 8kT

(hot electron interchange mode)

where Vkl is the hot electron curvature drift velocity and AB is the
magnetic field gradient scale length 1in the ring. These have been
obtained from a cubic dispersion relation by considering small and
large V, limits, respectively. When the results from this dispersion
relation are compared with 1instability boundaries obtained from
numerical solutions of Eq. (24), the agreement is reasonable (within a
factor of 3-4) for the cases which have been considered. For further
details on this calculation, see Ref. 24.

Agreement between numerical shooting solutions and local
approximations was also obtained in Ref. 10. Here, the continuity
equation was solved 1n conjunction with the Vlasov equation and
Maxwell’s equations over the outer half of the hot electron ring
region.

In addition to the short radial wavelength modes localized to the
annulus region, which are considered above, preliminary estimates have
been made of stability boundaries for longer radial wavelength global
modes.22 Dispersion relations for such modes have been obtained by

integrating the radial differential Eq. (24) over the annulus rtegion
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and by assuming the eigenfunction Er does not vary appreciably over the

width of the annulus. Such modes have been predicted22 to be

potentially more dangerous (i.e., occuring at lower density) than the
short wavelength modes. They generally are of a resonant nature and
depend on the hot electron curvature drift w, being close to the ion
cyclotron frequency w.y+ The present thinking 1is that the longitudinal
variation Iin B 1is 1likely to have an important effect on these modes
since it will tend to smooth out this resonance. Such effects have not
been included yet in these models. Current estimates of density limits

from such modes are below those observed experimentally.

V. Conclusion

To conclude, a number of different models have been applied to the
EBT stability problem 1in recent years. These 1include the
Vlasov-Maxwell slab models, generalized kinetic energy principles, and
various types of radially dependent calculations (fluid drift kinetic,
fluid Vlasov). Although these models differ in various details, which
have been discussed here, they agree qualitatively that a
triangular-shaped stability window exists for EBT. On the left-hand
side the window 1is bounded by the hot electron stabilization of the
core interchange mode, requiring a threshold Bhot of 15-20%. The upper
side of the window is bounded by the compressional Alfvén mode and the
core interchange (or NVL) mode. Which of these two modes is the most
limiting is not presently agreed upon and depends on the parameters and

model used. Finally, the lower part of the window 1is related to the
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hot electron interchange mode which requires some minimum core density
for stabilization.

Elmo Bumpy Torus stability theory 1s incomplete in a number of
areas, some of which have been mentioned earlier. First of all, the
sensitivity of the models to various forms of the hot electron
distribution function requires further work. If the results are
sensitive to foH’ it would then be of interest to understand what
characteristics of the distribution are of particular importance.
Next, the coupling to the shear Alfv;n wave (k; # 0) has not been
investigated In any detail yet.

Related to this, it would be desirable to examine in more detail
the effects of longitudinal dependence of equilibrium quantities.
Preliminary estimates of this have been made from the energy principle
analysis. Next, the present radially dependent calculations generally
assume k;py, kjpy << 1. Since this is only very marginally satisfied
in the existing experiment, it will be necessary at some point to
include finite Larmor radius corrections. As the radially dependent
calculations become more developed, it will be of interest to examine
the coupling between the cold outer surface plasma region (usually
unstable) and the inner core plasma. Finally, over the longer term,
multidimensional models which simultaneously take into account the

radial and the longitudinal dependences will be necessary.
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BRIEF SURVEY OF EXPERIMENTAL INVESTIGATION*OF
INSTABILITIES IN MICROWAVE-HEATED PLASMAS

N. A. Uckan and G. R. Haste
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

ABSTRACT

Nearly two decades of experimental investigations exist on in-
stabilities in hot electron plasmas in open (simple and minimum-B
mirrors) and closed (bumpy tori, EBT and NBT) geometries. A brief
review is given for some, but not all, of the results from these

experiments. Also discussed is the observed behavior of the plasma

in C-T and T-M transitions in EBT.

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.
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DISCUSSIONS

There is a wealth of observations of fluctuations on devices related
to the ELMO Bumpy Torus (EBT). These devices include simple and minimum-B
mirrors, canted mirrors, and toroidal geometrles. The hot electron plasmas
in these experiments are created by electron cyclotron heating (ECH). Re-
sults from these experiments indicate that the observed frequency spectrum
of the fluctuations range from very low frequencies (v100 kHz) to frequzn-
cles in the GHz range. In most cases, these fluctuations can be corre-
lated to theoretical predictions; however, some of those correlations are
qualitative rather than quantitative because of the limitations of the
diagnostics and the theory.

Tables T and II summarize the observed modes in various experiments.
A partial listing of references is provided at the end for detailed infor-

mation. The following is a brief summary from these observations.

ELMO and Canted Mirror [1]

Three microwave heating sources (10.6, 35.0, and 55.0 GHz) were avail-
able for use in various combinations of fundamental resonance and off-
resonant heating. Low frequency (v74~kHz) stable oscillations were observed
with end-loss detectors at low pregssure and low cold plasma density. %hese
flute-like modes were thought to be electrostatic in character and,
therefore, susceptible to cold plasma stabilization. Anisotropy driven
modes of hot electrons were also observed., With only resomant heating,
although low power experiments exhibited narrow band instabilities near
the half harmonic of the ECH frequency, high power experiments displayed
broad-bands because of the excitation of the cavity modes. However, upper
off-resonant heating (UORF) suppresses this instability, and perhaps
others, by reducing the hot electron anisotropy (by heating throughout
the volume) and by relativistic effects.



Table I. Instabilities in hot electron plasmas (low frequency)

Frequency Identification Device Remarks
74 kHz Flute-like ELMO Observed with end-loss detectors
Stable oscillation
150 kHz Flutes IMP Affected by feedback to circum~
ferential electrode. Not stabilized
3-30 MHz Hot electron flutes PTF Loss of hot electrons across magnetic
field lines. High m mode numbers
(4-10) stabilized by cold plasma
150 MHz Lower hybrid (?) INTEREM Observed at collector of electron
Beam-plasma (7) beam along the axis.
n fci DCLC PHOENIX 410 W (average) at 33 GHz stabilized
Two component (?) n = 3, "sort-of" n = 2; dc stabilized
Hot electron n=1
instability (?)
fci ALICE 10 W ECH decreased repetition rate, but

increased amplitude of fci' Density
increases 257
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Table T1. 1Instabilities in hot electron plasmas (high frequency)}

Frequency Identification Device Remarks

n x 2.1 GHz Whistler TPM Could be triggered ES or EM

(~v1/3 € e) Axial loss of hot electrons

¢ Anisotropy driven

3/4 fCe Whistler Bille~en-Téte 8-pinch, T, ™ 6-8 keV,

(4 GHz) p“/pl ~ 10%
20% reduction in 2us of P
Anisotropy driven

8.6-8.8 GHz Whistler INTEREM f > fco(l—TH/Tl)’ narrow band
at threshold. Originates on
edge of mininum~B volume. All
axial current arrives in bursts.
Limits confinement. Stabilized
by UORH

9.5 GHz Double distribution INTEREM Originates on axis
Stabilized by UORH

11 GHz Upper hybrid INTEREM Stabilized by UORH

5.1-5.3 GHz Timofeev ELMO Axial loss of electrons

(one-half harmonic) Stabilized by UORH
5.3 GHz Mirror mode PTF Tiggering of instability
(~1/2 fce) depends on B (as B lowered

limiting beta increased)

99



67

PTF [2]

Two types of instabilities were observed. One of the modes was
identified as a flute mode driven by hot electron VB8 drifts, which
caused loss of energetic hot electrons across magnetic field lines.
The oscillation frequency was ~3-30 MHz (v10 MHz apmeared to bc most
prevalent), and flutes with m > 1 were dominant (4 < m < 10). This
mode was stabilized by increasing the cold plasma density. The second
mode, which was high frequency (%%wce ~ 5.3 GHz; with 10.6-GHz as the
ECH source), was driven by beta and identified as mirror mode (loss of
equilibrium). This instability, which dumped the hot electroms out
along the field lines, depended on an external magnetic field value,
which indicated that the instability was associated with velocity space

anisotropy.

INTE2EM [3]

The INTEREM device used 10.6-GHz resonant power in combination
with 35 GHz. With 10.6 GHz alone, high frequency instabilities (w ~ mce)
associated with velocity space anisotropy were observed. The observed
frequency spectrum indicated three modes: (1) 8.6-8.8 GHz results from
Whistler instability, (2) 9.5 GHz from the double distribution mode,
and (3) the band at ~10-11 GHz, corresponding to the frequency expected
frcm upper hydrid or negative mass. These modes were suppressed by UORH
(at 35 GHz). Also, oscillations at ~150 MHz, possibly due to beam-plasma

interactions were observed.

TPM [4]

Additional hot electron plasma was produced by a microwave pulse
(v200 ms) at 6.4 GHz, which permitted external triggering of microinsta-
bilities. Strong electromagnetic instabilities at one-third harmonic
(v2.1 GHz) were observed. The instability was characteristized by the
sudden loss of hot electrons, but not of cold electrons. This insta-
bility was triggered by either pulsed microwave power (electromagnetic
triggering) or the extraction of cold electrons (electrostatic triggering).
Associated with the extraction technique, a flute-like low frequency

instability was also detected.
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EBT [6]

Experimental results from EBT indicated many similarities in the
belhavior of hot electron plasma (hot electron rings) to simple mirror
results. However, many ofi the instabilities observed in mirrors are
not present in the bumpy torus experiments. For example, the half-
harmonic microwave emission common in ELMO is not present. In EBT,
the toroidal core plasma fluctuations are mainly low frequency (~100
kHz) with high frequencies restricted to the region outside the ring
(surface plasma). By forming a magnetic well of sufficient depth, the
rings provide stabilization for the core plasma. Experimentally, sta-
bilization is evidenced by a reduction of the fluctuation amplitude
coincident with the formation of rings with sufficient beta (C-T tran-
sition). The experimental value of critical ring beta at which this
transition occurs is consistent with the theoretical predictions of
average min-B stability. Figure 1 shows the range of beta values at
the C-T transition for various power levels in EBT-I. Near the T-M
transition, enhanced fluctuations are observed. Experimental and
theoretical investigations of the T-M transition are in a relatively

early stage of development.
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FLUCTUATION MEASUREMENTS IN EBT

L. Bighel, G. Haste, A. Komori
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

Fluctuation studies in EBT have been aimed at questions of plasma
stability and transport. The stability aspects associated with fluctu-
ations in EBT-I have been investigated with probes and with light de-
tectors. The EBT-S environment is not suitable to the use of probes,
except near the wall. Laser-microwave scattering techniques are being
investigated for spatially resolved fluctuation measurements in EBT-S.
A large effort is currently aimed at correlating the fluctuation be-
havior with the ambipolar potential and the hot ion component in the
plasma. There is also considerable interest in studying fluctuation
phenomena associated with ICRH experiments in EBT.

Figures 1, 2 and 3 show the fluctuation amplitude, spectrum, and
spatial distribution respectively as a function of background pressure.
The quantity I is the photodetector current output. Figure 4 shows the
spatial distribution of the fluctuation amplitude as a function of fre-
quency. It is seen that the core fluctuations are mainly low frequency
with the high frequencies restricted to the region outside the rings.
This observation is further verified with Langmuir probes as shown in
Fig. 5.

These observations generally indicate that:

(1) The C-T~M hierarchy. is clearly correlated with plasma fluctuation
activity.

(2) Most of the fluctuation energy is at low frequencies (<100 kHz)

(3) High frequencies appear at low pressures and high microwave power,
and are generally found cutside the rings.

(4) Enhanced fluctuations near the T-M transition correlate with in-
creased ion-tail densities and deep potential wells,

There is a considerable diagnostic effort currently aimed at studying

fluctuation phenomena in the EBT plasma. Figure 6 shows schematically the

CW FIR laser scattering system.
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Hot-Electron Ring Stability
at The University of Tennessee
Igor Alexeff
The University of Tennessee
and

Marshall Saylors
The University of Kentucky

We supply a model that is sufficient to explain the observed stability
of the hot-electvon ing at The Jniversity of Tennessee. We have created a
hot-electron ring with the following approximate parameters; Te 2 105 electron
-volts, Ne 3 1011 - 1012 cm'3, T = 1/30 second. The plasma was created by 10
cm electron cyclotron resonance in a magnetic mirror with B = 1 kilogauss at
the ring position.

We observe that the prasma forms a hollow ring in close proximity to the
copper wall. Moving the ring away from the copper wall causes instability,
plasma loss, or simply prevents the ring from forming. The ring was moved
from the wall by magnetic compression or by a metal or a ceramic limiter.

The stability was not due to current flow along B-lines, or "line tying",
because the ring was stable both at low pressure (= 10'7 torr gauge), and
with nonconducting glass end walls.

We explain the stability quantitatively by the following model. We
note that the ring is not homogeneous, but appears to have a precessing
azimuthal structure. As a limit, we approximate the ring first as a
precessing sector, then as a precessing rigid magnetic dipole. This dipole
is repelled from the wall and stabilized by an image magnetic dipole in the
wall. Quantitatively we compute that the ring is 1 cm from the wall, as
is observed, and that moving it 2 cm from the wall results in instability.
This distance appears as the 4th root of an equation, and is remarkably
invariant to the parameters of the ring.

Our main intellectual step was in demonstrating that the power required
to maintain the image dipole in the wall was small enough not to limit the
confinement time of the ring. This was done by using the MHD equations to
find £ and B in the copper wall, and then by evaluating Poynting's vector

at the plasma - metal interface.

*Supported in part by NSF grant ENG-78-03400
Workshop on EBT Stability Theory, May 13-14, 1981, 0ak Ridge, Tennessee
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The basic objective of this calculation is to explain how the hot-
electron ring in the Mirror-Machine experiment at the University of
Tennessee i< stabilized by a metal wall.

The first part of this calculation explains how such a ring may be
stabilized; the second part explains how the power losses are not abnormally
high, and the third part puts 1imits on the amount of material that may be
confined.

The experiemnt works as follows. A microwave source at x = 10 cm heats
plasma electrons confined in a magnetic mirror. The electrons are heated to
Te = 105 electron - volts, or 109 OK. The electrons form a hollow, precessing
shell near the metal wall. The observed confinement time is about 1/30
second. Moving the electrons away from the wall by moving the magnetic field,
or by placing a ceramic scraper in the system results in a rapid plasma loss,
or inhibits the formation of the ring, respectively. The conclusion is that
the ring is stabilized radially, by the presence of the conducting wall. This
is the observation that we now must explain.

Two features are present when hot electrons are confined in a magnetic
mirror.

1. The electrons precess.

2. The electrons are diamagnetic.

The electrons precess in a magnetic mirror because the magnetic field
decreases with radjus. Thus, the portion of an electron orbit in the outer
region experiences a lower field than the portion in the inner region, and

the electron precesses, as shown in FIG. 1.
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Consider a positive change for example. F=ev xB. The precession is
shown above.
The electron is diamagnetic. This means that an electron or ion acts as

a magnetic dipole oriented against the magnetic field. This feature is shown
in FIG. 2 below -
v
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Consider a charge above. A positive charge in orbit generates a magnetic
field inside its orbit that opposes the intitial magnetic field, and outside
its orbit that aids the initial magneitc field. In general, inside a hot
plasma in a mirror, the magnetic field is reduced, meaning that the plasma is
diamagnetic (p<u,).

A third featur- that seems to be present in our device is that the plasma
seems to form a clump rather than a ring. The precession frequency is about

106 Hz' This feature is needed for stabilization. See FIG. 3 below.
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In view of the above, let us represent the plasma as a precessing

magnetic dipole, and show that it is kept off the wall. Consider a linear

model as an example. See FIG. 4 below.

N
( N/S J CONDUCTOR Fi16. 4

If the dipole precesses rapidly, the magnetic field cannot penetrate the

conductor. One way of computing this is in terms of the skin depth Z,.

z.,=-ya;f(w

0
Another way is using the method of images. A way of keeping a magneitc dipoles

field from penetrating the surface is by having a second, imaginary dipole of
equal strength inside the conductor. See FIG. 5 below. This formalism allows

us to compute the restoring force on the dipole!

~16. 5

)B  IMAGINARY DPoLe
v Covpucrom
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My major objection to the above formalism is that we have to drag a
magnetic field through a conducting medium, and this involves losses. 1
needed a method of computing the energy losses, and this is where MHD comes in.
For simplicity, consider a magnetic field propagating over the surface of

a conducting medium. Let B = jﬁoe1(kx'wt) (complex notation). Inside the
medium, the relevant equation is v2B = TUg %%n To fit this equation, we need

something fitting inside the medium, plus fitting the boundary conditions. A

solution is given by

g = Jaget (kxx * kg2 - ut)

Putting this into the above equation, we get the following differential equation,

2

(k)% + (k)% = oug(-iu),

2 2 _ .
X - kz = - 1woug,

The above equation MUST fit, because it fits both the differential equation,
and the boundary conditions. It has two limits of interest. 1st, w0. In

. 2 2 _ . _
this case, kX vk, 0. or + i kx = k,. Hence,

B = jBgel (K & ik 2 ~ut)

or the spatial dependence is e”(xX - kzz. Thus, the dependence is sinusoidal
in x- space, and decays exponentially in Z- space. This 15 the D.C. response.

The second limit is if w » =, so that k22 = jwou,. Here

] ]
k = + — + —
( r_ wouo V— U)(Juo)



88

Having obtained the expression for the magnetic field in the medium, we
can compute the energy flux through the surface of the medium. Power flow is

given by ¥ = E x #. = Ex B . On the average, where E and B are peak values,
Uo

Eo X Bo

-1
<N>—2 ™

Now B = 3Boei(kxx +k,z - wt) = J*-Boel(kzz - wt)

__ 8
fo—— at!

Assume fhas the same form as B, except for a phase shift and direction

E'=1?Eoei(kzz"“t)
T 9

' Ex
oo

yxE = J 3y E‘y
S 3

h 37 &

=1?3—-/=—1?3—E
3z 'y 3z Ty
T i . ._3 . i(k,z - wt)
v x E "aeEy 1E0(1kz)e z
——2—%=~im3 Boe1(kzz"‘°t)
"y
B2 .
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NOTE that k is a complex number and only the value of % that is real

contributes!
wlk - iky)
W r 1 W .
= = since k_ = k./
kr + 1k K 2 R k'Z Zkr r i
r i
2
Bo
Thus < W > = %— —~—-(E9)
Ho r

The + value of < W > means that the power is moving in the + - Z direction -

INTO the metal.

Qur final equation for power flow into the metal is as follows

2

o 1 Bo LI
e )
2
21 B 2w

4 uo ¥ au,

=1 B N U
2‘[2‘ O Yo uo3/2

Let us now estimate the power loss for a typical case.

108 H > 21 x 10® radian/sec

i

v

By = 0.1 tesla (max-B field in problem)
s =10° mHo/meter
4o = 1078 henry/meter
6
<= 1 (0.])2 “/2 X g x 10 1 = 8.86 x 10° watts/mz
7: 3 10 (1076)3/2
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Ncxt, consider the energy stored in a cubic meter of plasma.

18 23 9 4

Work = nKT = 10'% x 1.38 x 107°° x 10° = 1.38 x 107" Joule

4
7= Work _1.38 x 10" _ 4 g6 1072

= second.
Power 1 85 x 10

This number is remarkably close to our value of 30 msec (3.3 x 10"2 second),
considering that B, = 0.1 tesla is an upper limit. Thus, the power loss through
the. metal surface is tolerable, which is the question posed at the start of this

section of this investigation.

Next, we consider the relative forces between magnetic dipoles as shown in

FIG. 6.

~/
oL ‘iéﬁz:g;::iiln 1&L

5 6. 6

C ‘e
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The repulsion between b and d is
Fr = Eg————2—~(An electrostatic analogy is used)
dreqyr

The attraction between b and ¢ is

Fy = bc cos 9
4ﬂeo(r2 + 22)
_ bc 1 r

4“60 (rz + 22) (r2 + 22)]/2

. bc r
471'50 (rz + 22)3/2

The difference is (for all 4 units)

Fr = 2(4 -

q242

4neor2

r\)]w

4neor4

2,2

4ﬂ€OT4
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Hence, the repulsive force is the product of the dipole moments, qt,
and varies as the inverse 4th power.

NEXT, we compute the destabilizing effect of the magnetic mirror. We
represent the magnetic mirror as a uniform magnetic field, plus a magnetic

dipole. The field of a magnetic dipoie can be represented as follows.

m
u
+
N r
w
-
=
P
©
+
S

Fre. 7

i
[a~]
=
~
[¥V]

At our radius we represent B as Bo + B,. The value of B, is determined by the

magnetic field gradient. &1 =2 qj—"]—( rH 1 - = add = measured gradient
g 1d g - e B measured g .

We now can find an effective dipole moment

dne 4
11
Qs = (- %') By (37 ar B

megsured
Now, the repulsion of the plasma dipole from the center can be computed.

41r€0 BB]
PR UL U U R
r 4“€or4 2 3 0 ‘s5r B

i

- a8 (gr B)
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The wall restoring force is (noting that the wall - dipole spacing S = %9

2.2
3dt——s
4me,(2S)
For stability, we get
2.2
9B 1 q 2
- 2By {57 g) <3
or B 4115:0(25)4
izszured
Minus
B 1 éf/:z
-B (213 <3
0 ‘ar B’ = 4ﬂ€0(25)4

We must evaluate the magnetic anpalogy of a dipole, %%E_” but one thing is
(o]
clear - STABILITY INCREASES with dipole moment.
The equation obviously fails when S becomes comparable with the skin depth.

Computation of dipole moment.

Q- gale ML = 0.1 testa x (.01em)?x 0.1em x 0.1 = 107 (8 = 0.1)
0 2

3B 1, _
- Bo(32g) = - 0.1

¥ +
0.1 tesla -1 meter']

PUT INTO INEQUALITY

-7
-0.1 < 3 10

(25)*

(25)% < 3 x 1,078

S = 2cm.
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4. RING-CORE COQUPLING, LOW FREQUENCY MODES

D. E. Baldwin and C. L. Hedrick, Session Chairmen
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Eigenmode Stability Analysis for a Bumpy Torus
J. W. Van Dam, H. L. Berk, M, N, Rosenbluth
Institute for Fusion Studies, University of Texas, Austin, TX 78712
and
D. A. Spong

Fusion Energy Division, Oak Ridge National Laboratory
Qak Ridge, TN 37830

Abstract

The analysis of eigenmodes in a bumpy torus yields several stability
boundaries that indicate the existence of a parameter regime for generally
stable operation consistent with current experiments. However, there are a

relatively narrow band of parameters where instability persists.
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[. [ntroduction

The bumpy torus nas several features that make the theoretical treatment
of its linear stability quite different from that of other confinement
devices. In particular, its plasma contains an extremely energetic high-beta
electron population, which creates a deep diamagnetic well in each mirror
sector. Conventional fluid or guiding center theories are inadequate because
the magnetic drift frequency of the hot electrons is comparable to the jor
cyclotron frequency and larger than characteristic frequencies for typical
magnetohydrodynamic fluctuations of interest. Furthermore, the plasma ion and
the energetic electron gyroradii are comparable, and the diamagnetic well has
a half width of several gyroradii, which suggests that the radial mode
structure and finite Larmor radius effects are important.

The stability investigations reported in this work have their roots in
several previous findings: (1) a hot electron plasma can be stabilized with
respect to interchange if there is enough cold ion plasma present;]'z (2) the
hct electron rings in the bumpy torus device stabilize the toroidal core
plasma against interchange if the ring pressure is high enough;3 and (3) the
cere plasma becomes interchange unstable if its pressure exceeds a ceriain
thresho1d.4’5 The last observation led to some concern about whether the
bumpy torus would be a viable reactor and hence underscored the significance
of linear stability theory for this device. Subsequent studies extended th»
linear stability theory to include non-local geometrical effects6 and high
frequency mode couph’ng.7’8

In the present work, we consider the axjal eigenmode equation and we
point out the importance of considering the radial eigersode problem. The
major results is that we obtain various stability boundaries that generally
indicate the existence of a parameter regime for stable bumpy torus operation
which is consistent with current experiments. However, over a relatively
narrow wavenumber band instability still persists in the otherwise stable

regime.
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[n order to appreciate the significance of this resuit, we will first
describe the somewhat pessimistic stability predictions that were obtained
from an anergy principle analysis. Then, in Sec. II[, the development of
normal mode equations tfor a bumpy cylinder is sketched. Axial and radial

eigenmodes are separately discussed in Secs. IV and V, respectively.

Il. Kinetic Energy Principle Approach

A useful way to approach the problem of linear stability has often been
through the use of an energy principle, since this makes quite clear the
physical mechanism for possible instabilities. However, usual fluid or
guiding center theories are not adequate, since the plasma in a bumpy torus
contains an extremely energetic electron population. Due to their large
cross-field magnetic drift, these electrons cannot be considered to be "frozen
in" with the magnetic field in the usual fluid sense.

A new kinetic energy principle6 has been developed, which accounts for
this interesting non-fluid feature by using single-particle adiabatic
invariants to describe the behavior of the hot electrons. These invariants
are the magnetic moment y = MVLZ/ZB, the longitudinal action J“ = f vy de,
and the magnetic flux through the particle precessional drift orbit. Although
developed for the bumpy torus, this new energy principle is of more general
interest since it provides a rare application of the third adiabatic
invariant. It has also been used to study linear stability in the tandem
mirr‘or9 and tokamak10 devices.

In a bumpy torus, this energy principle has been used to examine low
frequency fluctuations whose frequency is larger than the diamagnetic
frequencies and the magnetic drift frequencies {evaluated at typical energies)
¢f the ions and electrons in the toroidal core plasma, but smaller than the

diamagnetic and magnetic drift frequencies of the energetic electrons.
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Application of the Schwartz inegquality to this energy principle shows
that a new, purely magnetic mode will be unstable in a bumpy torus at low

values of the core plasma pressure given by

dg . +
w,  fgtxd Pyn P
<5 < - 24 (1)
1) § dg Pin
g
Rere, Pe is the core pressure, assumed to be isotropic; d2 is the arc length

incremant along & line of force; p“'Lh are the anisotropic hot electron
pressure components; ¥ is the magnetic flux, used as the "radial” coordinate;
and k = (b - 2%) o zwllgwlz is the field line curvature in the ¥ direction,
normalized by |Fw| = rB. In obtaining Eg. (1), we have assumed azimuthal
symmetry and considered m >> 1 modes, with m the azimuthal mode number.

The criterion of Eq. (1) may be more easily understoed if we use a loca!l

approximation (i.e., !Zw!k - - R;]

» where RC is a measure of the mirror
field curvature, and |Y|(3p/3y) = - p/4, with the scale length 4 taken to be
the same for the =iag and core pressures) to rewrite it as a core plasma beta

.. . 2.,
limit (BC ZDC/B ):
B.
A "R
B <z( )(H-—-—) . (2)
core L I

f wa use A/RC§§ 0.05 (although this experimental ratio is not well known),
we obtain the threshold core beta value to be about 10% for a fairly
anisotropic ring. Note, however, that this threshold for the core beta is
approximately half the ring beta threshold for $ d2/B stability due to a
7igid ring, i.e., half of the ring beta value that is usually assaciated with

the operational C-T transition.
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For core pressures p. above the limit specified in Eq. (1), the
magnetic mode is stable. However, the new energy principle, minimized with
respect to the magnetic field perturbation, shows that the low frequency
interchange mode can then be unstable.

This apparent dilemma is resolved by noticing that the new energy
principle is sufficient, but not necessary, for stability. Necessity has been
demonstrated only for high-m modes in a plasma o equal temperature Maxwellian
ions and electrons, which is not the case in bumpy torus experiments. Thus,
the actual determination of stability will require a normal mode analysis,
which is presented in the following sections.

Nonetheless, the energy principle approach does serve to indicate (a) the
existence of a new potentially dangerous magnetic mede, similar tc the well-
known mirror instability (i.e., compressional Alfven mode) although driven not
by extreme anisotropy but by the negative compressibility of the paramagnetic
hot electrons, and (b) the existence of an upper limit on the core plasma
pressure for interchange stability. The latter was previously pointed out

4,5

from a local slab-geometry dispersion relation *~ and is thus confirmed by

the non-local energy principle analysis.

[II. Normal Mode Equations for an Axisymmetric Bumpy System

The bumpy torus is a large aspect ratio device.3 Not only is the
major radius much larger than either the plasma radius or the inner radius of
the mirror coils, but also the curvature of the local mirror field is much
larger than the toroidal! curvature. Thus, it is reasonable to assume
azimuthal! symmatry and reduce the investigation of stability to a two-
dimensional problem, viz., that of a bumpy cylinder. For such a system, we
choose the orthogonal curvilinear coordinates y, 3, and X, where ¥ is the

magnetic flux function, & is the azimuthal angle, and X is the coordinate
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along the equilibrium magnetic field, which is represented as 8, = 7v x 76 =

] be the Jacobtian

/e (T0 x 8). Let £= [(T0x 38) « »]™ = (8,17x1)”
for this coordinate system.
Our basic equation of motion will be taken to be that for momentum

transfer:

dv

o H% =JdxB8-7 A (3)
This is the exact first velocity moment of the Vlasov equation. No electric
field appears in Eq. (3) as long as we assume charge neutrality. The mass
density o= N;M. in Eq. (3) is mostly that of ions; also, y is the fluid
velocity, J = Ux B the total current, and£_ the total stress tensor. In this
study, we will neglect Larmor radius effects. Then the pressure has the
diagonal r'orm:_F-' = p"_AQ:Byﬁ- pl(&I’-Eé), withé =‘§0/Bo the unit vector along
the equilibrium field. The pressures 5"’1 are to be obtained from a guiding

center distribution function f(x, e, u, t), which obeys the drift kinetic

equation:
cE x 8B
5f a s 2 . 3B\ 3f _
5?*’<Vn£+~vd“—sz—)'2f"<qfuvu*Q‘i Ja*“a‘:)ﬁ“) -

This drift kinetic equation is derived by averaging the Vlasov equation over

the rapid gyromotion, in the small Larmor radius limit. The spatial gradient

Jf in Eq. (4) is taken with the velocity space variables p = lez/ZB and

€ = 172 Myg® + B held Fixed. Also, £ is the electric fiald and y =

(c/qB)& % (Mv1%§ a 3§_+ u®B) the curvature and gradient-B magnetic drifts.
When we take E" = 0 and neglect the longitudinal motion (i.e., the

coupling to drift waves), the momentum equation (3) yields two scalar
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aquations. One is its azimuthal component:

. 1 52
p]'-!l.i.ze=-ze.u(-28 +pl)’.§,'z(cé)1 ’ (5)

where‘jl ady /dt and 0 = 1 + (pl - p")/BZ. As the other scalar equation,
instead of the gy component, we will use the parallel component of the curl of
Eq. (3). After linearization, it may be seen that this operation conveniently
annihilates information about the Alfven mode already contained in the
azimuthal equation, (5). Taking B g x of Eq. (3) yields

. 2 ol « 8 A - 1.2
Lo @xoy) BB gl=o=)- Bxb-20)- g7 8 -9

The next step is to linearize Egs. (5) and (6), using B = B + 8 and
£ =‘E;, with tildes indicating perturbed quantities. We will not consider
ambipolar effects associated with an equilibrium electrostatic potential.
Also, once having linearized the equations, we will drop the nought subscript
on equilibrium quantities. Perturbed quantities are taken to vary as
exp(im® - iwt). The magnetic field perturbation may be written as:E * X (E X.Eo)’
where E(.’i) = i(E X L)/uB) is the displacement of a field line. [n particular,
it is useful to define the two contravariant components of the displacement,
X = E'-‘gw and Y =.£ . Zp, in terms of which the longitudinal pertubed field
can be written as E}/B = -imY - 3X/3y.

The linearized azimuthal momentum equation is

— 2 0% o~ 2 g
-jwp v * V8 = - imve|° (BB, + P,) + !ve|°B. ¥ B8 - 7Y . 7
X I8 - img A AT 7

Linearizing the parallel current equation, (6), is slightly more complicated.

It helps to note thatg- 9 =8 VX and E- Ve =8 . VY and that, for an
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axisymmetric system, J - 7y = 0 = J" and J - V8 = - ,? ' g =8 (B /B - k)

where a prime means 3/3¢. We obtain the following linearized form:

-UE.EB.+TE'-V-B =0£. (8)

Eas. (7) and (8) must be supplemented by the solution of the linearized

drift kinetic ecuation for the haot glectrons:

o

afh afh
- af R P | -
Fylvnean) = - Xl o | =26 B |48, + (v A +uB'x>. (9)

W - Eq" L' + V||2k>

He have taken the hot electrons to be trapped and rapidly bouncing in the
magnetic mirror of each bumpy sector, so that field quantities must be bounce
averaged using <°°°> = [§dﬂ.(w-)/v"]/[ $ dil/vI
components are calculated from {Bh.il} S deausy7'f -1F {MVHZ,;JB}

~ (30, 3P
1 L . . )
igiﬁ“”ag §~ The equilibrium pressure p. for the core plasma ions and

]. The two pressure

electrons is much smaller than th.t for the ring and is assumed to be
isotropic. To calculate the perturbed pressure EE, we may use either a
fluid theory or a distribution function approach.

Finelly, since the ion beta is small, it is sufficient to use the cold

plasma response and include only iom E x B and polarization drifts in the

inertia term:

w
~ ci Vi o2 Cw T
Yyl (E){E"E“‘r =& | - (10)
) = W €1
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where w ;. = eB/Mic is the ion gyrofrequency. A1l other kinetic effects

enter through the perturbed pressures. £q. (10) can be decomposed into two

components:
[ W
g ¢ T s - xx.a-(__“_”_?)yl , (1)
L uti129|
{ ,
A - 8 s Ay - —TRo x|, (12)
- SRV

with A = wzwgi/(NSi - wz),
€ags. (11) and (12), together with (7), (8), and (9), constitute the

linear system of equations whose stability is to be investigated.

IV. Axial Eigenmodes

The equations for the full two-dimensional bumpy cylinder problem are
fairly complicated. We are, however, able to make some progress an the basis
of two assumptions. First, we argue that the magnetic field line bending term
in Eq. (8) should be eliminated if we wish to consider the most unstable types
of perturbations possible. Thus, we assume that X {s predominantly flute-like.
Second, we assume that the diamagnetic well is sufficiently strong so that the
field curvature term is small in the equilibrium condition, i.e., B'](EB/aw)
§s=8°2(apL/a¢) >> k. In other words, if we define a gradient-B8 scale length
A and a curvature scale length R, we have &4 == 24/8) (since Blh >> Bc)
and AB/RC < 1. For the ratio AE/RC to be a respectable expansion
parameter requires a large ring pressure: Blh > 20% at least. For such high
beta rings, we then find that the lowest-order solution of Eq. (7) for the
perturbed magnetic field is 8y = c(y)3/3. Here, B, is the Lagrangian
perturbed parallel magnetic field, measured in a reference frame moving with
the lines of force and hence related to the Eulerian perturbationlgn by

E-‘ EEH + X8°.
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We now multiply the two normal mode equations, (7) and (8), by the
lowest-arder sclutions for‘E] and X, respectively, and integrate over all
space. This procedure ramoves the dominant terms and leaves two consistency
conditions which specify the higher order behavior of the Ww-displacement and
the longitudinal perturbed magnetic field.

To illustrate this procedure, let us specifically consider modes with
m >> 1 so that the analysis can be performed on individual field lines. This
corresponds to looking only at the axial eigenmodes, with no consideration for
the transverse structure.

[n particular, if we set X = 0 in Eq. (7), we obtain a line-averaged
dispersion relation for the modified compressional Alfven mode:

2 N
2 dl o8’ 3 h

%82 | v |

& dg aar (v Pin (P 8'\¢ 1 .
.ﬁ‘ E—%BB <1 --B——">°BB<B—C>+'-“-§%;B-,?(E.Z-B—)]-O . (13)

Here, Nh =.f dedqu" 1 Fh is the equilibrium ring density. Consider the
frequency-independent term in Eq. (13). If the sign of the term in brackets
is negative, the dispersion relation can be unstable. With negligible
pressure k = B'/B, and the sign of the term is positive and the balance of the
first and third terms give the usual Alfven wave. However, with sufficiently
large hot electron pressure, kB'/B becomes negative and the sign of the third
term is negative when Pe is sufficiently small and m sufficiently large.

This then gives the modified mirror instability that was pointed out in the
energy principle analysis described in Sec. II. However, this mode can be

stabilized by the frequency shift due to the term linear in w if

'y 12
de o 12..24 dg , P Pm] [ ¥ ]
4N1.M1.f‘8~—g LV_‘L’I B §‘B“ [k(P“h + plh) - -’;'2'— < fdfz (B-) » (14)
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where we assumed p_. <<p , and [kB/B'| << 1. The term linear in w in
Eq. (13) represents non-adiabatic behavior of the hot electrons; that is, w i-
not small compared to the magnetic drift frequency, and the hot electrons do
not respond instantaneously to changes in the magnetic flux through their
drift orbits. The significance of Eq. (14) is that the modified mirror mode
and the interchange mode can both be stable at low core pressures, when the
ion cyclotron frequency is treated as large. This suggests that in this limit
there is a parameter regime for stable bumpy torus operation.

If we solve Eq. (7) for C(Y) = E}(as/aw)" in terms of X = X(y) and
use the result (with w set equal to zero) in Eq. (8), we obtain a dispersion

relation in the high m limit for the low-frequency flute interchange mode

2 £ dL ! di B’ [f:j& p; p;h]z
P f;j ¢ pcfﬁ“ (k ¥ E—) ) [}‘% Dél-llh - fg-& k(pyy, *+ th)']

=0 (15)

This yields the same upper limit, (1), on the core pressure for interchange

stability as was obtained from the energy principle treatment.

V. Radial Eigenmodes

That the radial mode structure should be important in a bumpy torus is
suggested by the following rough plausibility argument. The azimuthal mode
number should not actually be infinite, as in the axial analysis of the
previous section, because of the presence of finite Larmor radius effects.
Also, bumpy torus stability {is mainly determined by what happens within the
ring region, which is somewhat narrow. Thus, if we suppose a mode could be
localized within this region, we may estimate its radial wavenumber to be

k.= v/A. Comparing this with the azimuthal wavenumber kg = m/a, where
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a T (5-10)4 is the radial ring location, we see that the mode is dominated by
its radial variation even for sizeable mode numbers (m <15-3Q0, approximately).
We can isolate the exact radial problem by considering the bumpiless

limit, i.e., no equilibrium variation along the magnetic field lines.

However, because the magnetic field curvature is important [cf. the beta limit
of £q. (1)], we prefer that it enter naturally and not through an artificial
gravity. The simplest model of a bumpiless, axisymmetric device with natural
curvature is the z-pinch. We will adopt this model in order to pursue the
purely radial problem.

The geometry for the z-pinch model is cylindrical, with coordinates
(ry ¢, 2). The system is periodic in the z-direction with length 2qL. The
magnetic field lines §, = B(r)i lie on nested concentric cylindrical shells,
which we associate with the flux (or mod-8) surfaces. Also, the coordinates
r, ¢ and z correspond to the flux coordinate y, the longitudinal coordinate X,
and the azimuthal angle 8, respectively, of a bumpy system. Finally, the hot
electron pressure 15 localized radially about a radius o whose value we
choose so as to be equal to the effective radius of curvature, Rc, of a
bumpy system. Since there {s no equilibrium variation along g, we will
consider the case of flute modes.

The general geometry theory of Sec. III can be readily transformed to the
z-pinch geometry by means of the relationships ¥y = TBL, V6 = -2/L, JIx =.§/r,
H=rp/B, X = LBE ., 3/3y = (LB)°] 3/3r, and k = -(Lsr)‘]. The result is
that we can combine Egs. (7) and (8) to obtain the following radial eigenmode
equation:

d
e [ (F)] el < o () - b oy o) - B2

e S ER i) I
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In Eq. (16), we have used the notation a = A/k2 2, where kz = m/L

corresponds to the azimuthal wavenumber of a bumpy system, “p " 32/\ﬁ3;

is the Alfven speed, and A = wzugi/(ugi - uz) was introduced earlier,

with 9e the ion gyrofrequency. Also, we have defined three kinetic integrals:

ded af . (K2\ af | 2
T- 'f-\f"-h‘i[“?a*(ar)-a?]" - (17)
deduB | of ck,\ ar] “'nz
st f v,a [ * (@) E - (18)
dedus [ af [ Kz) af "u4
neo-f e e [ (@)% Py (19)
where
k
u d8
Q'w~—(ga—-v“ /r) .

the velocity integrals are understood to include a sum over species.
These kinetic integrals have been evaluated in two ways.

One is to use the AB/Rc << 1 approximation discussed earlier, for which we

find

~ dp,, /dr dp_/dr
T’-':"; <B—";'E7a—)-9—+(sc-ﬁw> ’ (20)

c

for example. The integrals S and R can be evaluated similarly. The guantity

2 N
d8 2d h
o * ok 8F) /98 & ()

is then a characteristic grad-8 drift frequency for the hot electrons.

Another approach is to use a delta=function distribution for the hot
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electrons: Fh z (plh/uoBZ)S(u-uo)G(v"), in the extreme anisotropic limit,
normalized to yield the equilibrium transverse pressure. With this approach,

one aqbtains

wid + 8) - wcvl(] tr %F (pC/Bzﬂ
W= “g

' (21)

where

Q
Sle
-
nE
<
=
g k=4

ku d
“‘oa’?&'

and so forth.

Numerical solutions of the differential equation (16) are reported in the
companion paper by SpongrI and in forthcoming publications. By means of
analytical considerations, however, it is possible to glean certain
information about the radial modes.

Two general categories of modes emerge when we analyze the radial
equation (16). The first category is that of modes with radial wavelength
larger than the annulus width. To treat this type, we integrate Eq. (16)

across the ring layer, the mode being nearly constant over the annulus region

and then connecting to an evanescent solution outside. One such mode arises
from a denominator singularity and is described by ugmii(u%i - wz)'] =
(ksz)zT(w). This is similar to the electromagnetic mirror mode discussed

earlier, although it experiences strong qyrofrequency effects. This mode is

2

ci? but it leads to a rather serious

‘qs 2
stabilized when (ksz) (AB/Rc) >w
instability when the gyrofrequency Wey and the hot electron characteristic

curvature drift frequency, w are close in value, which occurs in current

cvl
bumpy torus experiments.
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Another such long wavelength mode is the interchange mode driven by the
gradient of the core pressure only. This is again seen to be stable for
BC < Z(Ach) and unstable above.

The second category is that of short wavelength modes. For these, we may
use a WKB approach and replace the radial derivative on the perturbation by an
effective wavenumber kr’ where it is assumed that krA >1. In fact, for a
linear density gradient, £q. (16) can be approximately solved in terms of
Bessel functions, from which we estimate krze 2n/A (n =1, 2, 3, ...) for
the modes that can fit within the ring layer. The WKB procedure yields a
fourth-order dispersion relation in the frequency if we use the small
AB/RC expression for the kinetic integral T (fifth order if we use the
d-function expression), The explicit form of the dispersion relation is given
in Ref. 11. One of the modes is low frequency and corresponds to the core
plasma interchange. As before, it imposes an upper limit on the core pressure

for interchange stability. Specifically, it is unstable if

R, (k)54
sc( )""—@R—""’ . (22)
o

Eg. (22) includes the effect of finite Larmor radius, rn» for the hot
electrons.

The other modes described by the lccal dispersion relation are higher
frequency. These modes are manifestations of the mirror-like instability and
the hot electron interchange. We find that the stahbility condition for the

former mode is given by

2 2 2
w_ . CABkL vk
P‘Z < cvl (23)

2 2
“ei 4 Veul Rckz we 4 K
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whore @ o 1 - chc/ABZ and kf = kg + kE. This mode limits the density
of the beckground plasma. For sufficiently large ey this density limit is

quite toulerable for EBY cperation. However, when

tha background density throsheld dips to zere. This condition for instability
is readily mot in curvent cxperiment and thus there is an apparent
contradiction with cxperimental observation and this theory. However, a more
carcful evoluation of the cicemmode is needed in this parameter regime. In

addition finite clcctren Larmmor radius effects are stabilizing when (klr'h)2 >

Ggglﬁc.
The condition for stabilizing the hot electron interchange mode is found
to be,
2
v ok
) ] oqS¥ 2 8,
) 2@2 Wey 4 &y (24)

2> 7 ¢ ?
For We 4 suffieientiy large wo see that Egs. (23) and (24) tend to have
a stability windsw of oporatiom ¥ Pe RC/A < 1. However, for finite Weis
tho stability windew discopears for special values of ki/kLz. The
cgeepanying article exhibits various stability plots for paramsters

asseeciated «ith typical eporation of EBT-5/P devices.
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VI. Summary
A new kinetic energy principle that was developed to study low frequency

modes in bumpy tori is pessimistir, since it predicts a new mirror-type
instability below the core pressure threshold for interchange stability.
However, the energy principle approach does not include several effects, e.g.,
hot electron non-adiabatic behavior, that are important for stability and is
not strictly necessary for stability.

Linearized equations for normal modes in an axisymmetric configuration
were developed. Small Larmor radius effects can be included. This
two-dimensional problem was decomposed into two one-dimensional problems first
by considering only the axial mode structure in the high m limit and then by
studying radial effects exactly in the z-pinch model.

An analysis of the radial eigenmode equations indicates the existence ¢f
a parameter regime for stable bumpy torus operation if certain rescnance
regions in parameter $pace are ignored. The present-day EBT-[/S devices
typically operate within this stability window, and scaling up to the proposed
EBT-P device appears possible.

We still find conditions where instability persists. For example, the
long-radial-wavelength denominator mirror-type mode seems to pose stability
difficulties when its frequency, which is approximately the hot electron
curvature drift (evaluated at a characteristic transverse temperature), is
near the jon cyclotron frequency in value. Likewise, the WKB mirror-like mode

has stability difficulties if v ki’“hiéklz'z 1. However, our

cvl
theory probably needs to account for the axial variation of the magnetic field
in order to handle this point properly. We are also working on incorgorating

full Larmor radius effects.
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ABSTRACT

The radial structure of eigenmodes in EBT 1s of interest since
both modes which are localized within the annulus and modes which
extend into the core plasma have been predicted to be unstable within
appropriate parameter regimes. Radially resolved calculations have
been done for a z-pinch model which corresponds to a bumpiless,
azimuthally symmetric version of EBT. A shooting method is employed
which solves two-point boundary value problems on the inside and
outside of the ring and which matches derivatives at the center.
Comparison of these results with those of a localized dispersion

relation will be discussed.

*Research sponsored by the Office of Fusion Energy, U.S5. Department of
Energy, under contract W-7405-eng-26 with the Union Carbide
Corporation.
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I. Introduction

Recent calculations have indicated the important role of ring-core
coupling effects on EBT stability. Since the hot electron rings are
radially localized to regions of the electron cyclotron resonances, it
is of interest to examine how modes which are driven by the presence of
both hot and cold plasma components connect to the 1inner core plasma
and outer surface plasma regions. 10 address such questions, a
radially resolved eigenmode calculation is required. Eventually, more
miltidimensional models may be necessary to treat the varilations of
quantities along the field lines as well; however, it is desirable at
this point ¢to consider radial and axial variations separately. The
formulation of such a radial problem in a =z-pinch geometry (which
allows a decoupling of the radial and axial problems) was discussed in
the previcus talk.! In the present paper, we shall discuss methods
and results of numerical solutions of the resulting radial eigenmecde

problem and their comparison with localized solutions.

II. Basic Equations

Using the momentum balance equation for core plasma and hot
electron rting components, supplemented by the drift kinetic equation
fer perturbed ring pressures, the following radial eigenmode equation

has been derived:

2
- Va 4 AxB2T k1 _ E{ wl) "N T
gl dr vﬁ(T - a) dr vﬁ(T - a) T-a
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2 2
22kws VAi[ ABr (§+kw'r)] 1)
(T - a) BZr dr vi(T -a) T Q
s L4 (ap )+ R oS0y
At gzdr P 1 2 (T - a)

2.2
k Va

&>

1(E x B)

B i —
sz

In deriving this equation, a transformation from a bumpy cylinder to a
z-pinch geometry has been made and variations of quantities along field

lines have been neglected. The quantities T, S, and R are kinetic

integrals given by:

(m 9f + m-iz)

Tert- ! Bdude e Y uz 2)
V" W = wd
9f of

(0 = + m =—)

S =0 +‘% | Bdude 9e oy NVE (3)
vy wV - wd

f If

(0 5=+ m =)
R=og--L Bdude 3¢ 3% 4 (4)

BZ VI 0 - md
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where
ap
T=1+.£_;L.
B JB
P P
o=14%+ - d
B2
2
V.
ujd=k( ﬁ——_l.]
dr Rc

A number of different models and approximations have been used 1in
evaluating these Integrals. For most of the calculations discussed in
this paper, the hot electron thin annulus limit has been taken. This
assumes that the ring electrons are sufficiently hot that w << WpRs> Pag
and AB/Rc << 1 where Ag 1s the magnetic field gradient scale length in
the ring region, R, is the magnetic field line radius of curvature, and
wpg and Wy, are the hot electron gradient B drift and diamagnetic drift
frequencles, respectively. In this limit the above integrals are not
dependent on the details of the distribution function and may be

writcen as follows:

Ag dp“DH/dr " dpy./dr
T U Sara) T P T Faear 5
RC BB/dr DB BdB r
dp /dr
nw,H 1
S =] = —2 -~ _8
BdB/dr 2 e (6)

R =1 +‘%(61H - Bug + B + 2B"c) (N
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Since AB/Rc is of O0(l1/4 to 1/3) 1in EBT experiments and w is not
necessarily small compared to w y for some of the high frequency modes
of 1nterest, the kinetic integrals have also been evaluated for models
of the hot electron distribution function where it is not necessary to
make these anproximations. One such model is a delta function in u and
v

Pl
frot = ——5 S — )8 (vy) (8)

HoB

In this case, the integrals are:

w(1+8) = wg[1 - R/B)(E /B2 + 28/8p)]

T = (9)
w = Wpp
S=1+0(8) (10)
1
R=°=1+33H+0(3c) (11)
where

w —_—

kL~
2YRcwce
dP . -1
A= (L C)
P dr

Cc

It is also relatively simple to evaluate these integrals for the case

of Maxwellian times a delta function in v . In this case they may be
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expressed in terms of exponential integrals. As mentioned above, the
results given in this paper are based on the approximations of T, S, R

given in Egqs. (5)~(7). Work is presently underway to use better

approximations for these integrals.

I1I. Loculized Model

Before discussing the radially dependent calculations, results of
a calculation localized to the ring region will be mentioned. The
radially dependent calculations will then be compared against certain

of these results.
A local dispersion relation may be obtained from Eq. (1) by~

assuming the existence of an evanescent eigenmode, localized to the

annulus region:

cos(Qr”) inside the layer
E(e) = (12)

exp(=kr’) outside the layer

where 7 = ¢ = Tye

Neglecting gradients which act on equilibrium ¢quantities, the radial

differentisl equation becomes

2
2 2 (T - a) WA 2Akws
Q% + k* = { -
AT Vﬁ(T - 01) rﬂ(T - Q)
242

kev 2

A(l d R S
+ _ .l + b o ——————— 13
5 [132 = (p, + pu) o a)]} (13)
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Expanding this equation and collecting terms results in a cubic if we
assume Bc << A/Rc {(we shall investigate stability for a background beta

below the Lee-Van Dam limit where near term experiments operate).

2 2 2
v v x2
DBy +_§_:4._) ed (=, ﬂVDB BJ) .
v2 [eavpgl k3
2
2 v
LEB e 2_2______A =0 (14)
k2R kg¥paRcA

where t = w/kVDB°
The expansion parameters for the wvalidity of Eq. (14) are: Ba/R.s
BCRC/A9 BH << 1,

To analyze Eq. (14) for stability, first negleet the 1last term
(valid oprocedure if V, is sufficiently small) and we obtzin a
dispersion relatlon for the compressional Alfven mode for which the

marginal stabllity condizion is found to be:

k R
2 Gl
> (15)
ng ( =.E§ cha)
kz w iA

where V = V
cvy DBAB/ RC °

If we assume V, 1s sufficinetly large, then the first term in Eq. (14)
may be neglected and the resulting quadratic equation yields the

merginal stability condition for the hot electron interchange mode:
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2 2
Vv kTAR
A < L% (16)
v2 v 2
cv 285(1 + l ch —
Wey k2

g

A stability window then exists if we can satisfy the condition,

R ke
2 2 ‘2B
kSR _A \'4 k-L
te s A (17)

kg v2 e
26“ 1+ , cv 2 cv (1 _ 2 hﬂcv
ci k k i

L

If ch/wciA << 1, a stability window can be readily found. However, if
chlwciA > 1, one can find values of ke/k; where there is no stability
window. 1In current experiments ch/wciA = 5-~1U,. hence there appears to
be disagreement with the experimentally observed stable operation. The
window disappears for a relatively narrow parameter range, and more
careful calculations with more realistic geometry are needed to restore
a theroetical stability window. In addition to these analytic
estimates of the stability boundaries, numerical solutions of the cubiec
Eq. (14) have also been performed. Typical results of such
calculations are indicated in Figs. 1 and 2 where stability boundaries
in nCORE/“HOT vs By .t are plotted for mode numbers m = 1, 2, 3, 4 for
EBT-S and EBT-P. There is a substantially wider window of stabliity
present at high m numbers for EBT-P than for EBT-S due to the larger

values of Rc and the magnetic field.
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EBT-S STABILITY BOUNDARIES
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Fig. 1 EBT-S stability boundaries as predicted by the cubic equation
(14) for m=1, 2, 3, 4 (Brin = 4.5 kG, plasma radius = 10
cm, ring width = 1 cm, radius of curvature = 20 cm, Bcote

0.005, E_y,, = 500 keV, ky = 2/4.
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EBT-P STABILITY BOUNDARIES
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Fig. 2 EBT-P stability boundaries as predicted by the cublc equation

(14) form= 1, 2, 3, 4 (Brin = 11 kG, plasma radius = 18

cm, ring width = 1.5 cm, radids of curvature = 26 cm, B

0.2, By = I MeV ky = 2/4. core

ring
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IV. Radially Dependent Calculations

In addition to the localized solutions ot _he radial eigenmode
equation (1), numerical solutions have also been obtained which take
into account the radiall egtructure. In obtaining these results,
assumptions have been made concerning the plasma and hot electron
equilibrium profiles. These will be described below along with the
numerical method used in solving th=2 equations. Such calculations are
still in a somewhat preliminary phase, as varlous plasma and hot
electron mwodels are under consideration, and those mentioned here may
not turn out to be the most appropriate.

The core plasma density and temperature are expected to be
relatively constant in the core region (within the hot electron ring)
and drop off through the ring region. It is likely the maximum core
gradients are 1localized to the outside of the ring (where magnetic
field gradients are reversed); otherwise, the inside half of the ring
could become unstable for core gradients above a certain level. Two
typlcal sets of core density, temperature, and pressure profiles which

exhibit these features are

- 1 - tanh(x - a)
Be = Moo \/ 2
1 = tanh(x ~ a)
T. = Too \/ 5 (18)

. 1 - tanh(x = a)
Pe @ Peos 2

(Profile I)

where X =
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r, = annulus central radius
A = annulus half width

a = a variable parameter usually taken to be 1

and
1 x <0
nc - nco 2
e~X x > 0
n
c .
Tc = n I‘co (19)
co
1 x <0
Po 7 pco 2

2" x50

(Profile 11)

In the folleowing, results will be given for each of the above core
plasma profile models. Both pressure profiles are plotted in
Fig. 3(a). With the profile I podel the core pressure extends somewhat
outside the ring region whereas, with the profile II model the core
pressure decays more rapidly outside the edge of the ring.

The ring density and temperature are localized on the outer edge
of the core plasma, centered zbout a minor radius r = r. A Gaussian

profile is tynically assumed for the hot electron density and

tecperature as given below:

-
U.H = nHOe
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-x2
Ty = Thot (20)

Py = Pnoe-zxz
Profiles of the hot electron density and temperature are shown in Figs.
3(b) and 3(c).

Since the stability properties of EBT are strongly influenced by
the existence of a finite B depression of the magnetic fleld, 1t 1is
important to use a self-consistent magnetic field equilibrium in these
calculations. An approximate model has been employed here which
assumes that the 8cale length for the variation of the field in the
annulus region is separated from that for the variation in the vacuum
field (i.e., 8p/R, << 1),

The finite beta magnetic field equilibrium is described by the

momentum balance equation and Ampere’s Law:

g+
L)
- I8 J
[]
[S
x
w ¢

A3
[V ]
[]
<3+
x
&+

(21)

Combining these equations and taking the component perpendicular to the

field lines results in

v (p  + =) = (py - py +—)K (22)
2u° ¥,

> > A

where K = (b . V)b = curvature. If AB {(finite beta gradient B scale
length) i{s assumed to be small compared to R, (the radius of curvature

of the vacuum magnetic field), then the above equation reduces to
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2
2 B
Zuo 2”0
where B,gc = vacuum magnetic field. For the present calculations B, ..

has been taken as the vacuum magnetic field in a bumpy cylinder (such
as given in Ref. 4, for example). Using this in Eq. (23) results in
a B field profile such as plotted in Fig. 3(d). Here, the dashed 1line
indicates the vacuum magnetic field and the solid line indicates the
self-consistent finite beta field. More exact equilibrium models for
the z-pinch model are under development and will be implemented into
the code in the near future.

The numerical solution procedure used for solving Eq. (1) 1is
based on the SUPOR’I‘5 code. This solves linear two-point boundary value
problems and uses the method of  superposition coupled with
orthonormalization of the basis solutions to the homogeneous equation
when linear dependence threatens. It employs a variable-step
integration scheme.

Equation (1) may be written in the form

1 d d§ =
;-& (rP E] Q€ 0 (24)

In order to wuse the SUPORT code, this is broken up into two coupled

first-order equations:

1 -1
—
(rf) CyZ
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(25)

dr - rle

where y; = & and y, = P %%, This system of equations 1is then solved as

two separate two-point boundary value problems on the intervals Toin —

T, and o — Tmax® The boundary conditions are

Y1{rpin) = ¥1(rgax) = 0

and

Yl(fo) =1

The SUPORT code then returns values for the derivatives of y; at r =

r,» and these are matched at the center of the hot electron ring:

f _=20 (26)

This condition determines the eigenvlaue w which is normally solved for
by using a Newton’s method.

Some typical results of this calculation are shown in Figs. 4 and
5. Here, eilgenfunctions are plotted vs radial position for profile
model I (Fig. 4) and profile model IT (Fig. 5). The plasma and ring
parameters are 1indicated on the figures. As may be seen, both
elgenfunctions are characterized by two nodes — one near the center of
the ring and one somewhat outside the ring. The dip 1in the

efigenfunction outside the ring region is expected to be related to the
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RADIAL EIGENMODE (REAL PART)
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Fig. 4 Radial eigenmode as a function of x for profile I model.
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RADIAL EIGENMODE (REAL PART)
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Fig. 5 Radial eigenmode as a functiom of x for profile II model.
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fact that d(&n nc)/dr is finite outside the ring region for the profile
models used here, even though n, and dnc/dr are both going separately
to zero. This portion of the eigenfunction is not expected to be
related to the coupled ring-core stability properties and work is
presently underway to determine if it remains with profiles which have
d(&n nc)/dr = 0 outside the annulus region. The inner peak im the
eigenfunction is located in the region where both annulus and core
densities and temperatures are still finite and 1is close to the
position where the maximum derivative in the core and ring pressures
OCCUT . The form of this peak is qualitatively what one would expect
from analytic solutions of Eq. (1) using simplified (1.e., 1linear or
constant) dependences in the plasma and ring profiles. As may be seen,
the eigenfunction in Fig. 5 using the profile II model 1is somewhat
better localized than that in Fig. 4 due to the steeper falloff on the
outside of the core plasma parameters and the fact that these
parameters have no gradients within r = r.

Stability boundarles have been studied using the radially
dependent code by starting out at stable roots (i{.e., as in Figs. 4
and 5) and varying an appropriate parameter, such as core density until
the imaginary part of w begins to be significant. Such results are
1llustrate? in Figs. 6, 7, and 8 where localized results [obtained
from solving Eq. (14)] are compared with the nonlocal results for
azimuthal mode numbers m = i, 2, 3, 4, respectively. The localized
theory used here would not be expected to be exactly comparable to the
nonlocal calculation since it has not been evaluated at the position of
the inside peak 1in the eigenfunction. In general, the nonlocal

boundaries are more pessimistic than those of the localized theory.
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The results are with a factor of 3-5 of each other with the closest
agreement being for m = 2. The points indicated here are for the upper
density 1limit due to the compressional Alfven wave-hot electron
interaction. They are all obtained using the profile I model for the
core plasma. The code has been used to check a few polnts on the lower
density 1imit due to the hot electron interchange mode; the profile II
model has also been used. These again indicate qualitative agreement
with the localized theory, but more work needs to be done in this area.
Also, the calculations presented here use the AB/Rc << 1 approximation
in evaluating the kinetic 1integrals [see Egs. (5)=(N)1. Work 1s
underway to incorporate more exact evaluztions of these integrals into
the code using the delta-function model of the hot electrons [Egs.

(9)-(10)]) and, eventually, a Maxwellian.

V. Conclusions

Results have been presented from both local and nonlocal EBT
Stability models which are based upon a radial eigenmode equation. The
core plasma 1s considered as being cold with ion inertial effects
included while the hot electron plasma 1s treated using the drift
kinetic equation.

The 1local and nonlocal results show qualitatively similar trends
for the upper stability boundary (related to coupling between the core
Alfven wave and the hot electrons) over the range of parameters which
have been considered. As mentioned earlier, a wider range of
parameters, profile shapes, and models for the hot electron
distribution function are under examination. In addition, 1t will

eventually be of interest to incorporate finite Larmor radius effects
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into such calculations. This will lead to higher order differential
equations, but these may be solved using similar techniques to those

outlined here.
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ABSTRACT

The stability of a hot electron plasma in the ELMO Bumpy Torus is
investigated using two different models. In the first model, where the
hot electron distribution function is assumed to be a delta function in
the perpendicular velocity, we find a new stability boundary in addition
to those discussed by Nelson and by Van Dam and Lee. In the second
model, where the hot electron distribution function is assumed to be a
Maxwellian in the perpendicular velocity, we find stability boundaries
significantly different from those of the first model. Coupling of the
Nelson-Van Dam-Lee mode to the compressional Alfvén mode is now possible.
This leads to a higher permissible core plasma beta value for stable

operation.
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1. INTRODUCTION

The beta limitation of a magneti: confinement system is a crucial
problem in determining its economic merits as a fusion reactor. In the
ELMO Bumpy Torus (EBT) this limitation is determined by the stability
property of the hot electron plasma. An early study by Nelson and
Hedrick (1] treating the hot electron annulus as a rigid noninteracting
current ring by a modified magnetohvdrodynamic (MHD) approach predicted
a stable equilibrium for a beta value of the core plasma roughly propor-
tional to and comparable to that of the hot electron annulus, which is
on the order of 50%. This optimistic prediction placed the EBT far
ahead of the tokamak in the race of attaining a high beta value. Later,
Nelson and Van Dam and Lee {2-3] included the hot electron annulus in
the stability analysis using a Vlasov approach. They found a stability

he/ (1 + 3

boundary roughly given by Bi "h

I¥a)

). where B, and 8, are the beta
values for the core ions and hot electrons, respectively, and ¢ is the
ratio of the density scale length to the radius of curvature. This
change of the stability boundary is attributed to the enhanced compress-
ibility of the plasma when the hot electrons are included.

Both calculations mentioned above investigated the stability of low
frequency (w “< ;i' where «w is the mode frequency and ﬁi is the ion
cyclotron frequency) flute-interchange modes. However, the diamagnetic
drift and the magnetic gradient and curvature drift frequencies of the
hot electrons, which are the source of the instability, are greater than
or comparable to the ion cyclotron frequency for typical parameters in
EBT. Therefore, a more realistic determinaticn of the stability bound-

aries should include the comnsideration of higher frequency modes (w * Qi).



143

In fact, Dominguez and Berk (4] included the high frequency (w Qi)
flute interchange in their analysis and found these modes may exist with
w >> Qi. However, it is not clear how their result related to those of
Nelson and of Van Dam and Lee [2-3].

In this work, we extend the work of Refs [2-3] to include modes
with w ﬁi. By removing unnecessary assumptions and using different
models for the equilibrium hot electron distribution function, we find
the stability boundaries can be significantly different.

Using a delta function in perpendicular velocity v for the hot
electron distribution function, we find our result qualitatively agrees
with that of Refs [2-3]. However, a new stability boundary not realized
by them is also discovered. The reason for this is that the w/mdh

(where w is the magnetic drift frequency of the hot electron) expansion

dh
made by them is not valid because one of the stability boundaries is
roughliy given by “4h ~ 0. With this additional stability boundary, the
Nelson and Van Dam and Lee result is basically valid and consistent with
the model they used (in that the frequency of the mode considered is
smaller than ﬂi and there is no coupling of the low frequency mode with
high frequency modes).

However, when a Maxwellian in v, (instead of a delta function) is
used for the hot electron distribution function, the situation is
completely changed. Coupling of the flute interchange (w < Qi) to the
high frequency compressional Alfvén wave (w Qi) is po;fible when the
hot electron beta Bh is sufficientiy large. This is because the contri-

bution of Bh to the electromagnetic part of the dispersion relation is

weighted by a larger factor. Similar coupling has also been noticed by
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Ei-Nadi [S] although he used a delta function distribution for the hot
electrons and a slightly different dispersion equation derived from

fluid equations. As a result of this coupling, the stability boundaries
are greatly changed. The boundary roughly given by Bi < 4e/(1 + Bh)
discovered by Nelson and Van Dam and Lee is now roughly given by Bi = Bh.
This change in the scalimg of critical Bi may permit a higher core beta

operation of EBT tham that predicted by the Nelson and Van Dam and Lee

theory.
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2. DISPERSION RELATION

Our model is similar to that employed in Refs [2-3]: i.e., slab
geometry with density and magnetic field gradients in the x direction
and an equilibrium magnetic field ﬁ = B(x)Z. The plasma is composed of
three species: core ions, core electrons, and hot electrons. The
temperature of each species is constant in space. We are interested in
waves with a zero parallel wave number Hl = 0 and a long perpendicular
wavelength Klpi << 1, where Py is the gyroradius of the core ion. We
restrict ourselves to local analysis and set kx = 0.

Under these assumptions, the perturbed electromagnetic field is
completely specified by the electrostatic potential ¢ and the x component
of the vector potential Ax. Employing standard orbit integration tech-
niques to solve the Vlasov equation for the perturbed distribution
function and relating the relevant perturbed quantities by Maxwell
equations, we obtain the dispersion relation for this problem. The
detail of the derivation is similar to that presented in Ref. [2], and
we present only the result here. We assume also wpi/Qi >> 1 and
w/ck << 1, where wpi is the ion plasma frequency and ¢ is the speed of
light. These two conditions are well satisfied in experiments for the

modes we have considered. The dispersion relation can then be simplified
to the form
8.D2

3
DDy - ; =0 1

where
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Dy = %1 P+ X (1 - &) + C36
wom gy wmwg ) =R e g

In Eq. (1), 8§ = Nh/Ni is the density ratio of the hot electron to the

core ion, T = Te/Ti is the temperature ratio of the core electron to the

core ion, T, = Th/Ti is the temperature ratio of the hot electron to the

h

= 2 5 < 2 = 2 = .
core ion, b (kypi) Timi(kyc/eB) . Bs SHNSTS/B 0, Askypi(TS/Ti) <
(0 /LIRs wgy = age + 0 o0 wp = A ko (T/T N0/, 6 o =

-1 2 -1 - -1 =
(TS/Ti)(Oi/LC)Qi, LS 3 in Ns/ax, L 3 &n B/3x%, LC

A kp B

syi

g >3 ~ 2 . . . .
B - VB - %/B< 1is the radius of curvature of the magnetic field, s is the

subscript referring to the three species, As = 1 for the core ion, and
AS = -1 for the core/hot electron.

The equilibrium density scale lengths are related by the neutrality

condition

-8 §
Il,"le - (2)
i e h
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From the equilibrium MHD force balance equation, we have also

L )

—=— - =+ =+ = (3)
2

LB Lc - Li Le Lh

Using Eqs (2) and (3), we can eliminate two out of the five scale
lengths. Furthermore, we restrict ourselves to the outer region of the
hot electron annulus because it is most unstable and assume Li = Lh as
in Refs [2-3]. Therefore, we choose Li and € = Li/Lc as independent
parameters to specify the gradients.

For isotropic Maxwellian hot electrons, the constants C;, Cy, and

C3 are given by

Cy = 2 - (w - w ) ].E_QE_QX exp(-x2 - y2) (4a)
pl/2 *h w'
5
Cyp = 1 w - w )‘[ x> dx dy exp(_xz ~ yZ) (4b)
TY]./2 *h w'’
and
3
C3 = 2 (w - w )fi_d.’i_dx exp(—x2 _ y?_) (4¢)
“1/2 %h w,
0 = - 2 2
where w w (thx /2 + WY ).
If a delta function distribution in v% is used for the hot electron,
then

R ) (5)
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With C;, C, and C3 given by Eq. (5), Eq. (1) reduces to the same
dispersion relation as in Ref. [2] in the appropriate limit. The main
difference between the dispersion relation given by Eqs (1) and (5) here
and that of Nelson is that in Ref. [2] the limit w << © p Wgp Was
explicitly used so that C; = 2Cy = C3 = w*h/wdh' Because of this, the

temperature ratio T, does not appear in the dispersion relation in

h
Ref. [2], so that the density ratio § is a free parameter. Motivated by
the facts that Wap © “4i and that the electrostatic interchange dispersion
relation Dj = 0 roughly gives a stability boundary Wy = 0 when § << 1,

we retain w compared with Wyp 38 in Eq. (5). Now, 6 is no longer a free

parameter and relates to other parameters by

h (6)

We choose to employ Bh’ Bi, and 1. as independent parameters because

h
they are directly measurable in experiments. We show in the next
section that this difference leads to a new stability boundary not

contained in the Nelson and Van Dam and Lee theory.
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3. NUMERICAL RESULT

Although the dispersion relation given by Eqs (1) and (5) is an
zlgebraic equation, it is sufficiently intractable to warrant numerical
investigation. We first solve Eqs (1) and (5) for real w for each set

of the parameters: B8 B

19 h,
In Fig. 1, we show a plot of w/Qi Vs Bi for different values of Bh

kypi, Ty Th, pi/Li’ and €.

and for kypi =0.1, Tt =1, t,. = 1000, pi/Li = «0,04, and ¢ = 1/40. On

h
each of these curves, w is a function of Bi' Since the dispersion
relation is a real algebraic equation, an instability would appear when
two real roots merge to a double root or BBi/am = (0. For example, the
curve for Bh = 5% shows that the plasma is unstable for Bi > 3.7% or

B. < 2.5Z and is stable in between.

i

In Fig. 2, we summarize the stability information provided by

Fig. 1 in the curve labeled 1, = 1000. For scaling purposes, the curve

h
with LN 2000 is also shown in Fig, 2. The plasma is stable within a
closed area in the Bi-Bh space and unstable outside. The stability
boundary is similar to that of the Nelson and Van Dam and .ee theory
except that the stable region is closed below by a new boundary not
contained in the previous theory. However, Fig. 2 also shows that as T
increases, the stable region approaches that given by the Nelson and Van
Dam and Lee theory. This is consistent with the discussion in the
previous section about the approximatiom involved in the Nelson and Van
Dam and Lee theory.

This new lower stability boundary in Bi is related to the close
contours in the m-Bi plane shown in Fig. 1. It is obvious from Eq. (6)

that § increases as Bi decreases for fixed Bh and Tt In the Nelson and

h
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FIG. 1. Low frequency mode solution of the dispersion relation given
by Eqs (1) and (5), delta function model, for kypi =01, 1=1,

t, = 1000, o /L, = -0.04, and ¢ = 1/40.
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Van Dam and Lee theory, 6 is kept fixed and T changes in the Bi-Bh pline.
However, this is not exactly the constraint we know from experimental

data.

Since ¢ must be less than or equal to one, we have the inequality

&
B, > -2 %))

* Tn
An additional boundary in 8,-§, space is then given by Bi = Bh/rh,

shown in Fig. 2 by the dashed line for T 1000, A similar line for
T = 2000 is even lower and is not shown in Fig. 2. It is clear from
Fig. 2 that the additional inequality {Eq. (7)] has no effect on the new
stability boundary.

Figure 1 also confirms the low frequency assumption (w << Qi) in
the Nelson and Van Dam and Lee theory. The mode involved in the sta-
bilicy discussion is the low frequency flute interchange due to the hot
electrons. There is no coupling between the flute-interchange and high
frequency (w ~ Qi) modes although the existence of such modes can be
seen from FEq. (1).

inalytically, we can take the limit of no gradients and § - 0;

then, Eq. (1) is reduced to

2b02

VAZ"'I
1
Bi s Bi * Be)[l * (E—) ]

which is the dispersionm relation of the compressional Alfvén wave. For

w? =

typical parameters, we have w "~ Qi' In Fig. 3 we show the existence of
the compressional Alfvén mode in the dispersion relation given by Eqs (1)

and (5). The parameters used in Fig. 3 are the same as those in Fig. 1.
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FIG. 3. Compressional Alfvén wave solution of the same dispersion
relation used in Fig. 1 and for the same set of parameters. The low
frequency solution shown in Fig. 1 occupied the shaded small box in

the lower left-hand corner.
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It is obvious from Figs 1 and 3 tnat the Alfvén mode and the interchange
mode do not couple to each other.

To test the sensitivity of the stability boundary on the model hot
electron distribution function used, we solve the dispersion relation
given by Eqs (1) and (4), which is derived from isotropic Maxwellian hot
electrons. The constants C;, C,, and C3 are evaluated numerically by
first co.verting the y integrals to the plasma dispersion function Z [6]
and then performing the x integration by the Laguerre method. The
imaginary part of the C's, which 1s due to the hot electron magnetic
drift resonance, is usually very small because Wep and ®oh >> w.
Therefore, Cy, Cy, and C3 again can be regarded as real quantities.

The calculation leading to Fig. 1 is repeated for Eqs (1) and (4),
and a surprisingly different result is obtained. Figure 4 shows the
result of such a calculation with the same parameters as those in Fig. 1.
Unlike the previous delta function model, which shows no coupling between
the higher frequency compressional Alfvén mode and the lower frequency
flute interchange, the HMaxwellian model shows a strong coupling between
them when Bh is large enough. As shown in Fig. 4, when Bh < 0.15 these
two modes do not interact with each other. The compressional Alfvén
solutions represented by curves on the upper right-hand corner disjoin

with the flute-interchange solutions on the lower left corner. When

B, = 0.2, these two types of solutions ''reconnect'" and a new instability

h
region iu 3j appears.
To verify that this new coupling is not due to numerical inaccuracy

from the two-dimensional integration of the constants C;, C,, and Cj3, we

repiace w' in Eqs (4) by w - wyp @nd periorm the integration analytically.
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FIG. 4. Solution of the dispersion relation given by Egs (1) and (4),

the Maxwellian model, for the same set of parameters as in Fig. 1.
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This approximation is equivalent to evaluating w'’ at thermal energy and

gives

m-w*
C1=C2=C3=;—_‘w_h (8)
dh

This is the same result as given by Eq. (5) except C-» is larger by a
factor of 2. When Eqs (1) and (8) are solved for the same set of param-
eters as Figs 1 and 4, similar coupling between the Alfvén and inter-
change modes is observed. This result is shown in Fig. 5.

The stability boundary implied by Fig. 4 is summarized in Fig. 6.
The stable region is vastly different from that in Fig. 2. The dashed
line in Fig. 6 is again the line Bi = Bh/rh below which we have § > 1,
which is impossible. The most important feature of Fig. 6 is that the
upper critical Bi increases with Bh until a critical Bh (~0.35) is
reached. Then, the stability boundary turns around to form a cusp and
turns arouad smoothly to high 8 at a second critical Bh of about 0.2.

h

Betuween 0.2 and 0.35, for each B there are three critical values of Bi

h’
and a channel of stable region. This is due to the coupling of the

Alfvén-interchange modes.
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4. DISCUSSION

We have solved numerically the Alfvén-interchange mode dispersion
relation for a hot electron plasma in EBT and obtained the stability
boundaries for two different models of the hot electron distribution
function. In the delta function model, coupling between the Alfvén and
interchange modes is not observed, and the stability boundary is similar
to that discovered by Nelson and Van Dam and Lee [2-3]. However, a
lower critical Bi boundary is missed in their analysis because of the

approximation w << w they used. In the Maxwellian model, coupling

dh
between the Alfven and interchange modes is possible, and the stability
boundary is sienificantly different from that of the delta function
model. The reason for this difference is that in the Maxwellian model
the contribution of Bh to Dy, which relates the perturbed current to AX
in Ampére's law, is larger by approximately a factor of 2. Thus, the
influence of the hot electron beta to the Alfvén wave is stronger.
Results from the study of these two models suggest that the stable
operating region for a hot electron device such as EBT is very sensitive
to the model used. Inclusion of the radial structure, anisotropic hot
electron temperature, finite ion and hot electron gyreradius effects,
and additional coupling to shear Alfvén waves [7] will undoubtedly
complicate the already complex stability pictures. Hopefully, the

results from these studies will converge to one that is consistent with

experiments.
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Abstract

The 1local stability of the EBT plasma is analyzed for the 1long
wavelength perturbations in the frequency regime, £ Qi(.Qi ig ion
cyclotron f£requency). In addition to the 1low frequency interchange
instability, the plasma can be unstable to the compressional Alfven
wave. Oontrary to the previously obtained quadratic dispersion relation
in w for the interchange mode, our dispersion relations for both types
of instabilities are cubic in w. New stability boundaries are found,
for the hot electron interchange mode, to relate to the enhanced
compressibility of the core plasma in the presence of hot electrons.
The compressional Alfven instability is driven due to the coupling of
hot electron magnetic drifts and dJdiamagnetic drift with the
compressional Alfven wave. The stability conditions of these two types

of instabilities are opposite to each other.
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I. INTRODUCTION

Stability of the plasma in the EIMO Bumpy Torus in the presence of the
hot electrons has been studied for the 1low frequency interchange mode"’4

driven by the diamagnetic drift and magnetic drifts of the plasma. These

earlier works have confirmed that in order to obtain correct stability

2-4 2

condition, the hot electrons must be treated by kinetic theory. Nelson

3 have investigated the low frequency interchange mode by

and Van Dam and lLee
retaining only the 1lowest order hot electron contribution in the
electromagnetic part of the dispersion relation, Deme They find that the hot
electrons can enhance the compression of the core plasma and influence the
stability analysis. The enhancement of the compressibility of the core plasma
is due to a near cancellation in Egmc Therefore, when the next order hot
electron contribution in Dem is included, we will expect quite different
stability boundary. Since the core plasma compressional Alfven frequency can
be comparable to the hot electron magnetic drift frequency, we also expect the
compressional Alfven wave to be driven unstable by the hot electron magnetic
drifts. Therefore, a realistic determination of the stability of EBT plasma
should include both the interchange mode and the compressional Alfven wave.
Because the driving mechanism for these modes is the interaction between
the magnetic (VB and curvature) drifts and diamagnetic drift of the hot
electrons and the core plasma, the stability boundary is sensitive to the hot
electron distribution function. 1In this paper we will employ two different
models of the hot electron distribution function, 8-function and Maxwellian,
to analytically study the stability of EBT plasma. The difference between our

2,3

theory and the previous works will be demonstrated.
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IT. FORMULATION

Consider a slab model?’3 with density and magnetic field inhomogenieties
in the x direction and an equilibrium magnetic field g = Bz(x)z + Bx(x)x where
B, << B,. We also assume there are no temperature gradients. The plasma
equilibrium is composed of three species - warm ions, warm electrcns, and hot

cqsros cy 2 x 2
electrons. Then the equilibrium condition V{p + B“/8g) = BsVB/4x can be
written locally as
1
= - (= 1
/Ly = /L, (B /Ly + By/L; + Be/Lg) (n
where LB' Ib' Lh’ Li’ Le are the magnetic field gradient, magnetic field
curvature, hot electron density, warm ion density and warm electron density
scale lengths, respectively. Bs = BnNsTS/B2 for s = i, e, h, where N denotes
the density and T is the temperature. The neutrality condition, N, = Ne + Nh

relates these equilibrium density scale lengths by
/L, = (1 - 8§)/L + &/L (2)
i e h
where § = Ny /N; = (B, T;)/(B;T)-

We are interested in electromagnetic perturbations witi. zero parallel

wavenumber, k = 0, and long perpendicular wavelength k

| << 1, where Pi is

1Pi
the ion gyroradius. We also restrict ourselves to local analysis and set kx =
0. Then the perturbations can be specified by the electrostatic potential ¢
and the x-component of the vector potential A, . The dispersion relation can

be derived from the Vlasov equations and Maxwell's equations. In the limits

mpi/Qi >> 1, w/ck << 1 and w< Qi, where Woi’ 0.

; are the ion plasma and



164

cyclotron frequency respectively, ¢ is the velocity of light, the dispersion

relation can be simplified to the form>

Bi. 2
DyoPep * (3790, = 0 & (3)
where
( (1 + - 0. %
Wai Wey 7 Yy Te) U7 Wy ii
Dez T e - w, @ -w ) Y ) 2 2
di de di (w - wy.) - Q.
di i
Wy = W
e de
- (= ) (8/7) + (ey = M8/ )
de
w - w (w - w )2
N .
Dem =1+ Bi (m - W i)(ﬂ * dlz 2 ]
di 2bi[(w - mdi) - Qi ]
(w - mﬁe)
+ B [~———) + B, C .
e ‘w Wie h 2
2
W= Wey Qi WS W
Pot T % (e - )2-92+(“’°“’de)(1-5)+c35’
w T gy i
1/2 2 2 2
Wog = ksbi ts(pi/Ls)Qi, bi = (kypi) e Py = Ti/miQi ’
= _ 1/2
Wgs = Wpg T Weg’ Ypg T Ksbi 1:s(pi/LE)Qi !
= ab, %1 (p. /10 =T /T,s=nh i
Yes s i Vs Pi/te’¥ir Tg T tg/tyr ST M & L
and ks = J for ion and -1 for electron. For Maxwellian hot electrons, the

constants Cy, C, and C, are given by

c, = (2/n1/

2 © © 2 2
g Mw = wgy) fo ax [~ dy x exp(= x“= y)/0' , (4(a))
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2 2
c, = (/52w - u,) [ axdy © expt= & - Y (4(b))
and
¢y = @/nw -, [ axay e (- - ¥, (a(e))
where
2 2
w = w- (wEhx /2 + WY ) .

If we further make the approximation with w' = w - wg, in egs. 4(a) - 4(c) and
perform the integrations analytically, then this modified Maxwellian hot

electron model gives

= = = bad - o 5
c, =c, C3 (w w*h)/(w wdh) (5)
This turns out to be a good approximation when we compare the numerical
solutions from both Egs. (4) and (5).5 In the fo.lowing we will employ Eq.
(5) for the analytical investigation. If a delta function is used for hot
electrons, then

C.,=2C_=¢C_= (@ - w*h)/(w - wdh) o (6)

Note that the only difference between Eqs. (5) and (6) is in C, and we will

-

write C_ = C

- > (w -~ wﬁh)/(w - wdh) with C2 = 1 for the Maxwellian hot electrons

and c2 = 1/2 for the &-function hot electrons.
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III. INTERCHANGE MODE

Let us first consider the low frequency interchange instability with Waqr
Waj CWSWgp s Wape In this frequency regime, the three terms in the dispersion

relation, Eg. (3), can be simplified to yield

2

= + - + +

D, =b; (m*i wdi)[(1 Te)mdi/w 8/w]
= P

~ + =1

Dem Dem c23h( 2 )w '
Yah
D =1+ + + C 7
Dem = ' ¥ By * By * Gy /ug, - (7
and

= + (1 + - .

Dct 6w*h/uhh ( Te)(w*i wdi)/w

We note that Eg. (7) will give rise to the usual quadratic dispersion relation
if we neglect the second term in Dem which is of O(w/mdh). However, the hot
electron contribution will give a near cancellation in Bem and result in an

2,3

enhanced compression of the core plasma. Therefore, we must treat Bem to

be the same order as the second term in D_ at marginal stability. From Eq.
(7) the dispersion relation can be written as a cubic in w:

2
u? + A w +tAwt+A =0, (8)
2 1 [}

where
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B. w,, 2 R w,, - W 2
= i h ®i di
a, = [b, 5 (6——=) +cp (—-—) slrs .
2 i em 2 Wi 2"h ©y4
2 Den ” Yan - Pn “ai ~ Yai
P [CoB T 5 ugy (1% m) # B8+ O T 1] ()
“ah b
(1 + v Muw,, - w,.)
_r= i e *i di
By = [Ppwgy + G0+ 1 ) (w,y = wyy) ] S .
~ Y= T “an
s = czsh( 3 )b, .
“ah

Without hot electrons (§ = 3h = 0), Eg. (8) reduces to a quadratic in w and
describes core plasma interchange instability. With hot electrons the

condition for stablie interchange mode is that

3 2
Q" +R <0 , (%)
where
Q = (A4 - A§/3)/3, R = (A1A2 - 3Ao)/6 - A23/27, and the frequency at marginal
stability is w = —(R‘i/3 + A2/3), In Fig. 1 we plot the stability boundary

from Eq. (9) in the By ~ By, space for the §-function hot electrons with the
fixed parameters: p;/Iy = p,/L; = -0.04, L /L, = 40, 7 = 103, e = . wpi/Qi
= 25, mi/me = 1837, and kypi = 0.1. Within the closed stability boundary, the
interchange mode is stable. The solution from Eg. (3) (denoted by exact) is
also shown for comparison and our cubic dispersion relation gives amazingly
good results.

We have also plotted in Fig. 1 the stability boundary from the quadratic
dispersion relationz’3 by neglecting the 2nd term in Dgp in Ba. (7). The

lower stability boundary (core plasma interchange mode) is a good

approximation because it is mainly deteritined by D,g = 0. But the upper
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Marginal interchange stability boundaries in B; - B, space for the é-
function hot electron model. The fixed parameters are pi/Li = pi/Lh
= -0.04, L/L; = 40, kyp; = 0.1, w,;/Q; = 25, T,/T; = 103, T /7T, = 1,
and mi/me = 1837. Solutions of the quadratic, cubic, and full
dispercsion relations are shown for comparison. The compressional

Alfven wave is stable for the set of parameters.
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stability boundary (hot electron interchange mode; unstable roughly when
Bem > 0) does not turn around at small Bi which is due to the absence of the
O(m/wdh) term in Depe In general, the quadratic dispersion relation predicts
more optimistic results than our cubic dispersion relation. Below § = 1 line
is the forbidden region with N, > N; .

For the Maxwellian hot electrons, the stability boundary in Bi - ﬂh space
is shown in Fig. 2 for the same set of parameters as in Fig. 1. Our results
are very good in comparison with the solution from Eg. (3). Again stability
boundary from the quadratic dispersion relation is also shown for
comparison. The lower stability is good, but the upper stability boundary is
again over optimistic.

Figure 3 shows that the finite ILarmor radius stabilization of the low
frequency interchange mode. With the same set of parameters as in Fig. 1, the
stability boundaries for two different values of kypi (kypi = 0.1, 0.05) are
plotted in the B; - B, space. As kypi is reduced the stability boundary moves
toward larger Bn and does not intersect with the ai and By, axes. Therefore if

ﬂi is small, no matter how large Bh is there is no stability.

IV. COMPRESSIONAL ALFVEN WAVE

Now we consider the compressional Alfven wave with w ~ kyVA ~ Wgp’ but

. . : 2 _ 2
W we wy for the warm species. Since (kyvh) = (Zbi/ﬁi) Qi ’ kyvh can be of
the same order as Q- Therefore, one might expect the compressional Alfven
wave to couple not only with the hot electron magnetic drifts but also with

the ion cyclotron waves. In this frequency regime the three terms in the

dispersion relation, Eq. (3}, can be simplified to yield:
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the compressional Alfven stability boundaries.
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The other parameters are the same as in Fig. 1.
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2
2y
D =b, ——— ,
es i Q 2 _ 2
1 w
B, 2 - w - w,
i W h
Dem =V * 8y * B * 35 T 2 5+ by (oo ) - (10)
i(w - Qi ) dh
Q 2 w - W
. oh
D =5 5+ (1 -8 +8 (—— .
w9 © dh

And the dispersion relation becomes

2 w - w
w_ - _ 42 (dh  T*h.2
{ > [+ + Blwg, — wey )/ (w wdh)] 8 (w — )
Q ah
2b, W = W,
i , h 2 2, _
"B, [v+8, +8,+ Czﬂh(f"’”/‘“’ -7 = 0. (11)
w wdh

e see that the compressional Alfven wave decouples from the ion cyclotron
waves even in the presence of hot electrons. We further note that in the
limits 8§ = 0 and Bh = 0 (i.e., there are no hot electrons), Eq. (11) recovers
the well known compressional Alfven wave with w2 = kysz2(1 + Bi + Be)' The
compressional Alfven wave mainly couples with and, hence, is destabilized by
the hot electron magnetic drifts and diagmagnetic drift. If we also assume

that

War = Wy

82 (T2 oy (4, (97 (12)
W= w in Q.
dh i

Then Eq. (11) can be cast into a cubic form in u:

3 2 _
z7 + AZZ + A1z + Ao = 0, (13)
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Z = (quypiQi) ’
By = - (wdh/kypigi) ’
A, =-2 (148 +8 +C J<o

1 By 1 e 2Pn f
A, = 2[(1 + 8 + B ug + CoBwy 1k 00 -

Since A,, A4, and A, are independent of k the stability boundary is

0 v’

also independent of ky but the frequency w is linear in ky. From Eq. (9), the

condition for stable solution is given by

2 2 2 3
3 (C=A)82 + (4C - 3R ) B + 8C >0 , (14)
where
. w*h 2 (1 4+ +
A—Czﬁh(1=3w ) = ( Bi Be) 7
dh
()
dh 2
B=(W]Bi>0 .
ypi i
C=1% Bi + ﬁe 4+ Czﬁh > 0.

In general “hh/wdh < 0 and it is possible to obtain unstable solution only
~ w‘f} -
when (C-A) =3(1+8 + 8 +C_ 8 By -35p <0 . ¥We note that this is
i e 2 "h Wan em

opposite to the instability condition for hot electronm interchange mode. On
the other handg, Bem > 0 is sufficlient for stable solution. Conaidering

LC/LB>>ﬂ and 6~function hot electrons with 02 = /2, we £ind
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B1 In Be Thy-1
(c-a) ~3[1+8 +8 -~ (1+ E; E_ B; E;) ] (16)

and the compressional Alfven wave 1is always stable for §-function hot

electrons when Lh/Li > 0 and I.h/Le > 0. This has been confirmed by numerical

-~

solutions. If Dem < 0, then in the 1limit Bi' Se << Bh' the stability

condition, Egq. (14), can be approximately expressed as

(Thpi 2 - + (x° - 4y)1/2)

o) BB~ < ( :

(17)

’

where
201+ C.8)° - 3 (C (B - 6) - 2)°
ZBh 3 2 Bh
X = >0 ,
1 Lh Lh -1
[1+5,+B-2C(1+———- —) ]
i B L Bh Le
and
~ 3 ~ By Lh Be Lh 1
i -
= + 1+ 8, + - + == =+ — — .
y =4 (1 + c807/[ By * B 200 v -t ) ] <o
h e
Note that for the Maxwellian hot electron model, C_ = 1 and x and y are weak

2

functions of 8; and B, for B;, B < B, < 1. However, for the S-function hot

~

electron model, C2 = 1/2 and x and y become inversely proportional to g; and
Be

The stability boundary in Bi - Bh space for the compressional Alfven wave
from Eg. (14) is shown in Fig. 3 for the Maxwellian hot electron model with
the same parameters as in Fig. 1. The approximate solutions are very good in
comparison with the exact numerical solutions of the dispersion relation Eq.
(3). The behavior of the stability boundary at small B; can be very well
explained by Eg. (17). Now the stability window is enclosed by both the

interchange and the compressional Alfven stability boundaries. as kypi
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decreases the stable region shrinks mainly due to the shift of the interchange
stability boundary. The compressional Alfven stability boundary is rather

insensitive to kypi for kypi << 1.

For &-function hot electron model, the compressional Alfven wave may
become unstable only when Lh/Li < 0 and Lh/Le < 0 and at somewhat higher By
and B, than the Maxwellian hot electron model case. This has been confirmed

by the numerical solutions of the full dispersion relation.

V. CONCLUSION

In this paper we have correctly analyzed the local solutions of the low
frequency inverchange and the compressional Alfven instabilities of the EBT
plasma in the frequency regime w i Qi . The analytical solutions are then
compared to the numerical solutions of the full dispersion relation with good
agreement. These instabilities are mainly determined by the magnetic drifts
and diamagnetic drift of the hot electrons. Therefore the stability boundary
is very sensitive to the hot electron distribution function. Two different
models of hot electron distribution function, §&-function and isotropic
Maxwellian, are employed in our analysis and yield very different results.
2,3

Unlike the previously obtained quadratic dispersion relation in w, our

simplified dispersion relations are cubic in w for both types of the
instabilities. For the low frequency interchange mode, our cubic dispersion
relation is due to an extra hot electron term of O(m/mdh) in the
electromagnetic part of the dispersion relation, Dome This term is ignored in
the previous quadratic dispersion relation, but 1is important because at

marginal stability the O(1) terms in D, nearly cancel with each other and
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become the same order as the Olw/wg,) term. The stability turns out to be
more pessimistic than predicted in the previous theories.

For the compressional Alfven wave, our cubic dispersion relatior is due
to the compressional term in D,m and is obtained in the 1limit
Bz(uah - mﬁh)z/(w - “ﬁh)z < Min[1, (m/Qi)zl. The stability boundary is
independent of kypi and the frequency is linear in kypi‘ with L /L; > 0 and
Lh/Le > 0, the compressional Alfven wave is shown to be stable for §-function
hot electrons and can be unstable for Maxwellian hot electrons. With Lh/Li <
0 amd Lh/Le < 0 the compressional Alfven wave can be unstable for both models
of hot electron distribution function.

Then the stability window of the EBT plasma is determined by both the
interchange stability boundary and the compressional Alfven stability
boundary. This somewhat pessimistic result for EBT stability may be improved
by a nonlocal calculation in a realistic geometry and with a proper

equilibrivm including anisotropic hot electron distribution and temperature

gradients.
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MICROSTABILITY OF THE EBT BOUNDARY

N. T. Gladd, N. A. Krall, S. Hamasaki, and J. L. Sperling
JAYCOR, P. 0. Box 85154, San Diego, California 92138

We discuss two aspects of the microstability properties of the EBT
boundary.

The first aspect is that the relatively sharp gradients in the core
plasma of the EBT boundary may excite a variety of drift-type microinsta-
bilities and, through their contribution to transport processes, significantly
affect the gross structure of the EBT boundary. In calculating this effect,
we take into account that the EBT boundary has several features (e.g., three
species of plasma, a diamagnetic well, a separatrix) which may have amelio-
rating effects on the level of microturbulence. Specifically, we first
present an analysis of the microstability properties of the EBT boundary,
using Yoc Y theory to focus on the effects the relativistic electrons have
on low and high frequency drift waves. Essentially, we find the ring electrons
to have a stabilizing effect, primarily through their contribution to strong
magnetic field gradients. Next we use a more detailed nonlocal theory to
analyze the effects of the diamagnetic well on the lowar-hybrid-drift insta-
bility, a particularly virulent high frequency drift instability. We find
that the presence of the diamagnetic well reduces this instability’'s rate of
growth but that unstable eigenmodes persist for reasonabie values of Bring
and span a significant portion of the boundary layer. We discuss the rela-

tive importance of the residual anomalous resistivity when compared to

classical resistivity and classical viscosity.
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The second aspect of microstability theory deals with modes driven by
anisotropy rather than inhomogeneity. We present an analysis of a whistler
instability of the ring electrons driven by the temperature anisotropy built
up by the ECRH heating process. This kinetic instability, which persists
even in the presence of cold plasma, may cause substantial scattering of
ring electrons onto unconfined orbits, thus providing a large energy leakage,

not previously considered, in the power balance of the ring.
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I. INTRODUCTION

A1l magnetic confinement geometries, by virtue of their inherent
gradients in plasma density and temperature, have diamagnetic currents which
may potentially excite drift-like microinstabilities. These instabilities
can produce fine scaled turbulence and assocciated anomalous transport with
serious consequences for long time plasma confinement [e.g., drift-tearing
(microtearing) and/or drift modes are the likely cause of the anomalous elec-
tron thermal transport in tokamaks; the drift-cyclotron-loss-cone mode is
responsible for enhanced axial losses in mirrors]. Despite the universality
of the driving forces for drift-modes, they are delicate instabilities in their
sensitivity to the phase-space distributions of particles and many effects
(e.g., finite 8, line tying, multiple species, magnetic shear) can either
eliminate them or reduce their deleterious effects. In principle, each class
of confinement geometries must be closely examined to ascertain the consequences
of microinstabilities.

For the purpose of analyzing microinstabilities in the ELMO Bumpy Torus
class of confinement geometries, we may divide the plasma into two parts: the
central core plasma which has relatively weak gradients (pi/L << 1, where P
is the ion Larmor radius and L is a macroscopic gradient scale length) and
the plasma edge or boundary layer, with much stronger gradients (pi/L < 1).

Qur intent here is to discuss some aspects of microinstabilities in the EBT
boundary layer.

The boundary layer of EBT is a multispecies plasma consisting mostly
of cool ions and electrons (T ~ 100 eV) but with a smaller component {~ 10%)

of relativistic electrons (T ~ 100 keV). Specifically, we shall discuss two
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classes of microinstabilities - high frequency drift waves (w 2 “ci) driven

by the strong density gradients present in the cool plasma and a whistler in-
stability of the relatijvistic electrons driven by temperature anisotropy.

The drift waves are important because of their potential role in radial trans-
port and because they could affect the relative fraction of cool/hot plasma -

a factor crucial to the macroscopic stability of EBT.1 The relativistic whistler
could scatter hot electrons onto unconfined orbits and result in a serious

energy drain on the relativistic electron annu]us.2
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II. PROPERTIES OF THE EBT BOUNDARY LAYER

In Figure 1 we illustrate some generic features of the radial profiles
of an EBT boundary layer at the midplane between two adjacent mirror field
coils. The magnetic field has a characteristic dip wich is the result of
the diamagnetic well dug by the annulus of relativistic electrons. There is
also a potential well associated with an inwardly directed ambipolar electric
field. T7The core plasma density is relatively flat in the plasma interior but
fails rapidly in the boundary layer itself. The density of annulus electrons
is much lower than the core plasma density and is concentrated in the boundary
layer region. Some of the characteristics of the boundary layer plasma salient

to a microinstability analysis are:

1) strong plasma gradients (pi/L 2 .1)

2) three plasma components with different temperatures

2) a diamagnetic well

4) extreme temperature anisotropy of the relativistic electrons
5) nonuniformity of the ambipolar field

6) a background of microwave radiation

7) the presence of a separatrix.

In what follows, we shall use a local theory to address the effects
of characteristics 1 and 2 on high frequency drift modes. We shall use a non-
local theory to ascertain the consequences of a diamagntic well, characteristic
3, on the lower hybrid drift instability - a particularly virulent high freguency

drift mode. Finally, we shall use a local theory to ascertain the relativistic
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EBT plasma at the midplane of a mirror cell.
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corrections to the whistler instability nominally expected to be driven in
the temperature anisotropic electron annulus, characteristic 4. The other
characteristics, while important, are not as amenable to such straightforward

analysis and must await more sophisticated treatments.
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III. MICROSTABILITY OF THE CORE PLASMA

A. EQUILIBRIUM

Since the modes we consider are relatively short wavelength and are
confined to the boundary layer region, we may neglect cylindrical and toroidal
geometry effects and use a slab model as the basis of our analysis. The geo-
metry, fields, and relevant particle drifts are illustrated in Figure 2. The

constants of motion are the energy,

m? - (mg - gE)x (1)

A

E=
and the canonical momentum,

= m(V + X wC) ) (2)

Py y

where i = gB/mc and g = VMZ/LC is used to model the inertial acceleration

due to axial field curvature. We choose a distribution of the form,
f(xsv) ~ exp[- %J [1+ex] (3)

to represent the cool electrons, which are weakly inhomogeneous (pe/L << 1)

and the form,

€ = ap
£ (x¥) ~ exp [-T—lﬂ ; (4)
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z (z)

Figure 2. Slab model of boundary layer jllustrating

particle drifts. Region depicted has vnvB<O0.
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to represent the cool ions and annulus electrons which may be strongly inhomo-
geneous (pi/L ~'peA/L <1). The v.y moments of these distributions yield the

diamagnetic drifts,

[ P v
i i E
Loty (5)

N i

i Y IJ. (
vi el Ty

N

2 _ ) } . :
where v.° = (ZTi/mi)’ vp = cE /B and p; = Vi/u_. Ampere's law yields the

consistency requirement,

©

. Pz B v
'—]=’E_1‘“ lD1+(1‘A) DeC+A DeA] , (6)

(1)
B 'Bo & Tea L Vi Vi i

where BeA = 8Bn nTeA/BOZ, & is the relative fraction of annulus to core elec-
trons, and LBo is the field gradient (due to toroidicity) in the absence of

the annulus.

Typical conditions in the EBT boundary layer suggest the scale Tength
ordering
by sl <<lg <lgy (7)
the temperature scaling,

T,a>>T 2T, (8)

and that the ambipolar field force is small with respect to the diamagnetic

force of the annulus,
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<< vy (9)

VE DeA

Under these circumstances the equilibrium is dominated by the annulus electrons

and Equation (6) is well approximated by

Ei’:—:’_i@A_ .p_'“ (10)
B 2 Ly
B. HIGH FREQUENCY DRIFT MODES (LOCAL ANALYSIS)

. . . -jot+i
For perturbations with space-time dependencies, e Tt ‘kyy, we use

local Vlasov analysis to write the electrostatic dispersion eguation,

N

1+ (k

w - K v
Y lDec) (1-a) [1 +< w Dec> Foo (Cec’aec)J

w

-k v
-2 “ 7 % VDeA
* (ky ADeA) 4 [1 * < ) Foo (geA’aeA)]

+ X (wsky) =0 (11)
v 2 v, 2
2 _ 2 - =1 3 1.4 -
where Apj = Tj/4nnq s Loy = w/ky Voj® VeBj T 2 o] L (Vj) » 33 ky Pej?
and the integral,
- -X 4 2 4
Fool@st) [ dx e 9% (@ K)o (12)

0

allows for the possibility of vB resonances of the electrons. The form of

(11) assumes strongly magnetized electrons in the frequency regime w << Weah
3

its derivation is detailed elsewhere.” The choice of a specific form for the
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electrostatic ion response depends on the frequency regime of interest. If

the density gradient is quite strong [(pi/L) > (me/mi)*], the ions are unmag-

k v w =k, vn.
. -2 1] D
Xﬁ (mnky) (k AD'E) E ( kyyvi 1)2( kylvi 1)] . (13)

4

netized and

In this regime the mode of interest is the lower hybrid drift mode.” If the

gradients are slightly weaker [(me/mﬁ)Q < pi/LN < (me/mi)*], then the ions

are magnetized and (for v = fw )

g asky) = (i, 2" {[ (we_m \Il(b)e "] . (18)

where bi = %~(Ry pi)z, In this case the mode of interest is the drift-cyclotron
modens Detailed analysis of the transition between thesz modes has been made.6

In the absence of the hot annulus, the modes which we study typically have

w =~ ky VD.i o ky pEC ~1 9 (15)

in which case

Tee ~ 1 o a ..~ 1 . (16)
Therefore, for a small component of annulus electrons, we expect (because

]

eA > Tec)

;eﬁ\ << } 0 aeA > 1 (17)
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We may use these properties to establish that the contribution of the annulus

electrons to the dispersion equation (11) is small by

3
T
£ (18)
A<Tel\)

with respect to the contribution of the core electrons. Key points in the
argument are the highly oscillatory nature of the integrand of Foo(a,;) when

a >> 1 and the fact that the resonant contribution of Foo(a.c)lz is 0 (1) for

£ T 1. This establishes the important result that the annulus electrons make

a negligible direct contribution to the dispersion equation of high frequency
drift waves. The annulus electrons, however, do make a strong indirect con-
tribution to the growth rates of these modes. fhis occurs because the equili-
brium relation (10) implies that the annulus electrons produce a strong magnetic
field gradient. This field gradient results in an vB drift of the core electrons
which may resonante (in regions where vn VB < 0) with the drift waves and have

a strong dampiuc effect. We now analyze the extent of this stabilizing effect.
Since the pressure of the annulus electrons is substantial (BeA‘i .1), it may
reasonably be argued that the electromagnetic response of the annulus electrons
must be usec to determine the correct dispersion equation for these modes. We
present elsewhere a detailed analysis which establishes that this is not the
case.7 In summary, we reiterate that the electrostatic dispersion equation

for the core plasma component only is required to describe the dispersive

properties of high frequency drift waves - the annulus electrons affect these

modes only through their influence on the equilibrium.
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B-1. Lower Hybrid Drift Mode

In the region of a sharply inhomogeneous [(pi/LN > (me/mi)*] boundary
Jayer where vB vn < 0, there will be a resonance of the lower-hybrid-drift
mode with core electrons undergoing vB drifts. We expect this resonance to be
stabi]izing3 and calculate here the extent to which this VB effect suppresses
Tower-hybrid-drift activity in the boundary layer. In Figure 3 we show the
maximum growth rate (with respect to ky) of the lower-~hybrid-drift as a func-
tion of the annulus pressure, B for different values of the plasma density
gradient. The inset in Figure 3 depicts the position within the boundary
layer at which the local calculation is performed. Relevant parameters are

wpe/wce
of the magnetic field gradient. For all values of pi/LN we see a substantial

= 1 and Tec,’Ti = 1. From equation (10) we see that By 1s a measure
reduction of the growth rate.

B-2. Drift-Cyclotron Instability

In a boundary layer with somewhat weaker gradients [(me/mi)é '<"p1./LN
2’(me/mi)é], the operative mode is the drift-cyclotron instability. This mode
has the same negative energy character as the lower-hybrid-drift instability
(although the ion response is quite different) and is also diminished by the
VB resonance of the electrons in regions where vB wn < 0.6 In Figure 4 we
show the maximum growth rate (with respect to ky) as a function of annulus
pressure for different values of density gradient. Relevant parameters are
wpe/wce = 1 and Tec/Ti = 1. In the case of the drift-cyclotron mode, different
cyclotron harmonics are predominantly exited for different values of density

gradients. We consider a first harmonic case (w ~ w i p1./LN = 0.15) and a

C

second harmonic case (w =’2“ci’ pi/LNéz.ZS). In both cases, however, we again

see a substantial reduction of growth rate as the field gradient becomes sharper.
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Figure 3. Lower-hybrid-drift maximum growth rates as a
function of annulus pressure, Bps for different
density gradients, pi/LN. Inset shows the point
at which the local analysis was performed.
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Figure 4. Drift-cyclotron maximum growth rates as a
function of annulus pressure, Bas for different
density gradients. Different harmonics domi-
nate in the two cases.
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We only preview here some representative cases of the local theory
analysis for high-frequency drift modes in EBT boundary layers. A detailed
parametric survey of the stability properties of these modes in EBT will be

presented elsewhere.7

C. HIGH FREQUENCY DRIFT MODE (NONLOCAL ANALYSIS)

In the local analysis just presented, we have restricted our considera-
tion to the region of the boundary layer where the stabilizing vB resonance
would be greatest, i.e., where VB vn was most negative. In reality, drift
modes have a radial extent in the boundary layer and see different values of
vyB. Indeed, they are resident in the diamagnetic well. To obtain a more
realistic estimate of the effect of this diamagnetic well in drift modes, we
must use nonlocal theory.

By standard methods we derive the nonlocal dispersion equation,

[
g' (ky ap)® + 3 [- 265+ (1 26%) 2 (53]

Ti> {© - ky VDec) R ¥ o0 1 ﬁ)
Tec \ w ec 3a.. K axz

y

1
"2

™)

s %(ky pi)? + [1 % gy 2 (2]

7. w-k v
+ (T—’> il +<——{,—De—°> FOOM ¢ =0 (19)

ec

where Ly = (w - ky VDﬁc)/ky vi. In writing (19) we have taken the ions to

be unmagnetired and hence, have restricted our nonlocal analysis to the Tower-

hybrid drift mode.
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To proceed, we choose some representative profiles for the density

and field profiles in the EBT boundary layer,

n(X) - no Ll + (52++t:|;h(x/lu , (20)
B(x) = By |1 - 8p sech2 X ; XM] . (21)

These profiles and their logarithmic derivatives are illustrated in Figure
5. The maximum in dznn/dx suggests a preferred localization point for lower-
hybrid drift eigenmodes within the boundary layer. In Figure 6 we illustrate

a sequence of eigenmodes ("radial") within the boundary layer for a reference

t

% T
case of B = constant, -P€ - 10, and 759 1. The unit of distance i3 xL =

w

Vi/wzh = Qec(Ti/Te)é‘ %i is clear th;t the eigenmodes span a significant
portion of the boundary layer - typically the mode width is~40 X =~ 05
In addition, the growth rate of the higher order modes is not much different
from the fundamental. In Figure 7 we repeat the calculation for a lower
density case, wpe/“ce = 1, which is more representative of EBT. Interest-
ingly, we see that the density dependence of ADZ comes in to play in localizing
the modes in this case with the result that the eigenmodes are located to the
inside of (1/n dn/dx)max‘

In a nonlocal anaiysis, many of the effects of interest are coupled
by the equilibrium requirements and it is often difficult to focus on a single
effect. For example, there are two different effects if we introduce a dia-
magnetic well into the calculation illustrated in Figure 5. First we increase
the growth rate because reducing the magnetic field stranath increases the

diamagnetic curvent (if 1/n 3n/3x is held constant). Secondly, we introduce
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Figure 5. Model profiles of density and magnetic
field for the EBT boundary layer.



206

~£ = (0.367, 0.071)
“th

n(x)

-

“ih

—= = (0.356, 0.067)

- -
——

“ih

— —= = (0.345, 0.64)

-60 a0 -20 0 x/x, 20 40 60
Figure 6. A sequence of lower-hybrid-drift eigenmodes
= 10;j.

high density case (”pe’”ce



201

—2 = (0.262, 0.048)
- Yeh

-60 -40 -20

Figure 7.

low density case (”pe/”ci

60

A sequence of lower-hybrid-drift eigenmodes

= 1).



202

VB, the stabilizing effects of which being our focus of attention. There-
fore, to isolate this second effect we show the effect of a diamagnetic well
on the eigenmode illustrated in Figure 5a in two stages. In Figure 8 the well
depth is increased but VB effects are artificially suppressed. We thus see
an increase of the growth rate as Ba increases. In Figure 9 we also include
the vB effects and see that the eigenmode is distorted (because VB effects
operate differently depending on the sign of VB vn) and that the increase in
growth rate is relatively smaller. In Figure 10, we isolate this stabilizing
effect by showing the difference between the local theory maximum growth rate

(calculated at %-%% max) and the nonlocal maximum growth rates for the cases

illustrated in Figure 8 and Figure 9.

In essence, the magnetic field gradients associated with the diamag-
netic well in the EBT boundary layer are stabilizing on the lower-hybrid-drift
mode but (as might be expected) not as much so as a local analysis would indi-
cate. These results represent a first step toward understanding global profile
effects on high frequency drift modes in EBT-like boundary layers. Quantitative
results, valid for existing or proposed EBT devices, will require careful para-

metric surveys of stability properties which we defer to later work.8
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Figure 8. Effect of diamagnetic well on fundamental lower-hybrid-
drift eigenmode (VB effects artificially suppressed).
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Figure 9. Effect of diamagnetic well on fundamental lower-hybrid-
drift eigenmode (VB effects included).
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Figure 10. Comparison of local and nonlocal maximum growth rates of
lower-hybrid-drift illustrating the stabilizing influence
of VB effects.
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IV. WHISTLER INSTABILITY OF THE RELATIVISTIC ELECTRON ANNULUS

In the course of a detailed study of energy loss processes from the
hot electron annulus in EBT, we have concluded that although the ring temper-
atures are of the same order as deduced from classical loss processes (Coulomb
drag and synchrotron radiation), the scaling of ring energy with magnetic
field is not consistent.

Among possible loss processes is the scattering of electrons onto
unconfined orbits by the fluctuating fields of various stabilities. In
particular, because of the anisotropy of the ring, whistler instabilities
must be considered a strong possible loss mechanism.

It has previously been shown that cold plasma background and the

10 can be influential

effect of a relativistic spread in cyclotron frequency
in suppressing whistlers. We note (nonrelativistically) that in frequency
range

(Kot <@ = vce < Kividpor (22)

an instability driven by the annulus persists, despite the cold background.
The dispersion equation, modified for relativistic effects is as

follows:

2 2
2 2_ 2 “pi “i “pe “ce
w - k” C” T et o, + (1 - A) . -

C1 ce
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_ of, of,
) 7 - [P oy s tae o Thy)
- 2naw f PldPJ_/ dp P, + '
pe k P, - wy +
0 - (1€ Pl =@y ¥ e
(23)

_ 3
where y = [ﬁ + P_L2 + P” 2] and A is the relative fraction of hot electrons.

We examine here the distribution,
fo = [41re exp(1/¢e) K2 (l/e)] (Tﬁ)

T i
exp {'(1/8) [1 + P..L2 +(-T—‘:.i)P” 2] } (24)

with e = TL/mocz, and K, is a Bessel function.

Note that this relativistic distribution function has been chosen to
reduce to the relativistic Maxwellian in the isotropic limit T, = T, , and
to the bi-Maxwellian in the limit T, # T, ¢ << mc?. This distribution is
appealing because of its limiting properties, but is not necessarily charac-
teristic of the EBT ring. The character of the ring distribution is a subject
of active research.

We have calculated the whistler growth rates numerically, with results

shown in Figures 11 and 12. The instability persists relativistically, and

the growth rates become substantial for T, > mocz.
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Figure 11. Growth rates for the relativistic
whistler versus energy.
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Figure 12. Growth rates for the relativistic whistler
(solid lines) versus wavenumber, compared
to nonrelativistic rates (dotted lines).
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Electron-Cyclotron Resonant Heated Electron Distribution Functions*
Y. Matsuda, W. M. Nevins, and R. H. Cohen

Lawrence Liverinore National Laboratory, University of California

Livermore, California 94550
ABSTRACT

Recent studies at Lawrence Livermore National Laboratory (LLNL) with a
bounce-averaged Fokker-Planck code indicate that the en=rgetic electron tail
formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is
not Maxwellian. We present the results of our bounce-averaged Fokker-Planck
code along with some simple analytic models of hot-electron distribution

functions.

*Work performed under the auspices of the U.S. Department of Energy by the

Lawrence Livermore National Laboratory under Contract Number W-7405-ENG-48.
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I. INTRODUCTION

Populations of energetic, highly anisotropic electrons have been created
in many expex:in’ue_-nt:sl.3 by electron-cyclotron resonant heating (ECRH) at the
second harmonic. AT LLNL we intend to maintain such a population with ECRH at
the second harmonic in the thermal-barrier cell of the Tandem Mirror
Exper iment-Upgrade (TMX-U)4 and Mirror Fusion Test Facility-B (MFTF-B)
experiments.5

The stabil.ty of these hot electrons is one of our major concerns. We
are particularly interested in high-frequency (w 2> ch) electron
instabilities. Stability to these modes depends on the form of the electron
distribution function. Guest and Sigmar6 have studied these modes
extensively, using various functional forms to mc -1 the hot-electron
distributions. Hence, any effort to improve upon t. ir previous work requires
2 more realistic model of the hot-electron distribution function.

In Sec. II we describe a bounce-averaged Fokker-Planck code7-9 that we
have developed to study the evolution of the electron distribution function
under the influence of both ECRH and binary collisions. Although we are
primarily interested in mirror experiments, we believe that such a code would
be a useful tool for studying the hot-electron distribution function in both
the Elmo Bumpy Torus (EBT; and Nagoyo Bumpy Torus (NBT) devices.

The steady-state electron distribution function obtained from the
bounce~averaged Fokker-Planck code is discussed in Sec. III. We find that
this distribution departs significantly from a Maxwellian.

The high-energy tail on the electron distribution function falls off as
f ~ E'S/G, where E is the kinetic energy. A simple theoretical model that
explains this falloff at high energies, and other features of the

Fokker-Planck electron distribution is presented in Sec. IV.
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I11. THE BOUNCE~AVERAGED FOKKER-PLANCK CODE

A bounce-averaged Fokker-Planck code solves for the distribution
function along a single magnetic field line. Bounce-averaged formalism7-9
assumes that the bounce frequency of a trapped particle(uT is large compared
to both the collision frequency Var and the heating rate resulting from
interaction with the applied microwaves Voge Within this limit the
distribution function depends only on &£(the particle energy) and u(the
magnetic moment).

Our present code assumes that the plasma is confined in a symmetric
magnetic mirror. The distribution function can then be written as a function
of Yo and 60, where v, and 90 are the values of a particle's speed and
pitch angle when it passes the midplane of the mirror cell. Bernstein and
Baxter9 have presented a comprehensive treatment of the bounce-averaged
formalism, including both binary collisions and ECRH. Our code is based on
this formalism.

The basic model is shown schematically in Fig. 1. The magnetic field B
nas a minimum at z = 0 and a parabolic variation; i.e., B = Bo (1 + Rzz/Lz),
where R is the mirror ratio. 1In general, there can also be an ambipolar
potential. 1In this talk we will only consider runs in which this potential
vanishes.

The passing particles only transit the system once in a time m; -
short compared to the time-scale of collisions (vgl) or ECRH
(v;%). Hence, the passing-particle distribution function may be
specified as a boundary condition. Although the bounce-averaged Fokker-Planck
code does not evolve the passing-particle distribution function, collisions

between trapped and passing particles are important. These collisions are

retained in our code.
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We consider the situation in which the microwave frequency w is slightly
greater than twice the electron-cyclotron frequency at z = 0, ch(O). In
this case there is a second harmonic resonance near the bottom of the magnetic
well, where w = Zﬁ%e(zz), and a first harmonic resonance further up the
magnetic well, where w = ch(zl) (see Fig. 1).

In this talk we restrict our attention to perpendicular incidence of the
microwave heating field (i.e., k” = 0). The trapped particles then experience
a jump in their instantaneous perpendicular velocity each time they pass
through a resonance on their bounce orbit. When these jumps are small and
uncorrelated, the action of ECRH on the trapped particle distribution can be
described by a diffusion operator.

Because the bounce orbits of some particles never reach the resonant
points 2 and 2, these particles do not strongly interact with the
heating field. Figure 2 shows phase space at the magnetic~field minimum.
Particles that lie above the line labeled "second harmonic" (region III) turn
before they reach the second harmonic resonance point Z,- Hence, that part
of the electron distribution function in region III evolves only due to
collisions,

Particles that lie above the fundamental line turn before they reach the
fundamental resonance point Z,, so that particles that lie in region II
interact only with the second harmonic resonance. Those particles that lie
between the fundamental line and the loss cone boundary (region I) interact
with both the fundamental and second harmonic resonances.

It is necessary to provide a boundary condition in solving the
Fokker—-Planck equation in the trapped region of phase space. The value of the
distribution function f at the loss boundary is determined by the distribution

of passing particles. At 90 = T/2 we require regularity of the distribution
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function. The problem is closed by specifying the behavior of f at large
velocity. We have chosen to set £ = 0 along the arc Vg = Vhax®

Although this boundary condition was originally chosen for convenience,
we note that it models an important effect that is not otherwise taken into
account by our code: namely, the nonadiabatic scattering of high-energy
electrons as they pass the magnetic field minimum.10 At very high energies
electrons will be rapidly scattered in pitch angle. In mirror machines these
electrons soon enter the loss cone and are lost out the end, while in EBT's
they scatter onto an unconfined drift orbit and are lost to the wall. We find

that this loss mechanism is very important in the power balance of the hot

electrons.

III. ECRH DISTRIBUTION FUNCTIONS

Our bounce-averaged code follows the evolution of the electron
distribution function in time. Initially, the loss cone is filled by a cold
(Te = 17 eV) plasma stream with a density Ne = 1010 cm—3 at the mirror
throat, while the trapped region is empty. The temperature and density of
this cold stream is kept constant throughout the run. This scenario is
motivated by the experimental plan in TMX-U, where the hot-electron plasma in
the end cells will be built up from a stream of cold plasma that flows from
the center cell into the end cells. However, this stream of cold electrons
may be viewed as a model for the cold population of electrons created by
ionization of neutral gas in EBT’ and other experimentsl'2 in which hot
electron plasmas have been created.

The parameters for the computer runs that we discuss in this section
were chosen to model the Symmetric Tandem Mirror (STM) experiment2 at TRW,

Inc. The magnetic field parameters are B0 =1.75 kG, R =3, and L = 35 cm;
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the effects of finite B depression are not included. The microwave frequency
is 10 GHz and the electric field of the right-hand, circularly polarized
component is taken to be 10 V/cm. Early in these computer runs we saw a
buildup of energetic electrons from the cold-electron population in the loss
cone. After less than one second, a steady state is reached. We say that a
steady state has been attained when (1/n) 3n/3t, (1/E) 3E/3t < 0.1 s-l.
Figure 3 shows a contour plot of the steady-state electron distribution
function obtained when only the Qiffusion due to the fundamental resonance is
retained. The contours are spaced logarithmically; i.e., the value of the
distribution function decreases by a factor of 0.58 as you move from one
contour to the next.

The fundamental resonance line delimits regions in which the behavior at
the distribution function is very different. Below this line in region I,
where both ECRH and collisions act on the distribution function, there are
strong variations of the distribution function with pitch angle. Above the
fundamental resonance line, where the distribution function evolves only due
to collisions, the variation of the distribution function with 60 is much
weaker.

We can understand the shape of these contours by noting that as
particles are heated by the rf comp nent, the perpendicular velocity of their
resonant point along the magnetic field increases. This tends to move their
turning point in towards the resonant point. 1In (vlo, v"o) space the

particle is drawn along a hyperbola,

2 w 2
v, |5 a-~ 1] v, = const (1)
II0 (ch(o) ) ll)
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that asymptotes to the fundamental resonance line. As a first approximation,
the diffusion due to the ECRH tends to flatten the distribution function along
each of the family of hyperbolas defined by Eq. (1). Strong variations in f
occur as you move from one hyperbola to the next. At large Vor small
variations in pitch angle move you rapidly from one hyperbola to another.
Hence, we expect strong gradients of the distribution function in pitch angle
below the fundamental resonance line.

Above the fundamental resonance line only binary collisions affect the
distribution function. If we were to ignore diag and retain only pitch-angle
scattering, then the contours would be segments of arcs centered at Vo T 0.
For energetic electrons the drag and pitch-angle scattering terms are of the
same order. Hence, when drag is included (as it was in our computer runs) we
expect the contours to be drawn down somewhat from these arcs like those
contours in the region above the fundamental resonance line of Figure 3.

We also considered the combined effect of fundamental and second
harmonic heating. Figure 4 shows a contour plot of the electron distribution
function when the diffusion from both the first and second harmonic resonances
is included. 1In this run we chose the perpendicular wave number ki =4 cm_l.
Three regions of plane phase space are delimited by the fundamental and second
harmonic resonance lines. Below the fundamental resonance line (i.e.,
region I), the distribution function has strong gradients in pitch angle.

This behavior is similar to that seen in Fig. 3.

Between the first and second harmonic lines (i.e., region II), the

contours of constant phase space density tend to follow the characteristics of

the second-harmonic diffusion operation. These characteristics are the

hyperbolas
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2 W 2
v -7 -1} v = const . {(2)
o <zace<0) ) L,

In the region above the second~harmonic resocnance line, the evolution of
the distribution function is due to collision. We would expect the
steady-state distribution to vary only weakly with pitch angle in region II1I.
For the parameters of this computer run, the collision frequency is very small
for electrons in the tail of the distribution function (Tc ~ 1.5 s at Vo =
1010 cm/s). Hence, the electron distribution function has not yet reached a
steady state in the region above the second-harmonic resonance line.

Figure 4 is instructive because it ill' strates the patterns of flow in
phase space. The strong gradients of the distribution function in pitch angle
near, but slightly above, the second-~-harmonic resonance line indicate that
there is a flux of high-energy electrons into the region above this resonance
line. Hence, energetic electrons are first spun up along the diffusion
characteristics below the second-harmonic resonance line, Most are lost out
the boundary a: Vo = Viax! i.e., lost due to nonadiabatic scattering.

Some energetic electrons pitch-angle scatter into the region above the
second~harmonic resonant line where collisions with low-energy electrons
slowly drag them down in energy.

Figure 5 shows a plot of the electron distribution vs energy along the
second~harmonic resonance line. We have used a log~log scale so that straight
lines correspond to power laws. On such log~-log scales Maxwellians have
downward curvature at all energies.

« t low energies (E X 100 eV) the distribution function is well fit by a
Maxwellian with a temperature of about 30 eV. At intermediate energies

(100 eV < E < 5 keV) there is a marked departure from a Maxwellian. In this



219

3/2. Other

energy range the distribution function falls off as E~
Fokker-Planck runs indicate that this falioff is characteristic of first
harmonic heating. At higher energies (E > 5 keV) we see a tail that falls off
as E_S/G. In the next seccion we show how much of this behavior can be

understood from a relatively simple theoretical model.

IV. THEORETICAL CONSIDERATIONS

An important first step in developing a theory to describe the ECRH
distribution function is to determine the relative magnitudes of the rf and
collisional diffusion in each region of phase space. The collisional
diffusion decreases with energy, while the rf diffusion is either
approximately independent of energy (at the fundamental), or else is an
increasing function of the particle energy (at the second harmonic). Hence,
the microwave heating always dominates collisions at high energies.

We can estimate the energy at which microwave heating begins to dominate
collisional effects by first equating heating rate vrf(E) to the collision
frequency UC(E) and then solving for E. The rate at which microwave heating

increases a particle's energy can be estimated as

~ 1 Sszz A,Drf (3)
~ = o~

where Drf is the rf diffusion coefficient. These coefficients have been
calculated, for example, by Bernstein and Baxter.9
In region I of phase space fundamental heating is competing with

binary collisions. We have found that the fundamental heating will

dominate pitch angle scattering out of region I for energies greater than



nllB 2
E, = 10 5 3 keV (4)
* AB” €

where A8 is the angle between the fundamental resonance line and the loss
cone, € is the amplitude of the heating field in V/cm, B is the magnituds
of the magnetic field in kG, and Ny is the cold electron density in units
of loll/cm3. For the parameters of our runs, we find E1 ~ 0.1 keV.

At energies greater than El' the electrons shc':ld "run away" to form a
high~energy tail on the distribution function. In Fig. 5 we see significant
departures from a cold Maxwellian at energies above El'

In region II of phase space, only second harmonic heating is competing
with collisions. Particles in region II do not see the fundamental resonance
so the second harmonic diffusion does not compete with first harmonic
diffusion in region II. This is an important point since first harmonic
diffusinn is much larger (for nonrelativistic particles), and it would mask
the effects of second harmonic heating if it were present in region II. We

find that second harmonic heating dominates collisional drag for energies

greater than

n,B 2/3
E. ~70 keV (5)

€2

Inserting parameters appropriate to our computer runs, we find E2 ~ 10 keV.
Turning back to Fig. 5, we see that there is a pronounced break in the slope

of the distribution function in the neighborhood of Ez. In fact, we find

-3/2 5/6 2
that £ ~E for E, < =
a or B, <E KE for E, <E < Epax = 1/2 mv

SE, and £ ~E

ax’
At very high energies we can make a good approximation by ignoring

collisional effects in calculating the form of the distribution function. The
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steady-state distribution functions are then determined by the one~dimensional

equation
o 92 £
v, avl D v, £=0 . (6)

where v is the perpendicular velocity at the resonant point, and D is the rf

diffusion coefficient. The solution to BEg. (6) that obeys the boundary

condition f(vmax) = Q is

Ymax
dv,

1
(7)
VJ.D(V1)

We noted previously that particles that are strongly heated by the

microwaves tend to turn near their resonant point. In this region of phase

space, D(vl) is proportional to v15/3 for second harmonic heating.9

Hence, we find

1 1 (8)
f(v )ru St g S— ’
1 v5/3 v5/3
1 max

or

\
1

~f 1
£8 ~ | =576 55/‘) . 9
max

Note that this theoretical model is in excellent agreament with the result of
the Fokker-Planck code in the interval E, <EKL E ax (8€€ Fig. 5).
We attempted a similar calculation involving first harmonic heating in

an effort to explain the variations of the distribution function with E in the
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interval E;. <E <E The agreement between the calculation [hhich

1 2"
yielded f(E) ~ E+l/3J and the Fokker-Planck run was poor. We attribute this
to pitch-angle scattering, which is able to compete with first harmonic
heating in a narrow boundary laver near the first-harmonic resonance line.

When this is the case, it is necessary to solve a two-dimensional problem (in

Yo and 60) in order to determine the variation of £ with E in the range

E, < E <E,. This work is in progress.

V. SUMMARY

We have found a bounce-averaged Fokker-Planck code to be a useful tool
in studying the electron distribution functions produced by ECRH. Although we
have focused primarily on mirror-confined electrons in our work, we believe
that a bounce-averaged Fokker-Planck code would be very useful in studying the
electron distributions in Bumpy Tori as well. Such a code would be useful in
analyzing both the stability and the power balance of the hot electron rings.

We have begun a theoretical study of the ECRH distribution function. We
now understand many features of the electron distribution functions that have
been obtained numerically. More work is needed to understand the variation of
the electron distribution function in the intermediate energy range where
first harmonic heating dominates. This work is in progress.

In addition, new effects must be added to our model, including
relativistic electron dynamics, finite parallel wave numbers, finite B, and
variations in the ambipolar potential along the magnetic field. These effects

will be included in a new Fokker-FPlanck code that is currently being developed.
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Numerical Analysis of Equilibrium and Stability in Bumpy Cylinder

H. Sanuki, T. Ogino*, S. Ishiguro and T. Kamimura
Institute of Plasma Physics, Nagoya University
Nagoya 464, Japan
* Research Institute of Atmospherics,

Nagoya University, Toyokawa, Japan

Abstract

The dynamical tensor pressure equilibria of a bumpy cylinder are
investigated numerically by using the two-dimensional magnetohydro-
dynamic (MHD) equation. An isotropic bulk plasma pressure and an ani-
sotropic hot electron pressure are assumed. The nonlinear evolution of
two-dimensional MHD equation are studied, revealing that the hot electron
annuli play an important role in the equilibria of bumpy cylinder. Using
the numerical equilibrium solutions, several stability criteria are also
studied for a class of MHD instabilities. The attainable beta value of
the bulk plasma that is derived from the equilibrium point of view seems
to be somewhat .maller than that predicted by the stability analysis of

the rigid annu’us model.
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Considerable attention has been paid recently to the bumpy torus
confinement system. While a closed-line torus with isotropic pressure
and monotonically increasing $§d2/B is always unstable to interchange
modes!, the diamagnetic current associated with hot electron annuli
transforms the bumpy torus into a local average minimum-B configurations,
in which these modes are stabilized. The anisotropic nature of the hot
electron annulus, the localized high-g region, the closed magnetic field
lines, and the mirror symmetry should all be incorporated into a realistic
model of the bumpy torus equilibrium.

Since the bumpy torus s not toroidally svmmetric, the equilibria
are, in general, three-dimernisional. For large aspect ratio, however, the
configuration may be approximated by its infinite aspect-ratio limit,
namely, the straight bumpy cylinder. Many sufficient conditions for
general mirror equilibria have been discussed first by Grad? and several
authors3s“s°>. Numerical studies of typical 2-D bumpy cylinder®s7 and
typical 3-D bumpy torus® equilibria have been done in the guiding-
center formulation including the anisotropic hot electron population in
the equilibrium force balance. Recently, analytic toroidal equilibria
of bumpy torus configurations have been calculated by Freidberg?® based
on an asymptotic expansion in the amplitude of the bumpiness.

In the present study, we consider the dynamical effects of hot
electron annulus on the bumpy torus equilibria using MHD equations with
isotropic bulk plasma and anisotropic hot electron pressures. Two-
dimensional equilibria are obtained that are applied to study the sta-

bility criteria against the MHD instabilities discussed in Refs. 4 and

5.
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The basic MHD equation relevant to the present problem is dis-
cussed in Figure 1, where an artificial viscosity term $, artificial
damping term v, and also diffusion term DvZp are introduced to control
the behavior of the numerical scheme employed. Here, all quantities
are normalized. The model equations are solved numerically in cylin-
drical coordinates. Here we restrict ourselves to the 8-symmetric
system, which allows one to study a reduced domain as shown in Figure 2.
The geometry characterizes the EBT and NBT experiments with the z-
dimension equal to by and the r-dimension equal to a. The hot electron
annulus is approximately Ar wide and Az long located at the position
(ry, z=0). The present boundary conditions are shown in Figure 3. We
assume the periodicity in z and impose periodic boundary conditions at
z = -byp/2 and z = by/2. On the radial boundaries, r = 0 and r = 1, we
impose fixed boundary conditions, i.e. at r = 1, and at r = 0 we impose
a mirror boundary condition.

The pressure components are shown in Figure 4. The first term in
these expressions describes the bulk plasma, and the second one describes
the hot electrons. For the scaler pressure term, we can change the pres-
sure profile for the bulk plasma by changing the factor «. To simulate
the annular hot electron plasma, we use the initial pressure distribution
for hot electron annulus model, which has been discussed in Refs. 3-5.
The MHD equations (see, Figure 1) are solved as an initial value problem
by a modified two step Lax-Wendroff method under the boundary conditions
(Figure 3). An initial solution of MHD equations as an initial value
for numerical calculations is discussed in Figure 5. For numerical pur-
+y

poses, we decompose the flux func*ion into y = y » where we is

e in
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Normalized MHD Equation

38=-7- (Ve)+D¥%o

P G- Dv- 15l Bagela-og

p > > -
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B=B/IBl ; n=0
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=092V : Artificial Viscosity Term

w : Artificial Damping Term
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p/(B /2 )+

uaB
J/(EgRe)
E/B -

R it O <y ©

Figure 1. Normalized MHD equation
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Figure 2.
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Boundary Conditions

Z-direction : Periodic Boundary

b b
¢(rg’ ‘i)=¢(r)-l)
2 2
R-direction

At R=a : Fixed Boundary

¢(a,2) independent of time

At R=0 : Mirror Type Boundary

V-(0,2)=Vg(0,2)=B.(0,2)=B4 (0,2)
=Jr(012)=J6(0)Z)=0

Figure 3. Boundary conditions
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Pressure Distribution
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Figure 4. Pressure model for bulk and hot electron plasmas



236

Flux Function ¥
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Figure 5. Initial solutiomns
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related to external fields and Yin is due to hot electron currents.

Then, we can determine a magnetic geometry relevant to EBT/NBT machines
by adjustihg coefficients a,;, a,, b, and b, in Ve and Yin- How to deter-
mine these coefficients is discussed in Figure 6. Now we have four typi-
cal parameters, namely, the mirror ratio Rm’ the current ratio Rc between

the negative and positive values of the dipole current in the hot annulus

region, the parameter (B;")mm

characterizing the minimum-B configuration
created due to hot electrons, and the parameter a, representing the magni-
tude of the magnetic field. For given those parameters, we can determine
the coefficients a,, a,, b, and b,. The equilibrium solution is defined
on an r-z mesh. The number of spatial mesh coordinate units are (r,z) =
(34,34) or (66,66) including the fixed boundaries.

The parameters used in the calculations are shown in Figure 7. We
study several cases in which we change the maximum value of bulk plasma
pressure p, over the range of 0.01 (36%2%) - 0.1 (eﬁzzoz), and the para-
meter S in Figure 4 over the range of 0.5 ~ 2.0, where we defined Bp =
2up/B2 and By, = 2uph/B§. For the case of a = 20 cm and B, = 1T under the
present parameters, we obtain a, = -0.138, a, = 0.0, b, = -0.144, and
b2 = 0.279. The domain and magnetic geometry are also {llustrated in
Figure 7.

An example of the calculation is shown in Figures 8 and 9. Here,
the initial beta values of the bulk plasma and the hot electron annulus
are about 1% and 25% at the center, respectively. An equilibrium
state in this case is defined after the time step t = 10.24, namely,

about ten times the Alfvén transit time. Figure 8 gives contour levels

of the flux ¢ and indicates clearly the local minimum in B created by
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How to determine Coefficients ay, 0y, bl and b2
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Parameters
rp ar ez b, Rp a, (B;_n)min
0.65 0.3 0.5 2.6 1.9 0.0 -0.2
~-0.3
Re P S D M v n
0.01 0.1-
- ~ 0.003 0.1 0.10 0.0
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~(20%)

For Aj=20cm  B,=IT

137 1% 1.95T
~. 20cm -
1 S cmle
69T 13enre
52cm ™ > r

01=-0.138
b;=0.048 PIM —_0, 144
02=0.0
b2=0.279

Figure 7. Parameters used in the numerical calculation. The domairn and
magnetic geometry are also shownm.
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Figure 9. Parallel and perpendicular pressure contours in r-z plane at
equilibrium. Bh = 25% and Bp = 1%.
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the diamagnetic current of the hot electrons. The magnetic gradients
are increased in the vicinity of the hot electron annulus, but the
curvature is hardly changed. Figure 9 shows the parallel and perpendi-
cular pressure contours. Both the parallel and perpendicular pressures
are shifted a little inward from the initial position and the axial
length and the radial width of the perpendicular pressure distribution
are larger than those of the parallel pressure distribution. The
radial profiles of mod-B, current, parallel and perpendicular pressures
at the midplane are shown in Figure 10 for several values of hot electron
annulus beta By namely, 15.6%, 20.0%, and 29.0%, which are defined at
the equilibrium state. The local magnetic wells at the annulus region
become deeper and broader as the annulus beta B is increased. Next we
studied the equilibria for high bulk plasima beta. Consequently, it turns
out that the hot electron annulus may be shifted inside or outside de-
pending on the pressure profiles and value of Bp/sh. Here we used the
factor characterizing the bulk plasma pressure profile a = 1.2. However,
we will use a = 0.2 when we investigate the stability criterion later.
The relationship between beta values of the bulk and the hot electron
annulus are plotted in Figure 11 for several equilibria in which the
hot electron annulus are located at r = 0.600, 0.625, and 0.65. We
obtain an equilibrium at r = 0.65, resulting in Bp/sh ~ 0.3 at this
position.

We next consider the influence of the hot electron annulus on
the bulk plasma stability. Studies of bulk stability limitations are
developed in two approaches: rigid ring models®-10 and interacting

ring models!1,12. The rigid ring models show that the linear improve-
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Figure 10. Radial profiles of mod-B, current, parallel and perpendicular

pressures in midplane at equilibrium are shown for several

values of the annulus beta, 8, =

15.6% (I), 20.0% (II), and

29.0% (III) at the equilibrium.
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ment in attainable sp values with Bh' However, the interacting ring models
predict that this tendency is not present at higher values of Bl

We study the role of high-8 hot electron annulus in maintaining the
stability of the bulk plasma against a class of MHD instabilities using
the stability criteria (see, Figure 12), which have been discussed in
Refs. 3-5). D. Spong has summarized these criteria for flute modes and
pressure driven ballooning modes in Ref. 13. The self-dug well of the
annulus could stabilize over interchanges most of the ring region,
however, at the outer edge, some of line-tying would be necessary if
the plasma pressure extended beyond the edge of the magnetic well. In
contrast to this type of mode, pressure-driven ballooning modes distort
and stretch the magnciic field lines. Then, the stability criterion for
this mode involvas only curvature, which is not effectively modified by
finite beta. Consequently, it is more difficult to satisfy than the
criterion for flute modes.

Some results on the stability criteria for flute and ballooning
modes are shown in Figure 13. We chose @ = 0.2 in the bulk plasma
pressure model {see, Figure 4). In this case, the bulk plasma pressure
profile is flat more than that for a = 1.2. We used the numerical equi-
1ibrium solutions when we carry out the field line integration in the
stability criteria. The results, which are stable against flute and
ballooning modes (0), stable for flute modes but unstable for ballooning
modes (4), and unstable against both flute and ballooning modes (*), are
plotted in this figure. The results by Van Dan and Lee (Ref. 12) is
also illustrated for comparison. These results indicate the situation

of stability of bumpy torus mentioned above, but the results presented
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STABILITY CRITERIA

1. Rosenbluth - Lonamire

< 3p,, 3inB 3P,
B "~ s =0
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<— + > + 5 <0
B av Ay <tB%> ~
3. Localized Perturbations
ap, 2
K 3D, . 3znB 3p, (557
<— + > 4+ < 2> <0
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where
<f> = fg g fa

Figure 12. Stability criteria against a class of MHD instabilities such
as flute and ballooning modes.
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Results on stability criteria for flute and ballooning modes.

Stable against flute and ballooning modes (0), stable for

flute mode but unstable for ballooning mode (A), and unstable
against flute and ballooning modes (x). For comparison, the

result by Van Dam and Lee is also plotted.
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here would be altered a 1ittle by more improved numerical calculations,
the geometry and profile effects such as the variations on the length

and width of the hot electron annulus, different pressure profiles, etc.
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KINETIC STABILITY ANALYSES IN A BUMPY CYLINDER*
R. R. Dominguez

General Atomic Company,
San Diego, California 92138

and

H. L. Berk
Institute for Fusion Studies,
Austin, Texas 78712

ABSTRACT

Recent interest in the ELMO Bumpy Torus (EBT) has prompted a number of
stability analyses of both the hot electron ringsls2 and the toroidal
plasma.3’4 Typically these works employ the local approximation, neglecting
radial eigenmode structure and ballooning effects to perform the stability
analysis. In the present work we develop a fully kinetic formalism for per-
forming nonlocal stability analyses in a bumpy cylinder. We show that the
Vlasov-Maxwell integral equations (with one ignorable coordinate) are self-
adjoint and hence amenable to analysis using numerica® techniques developed
for self-adjoint systems of equations. The representation we obtain for the
kernel of the Vlasov-Maxwell equations is a differential operator of arbi-
trarily high order. This form leads to a manifestly self-adjoint system of

differential equations for long wavelength modes.

*Work supported by Department of Energy,
Contract DE-AT03-76ET51011.
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l. INTRODUCTION

Recent kinetic stability analyses of EBT have typically neglected radial

structure and finite length effects. Several methods have been proposed

during the workshop to study nonlocal effects, including the generalized &W

formulation and the "bumpiless" EBT Z-pinch model.

A different method for analyzing linear stability, including nonlocal
effects increasingly used in plasma physics, is a variational formulation of

Maxwell’s equations.

The variational method obtains second order accuracy in the eigenvalues

with only first order accuracy in the trial eigenvectors.

The ingredients necessary for a variational formulation satisfying these

conditions are:

(1) self-adjoint kernel, and

(1i) prescription for choosing trial adjoint eigenvector.

Recent applications of the variational technique in the literature do not
always satisfy these criteria--the quadratic form is not stationary and

eigenvalues not guaranteed to be second order accurate.
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Here we consider self-adjoint structure and the variational formulation
of the Vlasov-Maxwell equations in the case of equilibria with one and two

nonignorable coordinates. The principle results are:

(1) definition of generalized self-adjolntness and relation between

elgenvectors and adjoint eigenvectors, and

(11) construction of integral operator kernel (including full kinetic

effects) in the form of a manifestly self-adjoint differential

operator of arbitrarily high order.

The kinetic Vlasov-Maxwell equations in a bumpy cylinder follow from (i) and

(11).
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2. SELF-ADJOINTNESS AND THE VARIATIONAL METHOD

We consider equilibria N(x), T(x), and B(x), where x 1s a one- or two-

dimensional vector. The linearized Vlasov-}Maxwell equations are of the form

I [ dx" Log(x.x’,w) ¢g(z") =0 (1a)
8
with the adjoint system of equations
D[ dax’ ¢5(x") Lgo(x'hx,0) =0 . (1b)
8
These results follow from the functional
<ILI®> = T [ dx dx’ ¢5(x) Loa(x,x’,w) ¢(x") =0 (2)

a,B

when variations of Eq. (2) are performed with respect to ¢+ and ¢,

respectively.

The variational method seeks to minimize the functional <{¢|L|¢>. We choose

trial functions

= b, +esp , ¢ = +esst (3)

-~ -~
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which determine the trial eigenvalue w, by <¢°|L(m°)|¢o> = 0, For self-

adjoint L, 1.e., <¢ILIY> = <PIL])¢>, the frequency shift is second order

<8¢ILI 84> 3
6 = - = - 2 + 0 ) (4)
w=ws Y M N WETTE IS (e

<yIL| ¢> translates into the definition of generalized

The condition <¢|L|y>

self-ad jointuness
LGB(J_S,)_S' L) = oaoBLBu()_g' 1 X, w) , (5)
where
+1 ignorable coordinate
Oy =
-1 nonignorable coordinate

Microscopic symmetry under simultaneous time-reversal/parity transforma-
tion is sufficient (although perhaps not necessary) to insure the generalized

self-ad jointness of the Vlasov-Maxwell equations.
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3. CONJUGATE TRAJECTORIES

Generalized self-adjointness follows from important symmetry of particle

orbits. Consider the single particle Lagrangian:
5 ov? + %.g * Ay - 9%, (6)

Transformation which leaves L invariant » same equations of motion in

new coordinates.

Simultaneous time~reversal/parity transformations which leave L in-

variant define equivalent orbits--known as conjugate trajectories.

Examples of conjugate trajectories:
(1) One-dimensional field: B, = Be(r)é + Bz(r)é.
Conjugate trajectories: (55 + 6£+(t),x+(t)) and
(g, + 8r (-o),v(-t)].
§r(-t) = &rt(e), 667(-t) = -88%(r), 8z7(~t) = -6zT(¢t).

vi(-t) = —-vi(t), vg(~t) = vg(t), vz(-t) = vi(o).

(11) Two-dimensional field (bumpy cylinder): By = Br(r,z)£ + Bz(r,z)é.

Conjugate trajectories: (E; + 6£+(t),x+(t)) and

[gg + 6r (-t),v (-t}].
de~(~t) = 67(t), 867 (-¢t) = -66“’(:), s527(-t) = sz¥(c)

vz(=t) = =vi(t), vyl t) = vi(1), vi(-t) = ~vi(r) .



255

The equivalence of conjugate trajectories is used to "symmetrize"” the
kernel of the Vlasov-Maxwell equations and obtain the self-adjointness

property.
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4. ELECTROSTATIC KERNEL

First we illustrate results using the simpler Poisson equation for the

two-dimensional perturbed potential

¢(x,t) ~ ¢(r,z) exp 1(26 - wt) . ¢
The Poisson integral equation is

[ 40 [Ly(ps0") + Ly(pso”,w)] 6C0") =0, (8)

p=(r,z) and

2
; ) 3 3 , 3 3 3172
Vel et w a)
x§(r-r’) 8z -2") , ¢
and
Lv(g.g') - L.,(g’.g) . (10)

The plasma response 1is

Lplose”0) = [ 4na3 [ dyo [ ro drg dzo [ (0~ up)”!
8 n

x (wﬂ';E+ “572; r-‘gs)) In(g,g') . an
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with I,(p,p") = [p:(p)]* palp’), wy = nduw> + £<0>, and <w > = average

gyrofrequency

D:(g) = é.f dt’ 6[3 - 0o - 62(1')] exp[1af(t)]

- 2m
e (12)

[

and Q:(T) = w,t + 280(1). I..p is not manifestly self-adjoint. Self-
adjointness follows when we note that conjugate particles have the same

constants of motion €,Pg.

Grouping the response of conjugate particles,
. 1 * p - -t .
La(esp”) » » {[on(@) " pa(o”) + [o(e) [ 07(o")}
and using the relation between conjugate trajectories
Pa(p) = [p(p)] . (13)
Hence,
L4 l * ’ ’ *
Tnlese) = 5 {{on(e)]" op(e") + og(o) [on(e) )"} (14)
and we have the result

Lp(g.g'.m) = Lp(g’ .g.m) . (15)
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5., ELECTROMAGNETIC KERNEL
We choose a gauge where ¢ = 0,
AGx,t) = [A;(e)T + A, (p)8 + Aj(p)2] exp 1(26 - wt) (16)

with p = (r,z). The Vlasov-Maxwell equations are of the form

g fdp” [Lyg(ese”w) + Lo o(R,0%0)] Agle™) =0 . a7
The kernel is now more complicated, e.g.,
L, = {Ll LZ L3} S(r~-r")8(~2z-2") (18)
where
- -
22 (a 3 w? mzs) 1/2
+{—— - —+ 1 B (")
72
(rr‘)1 dz 9z c? s ¢2
L o= |1t 2
r” dr
o33
| ar 3z J




S .
-1t r. 8r”
3 3 w2 w2 3 9 -1/2
L, = <—_— -—+I ‘Eg)(rr’)“2 + rr’ — — (rr?)
dz 3z~ c? s c2 9r °r”
., 9
i i 3z J
[, 2 2 )
T3¢ 3z°
. 2
L3 -1 9z~
22 w?2 w? 9 3 1/
+ (Z LS. — ) eV 2+ — (ex)''?
(rr’)l/2 s ¢2 c ar ar” |
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The plasma response is

2
Lp = - ) 3 [ dyo [ to drg dzg | (w - mn)-l
s ¢ n

"("’n‘seg"' z_a_g.g) ng) 1:&‘(2’2.) ,

vhere conjugate trajectories are used to obtain M,

Mpgplese’) = [ma(gln)]* mg(e” In) + a&mu(g!n)[ms(g'ln)]* ag

with o, = +1 (a=2), -1 (a=1,3), and

(19)

(20)

g(gln) = é-f dt’ v(t") 5[5 -~ Po = sp(1")] explig(r)] . (2D
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6. SUMMARY OF THE RESULTS IN THE BUMPY CYLINDER

Vlasov-Maxwell equations

[ do” Llp,p",w) + ACp") =0 .

% is self-adjoint

LQB(E,E’,m) = auoBLBa(f',g.w) .
Ad joint eigenvector:

A:(B) = UuAu(g) .

The generalized self-adjoint structure in two dimensions (with full kinetic
effects) is different from the two-dimensional tokamak response (see Tsang5

or Frieman et al.6) wvhich 1s not self-adjoint.
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7. APPLICATIONS OF THE FORMALISM

(1) Minimize the functional

using the trial function A and prescription for é+.

(11) Express L as a differential operator, converting from integral to

differential equations of arbitrary order. This is useful only if

natural truncation of the order is available,
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8. DIFFERENTIAL OPERATOR FORM

Transformation of L to a differential form proceeds as follows: we use

-~

identities

exp(a ;%) f(p) = f(p + a) )

(22)

[ do £(p) exp(-—?— a) glp)

S/ dg g(p) exp(a g%) £(p) 3p

and apply to the vector functions m(p{n) [Eq. (21)]. After partial integra-

tlons, integration over the § function is trivial and, schematically,

J ax Lp * 4> Jdgo 1 <exp(- ;L . GE) v exp(iQ,)> G[Fésa
n,s -~

2P a0, (23)

-~

x <exp(-iQ,) v exp(8p

with p = (r,z).

The factors <exp{-(3/3p) - 8p] vy exp(iR,)> must be expandable for this

form to be useful. Two cases:

(1) %-szﬂn<<1 ,
(11) aip « 8p << 1 but @ is finite .
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In these cases, differential equations for long wavelength modes may be

obtained. Examples of interest include:

1.
2.
3.
4,

5.

6.

(1) "bumpiless” one~dimensional mode of EBT (VanDam et al.), and

(11) a two-dimensional bumpy cylinder.
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BALLOONING STABILITY IN TOROIDAL DEVICES

Shoichi Yoshikawa
Princeton Plasma Physics Laboratory
Princeton, New Jersey 08544
and
Institute for Fusion Studies

University of Texas at Austin
Austin, Texas 78712

ABSTRACT

The marginal stability condition of ballooning
instabilities for toroidal confinement devices is
derived for low critical stability B (B £ 10%). The
stability condition derived here should be applicable
to EBT and multipoles as well as tokamaks and
stellarators. For EBT and multipoles a more compact
expression for the stability condition is possible

and is given here in the appendix.
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The MHD, finite B8 ballconing instability is expected to
limit the maximum £ in toroidal devices (tokamaks, stellerators,
and EBT) as well as tandem mirrors. Thus it may behoove us
to refine the critical P criterion which was first pointed
out in the 1960's by a number of authors.1™3 The usual way
to determine the critical value is taking advantage of the
fact that the growth rate, s, squared, is real in the MHD

approximation. Hence the problem is reduced to solving for

marginal stability condition,

2

Q,
S

2
vg +wie =0 (1)

A

where wg(l) is the local interchange growth rate, Va is the
Alfven wave speed and £ is taken parallel to B. In actual
experimental situations, this simplification is somewhat modi-
fied as the magnetic field strength, B, is usually a function
of 2. But what will be described here presumably improves
the usual assumption that w§(£) is exvanded in Fourier series
and retained to the first term, thus transforming Ea. (1) into
Mathieu's equation.

We shall impose periodic boundary condition such that

o (2+L) = ¢(2£). And introduce a new variable

27 (2)

[—1' »

@
il
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Then Eg. (1) may be rewritten as

2
9—% - ylh + £(8)]1¢ = 0
an
R _a
Y = c B
(L/2m) 2
27
0 =f a6 £(8)

0

2
de = [ £%2(0)ds6

h _ 1 ae
z - = J(R(e) >0
C

Here R is defined as

ool
0.
g -
8)—‘

1

o
FU|I)_a

1 _ dznB2 . _dy/dn
R 2dn {dyp/dn’

> »
where n is the normal component to constant pressure surface

and often (but not necessarily always) coincides with the

(3)

(4)

(5)

(6)

(7}

(8)

(quasi) magnetic surface. The difficulty which arises in many

devices is that we cannot keep 1/R such that d(an)/dﬁ « R is

negative everywhere.
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The function f is nondimensional and <f?> is taken
usually between 0.5 Vv 2, It is not too difficult to impose

one particular value for <f?> but sometimes it is advantageous

to define <«f?> at our discretion.

(i) Method of low B approximation.

The equation (3) can be solved rather easily by numerical
methods. But often it is convenient to have an analytical

scolution available. Here we try that. We order coefficients
of Eq. (3) as Y£(€) ~ 0(<), Yh ~ 0(e?). Usually h is ~ 1/10

whereas £(8) ~ 1, so this ordering is not inconsistent.

Finally, vy ~ B?/h as we see later, so if B < 0.1, y is considered

to be small.

Then to the zeroth order we obtain
¢0 =1 . (9)

To the next order

a‘e,

—ag? = vfo¢, = v . (10)

This is integrated once to yield

d¢ °
__% = yj£ £(8)d6 + C = YF(8) + C (11)
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d¢1/de satisfies the boundary condition in view of Eg. (5).

Integrating once more

0
¢1 = Y }( deF(6) + Co6 + C1 . (12)
Q

The constant C1 may be absorbed by ¢°. The constant C must

be chosen to satisfv the boundary condition that is

2%
- R
c = %;— j: de F(e) = = G(2m . (13)
We defined
0
F(8) = f £(6)d6, F(2n) = 0 (14)
0
8
G(8) = /F(e)df‘ (15)
0
Thus
¢
¢y = Y(Gte) - $6(2m) (16)

To the next order

d2¢2
—d67 = yh + Yzf¢l . (17)
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Integrating once

deé 6 8
2 = yhe + y? d0£G(8) - %ﬁ“) /f(e)ede + C,.(18)
0 0

C2 is necessary to satisfy the boundary condition for ¢y but

the necessity of satisfying the boundary condition for Eg. (18)

brings out the BC. Since at 0=0, d¢2/de = Cyes it follows that

27 27
2th + y / d6£G(6) - 9-%2—"-)- f £(6)eds| = 0. (19)
n
0 0
The first term in the bracket gives [note F(2w) = 0]
2T 27 2m
/ defG = FG - [G'Fd8 = -/ F°de . (20)
0 0 0
Also
27 2T 2-
J[ f(8)84d6 = F - G, - j( FdE = -G(27). (21)
0 ‘0 o
Hence
Znh (22)

Y = 37
[ F2de - 2-[G(27)]?
0 27

Schwartz's inequality assures the positiveness of the divisor

except for the trivial case (f= 0).
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Thus

2aR . (23)

€.h
(L/27)° 2T co
j{ F2d6 - %;(G(zn))z
0

™
|
u
™
L]
-

Bco is the critical B for £f = cos 8 and I is the correction

factor for other functional forms of £(6).

(11) Some Examples

Let us calculate sbme simple examples. Assuming h is

small from Fg (6 and lectino 1/R() = (l/Rp)cosO where Rp is
the minimum field curvature radius, we get ﬂe = Rp. Also
I = 1 because G(2") = 0. So we get
2a'R
8 (L/2m)? h = “co (24)

as 1s expectec.

Take

£(8) =1, 0<6 <,

-1, n< ¢ < 2m, (25)

£(8)

Again, ﬁc

21
J{ F2dg = % 3 (26)
0

m 27
G(2m) =Jr de - 9 + J( (2m -~ 0)d8 = =w? , (27)
0 |

IRPI. The calcuation yields
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Thus,
S - 6

l = 77 orxr B = HZBCO. (28)
I1f

f=a, 0 <8 < el, (29)

f =<6, el< 8 < 27, (30)
such that

uBl = (21 - 61)6 . (31)

Then after rather tedious, but straightforward calculations

we get (by equating § = 1, thus R, = Ry

6

_ 2alRb 6
Be = TE?%?T% h 55— R (33)

Thus, BC could be smaller than the ordinary eigenvalue of
Mathieu's equation.

If £ = £(8) = cosN8 where N is an integer, we get

F = sind . (34)

Z=

Thus, we arrive at I = N?’. 1In other words,

2alR_|h
B = —-—E—- - (35)
€ (L/2%N)?
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That is even in systems such as Octupole or EBT, the connec-

tion length is determined by one period of bad-good curvature.

{iii) Comparison with wave mechanical solution.

The usual method to solve eigenvalues could, of course,
be used. Let us take the case of Eq. (25) slightly modified

so that

£(86) 1, 0 <8 <

f(e) 'lr

I
2 ) (36)

The starting point is Eq. (32). We define

Yl=(l+h)Yr
Yy = (1 -h)y. (37)
Then in the domain I where £(6) = 1, we have
1/2
¢ = Clcos h Yy 6 . (38)
In domain II where f(6) = -1, we have
1/2
¢ = C2 cos v, (m - 6). (39)
. _ T 37 .
The connection at 6 = 3 and 3~ requires
1/2 /21 _ _1/2 1/2 ¢
Y}" “tan h \£} 5= Y3 tan Y5 5 - (40)

The above eguation can be solved for arbitrary y numerically.

In the small y limit we obtain



7Y, T 73, T 2Y, * 237, (41)
or
hn = "—3-(1 + h?) (42)
= Y13 .

Thus we get

aR
(o] . . 6 1
Be = T&7zmyz 20 T 2 mEFRT ¢ (43)

This is to be compared with Eq. (28) (h? << 1).
We conclude that Eq. (23) is probably accurate enough for

estimating critical B in normal situations.
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APPENDIX

CLOSED FIELD LINE DEVICES

In the case of floating multipoles or EBT, the geometry
is very simple, so that a more formal set of equations can
be utilized. 1In these devices, closed field lines § %é = const
form the magnetic surfaces, Y. And we can choose another
orthogonal coordinate, x as JBdl and the third coordinate
§w x ﬁx is an ignorable coordinate.

Starting with a two fluid theory, using the usual assumptions
among which Iklpil << 1 where k; is the wave vector perpendicular

to §, and CH is the ion Larmor radius, we arrive at

—

2
= L vin o+ (v 1-3-1?) (nkTB) - 2D = 9 (1a)
o} o n
where ng is the unperturbed density, n is perturbed density,
. - | 1 T2 .
subscript n in VET means 357 . Vw/|Vw|, kT = kTe + kT, 1is
i

assumed constant, B is the magnitude of E, ¥ is the density
gradient as defined (Vznno)n with subscript n having the same

>
meaning as (V%z)r. M is the mass of ions and S? is the growth

rate in the limit of |[k,o0, i<< 1.
Since only S appears, S® is real in Eg. (1A). Thus at
marginal state the last term of Eg. (1A) can be made 0. Since

B 1s a function of £, yw, where £ is the coordinate in the

direction of B, Eg. (lA) will be written as



277

dp
3 1 3n © p2, 8 1 _ 2A
Bsrsattay Blowy Bz - O (28)
or
a2n . 9P 2 1\ _
S‘F + d—w_ uO(W 'B-z n= 0. (3A)

Since the field lines are closed, it follows that

%dx-‘-Xo“ZIio (4A)
where ZIi is the total net current (in coils) enclosed by the

closed field lines.

. 2 1
We define (W ﬁz)A as

3 1 _ 4 [ ax/B? 3 1
'S'J'Ez“dw§ Xy +(§$§'2)A ' (3A)

Since ¢y and y are orthogonal, the change of the order of
operations involving x and ¥ is permitted. Then Eq. (5A)
implies
3 1 _ (3 az _
ﬁ('a—lp- Bz) dX = (W% B—-)A = 0. (SA)

A

Thus, Eq. (3A) is reduced to

a2 ar i
32n o 4 fg_xy o (d 1 _
352 * 3o HoM (3$j‘52 X + =37 Mo \ 37 Bz)A = 0. (7R)
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Again, ordering three terms of Eqg. (7A) as 1, €%, €, we

arrive at the critical dPo/dw as

1 4 a
dPo = Ho ﬂ§ _B: i =L (w)
dv f HZ (x)dy - I {x)
Xo
where
. {a X aq {a X ax
o = (s [ #), (8 [ 8)
A A
X
I(x) = fou(x)dx-

If IdPo/dxl is larger than given in (8a), the plasma is

unstable. Thus, in marginal stability cases
P = [ L(y)dy
Y

with P(wo) =0 at ¢ = wo. Note in a %dR/B stable plasma

(8a)

(9A)

(10A)

(11A)

(12a)
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EFFECT OF BETA LIMITS ON REACTOR PERFORMANCE IN EBT

N. A. Uckan and D. A. Spong
Oak Ridge National Laboratory

and

D. B. Nelson
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ABSTRACT

Theoretical models indicate limits on core beta ranging from a few
percent to 10-20% depending on the models and/or assumptions. Some of
the parameters that enter into these heta limits are: the ratio of the
ring radial scale length to the average radius of curvature, € = A/Rc;
the ratio of the cold to the hot plasma density, fR = ncold/nhot; the
ratios of the hot electron drift frequency to the ion cyclotron fre-
quency, wdh/mci’ and to the drift Alfvén frequency wdh/kVA; the ratio
of the ring electron temperature to the core ion temperature, TR/T1;
the ring beta BR; etc.

Because of uncertainties in extrapolating results of simplified
models to a reactor plasma, the above parameters that influence the

eta limits cannot be determined accurately at the present time. Also,

Teasonable changes within the models and/or assumptions are seen to
affect the core beta limits by almost an order of magnitude. Hence,
at the present, these limits cannot be used as a rigid (and reliable)
requirement for ELMO Bumpy Torus (EBT) reactor engineering considera-
tions. However, sensitivity studies can be carried out to determine
the boundaries of the operating regime and to demonstrate the effects
of various modes, assumptions, and models on reactor performance (Q
value). First the modes believed to limit the core B and ring plasma
performance are discussed, and the simplifications and/or assumptions
involved in deriving these limits are highlighted. Then, the impli-~

cations of these limits for a reactor are given.
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1. TINTRODUCTION

In the ELMO Bumpy Torus (EBT), there are two principal plasma com-
ponents: toroidal core plasma, where the fusion reactions occur, and hot
electron rings, which are essential to the stability of the overall con-
figuration. The stability requirements of ring and core plasmas are
closely coupled, and their interaction defines stable operating regimes
of both plasmas and determines core B limits [1-3]. The economic via-
bility of an EBT reactor improves significantly if the average core beta
<B > exceeds v10%Z and an average "minimum-B" stabilization requires

core
Bring > 10-15% [1,4].

The role of high B, hot electron rings in maintaining the stability
of the toroidal plasma against flute and interchange modes may be seen

from Fig. 1 and the simple stability criterion given below [1]:

(p” + ypu /u)(U” - p~ § d&/B3) >0 , , (1)

where U = ¢ d&/B and ©~ = d/dy. For stability, Eq. (1) must be satisfied
on each flux surface ¥. In Fig. 1, typical profiles of § d¢/B, the mag-
netic field B, and the pressures (core and ring) are given as a function
of the radius at the midplane. Equation (1) indicates that in the central
plasma region, stability is attained if either p” = 0 or p“U > -ypU~;
i.e., pressure gradients may be stably supported up to some critical
slope. At the inside of the plasma edge, where p” < 0 and U > 0 and in-
creasing, somewhat larger pressure gradients can be tolerated because (see
Fig. 1) U” (inside edge) > U” (central region). Finally, at the outer
edge where p ~ 0, p* < 0, and U” < 0, stability is possible if lp'l <
|u*]/$ d2/B3. Thus, the electrom ring modifies the B field and § di&/B in
such a way as to stably support plasma pressure gradients in the regions
in which they are largest. The stability threshold is then related to

the critical value of ring beta required to make U” < 0, where U~ may be

written as

U’ = ~§¢ de(x/r + 5B/3y)/B2 < 0 2)
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for stability. Considering the regions of positive and negative curvature
« for field lines and using the appropriate scale lengths, one then finds
the necessary value of ring beta to reverse the gradients is to be given

as follows [1]):

(Bring)crit i ZA/RC ’ (3

~

where 4 = ring scale length and RC = magnetic radius of curvature (mid-
plane). This ring beta (Bring N 5-15%) agrees with the experimental
observation of the transition to the quiescent mode of operation (C-T
transition [51]).

Both magnetohydrodynamic (MHD) models [1} (derived from modified
energy principle) and kinetic models in slab geometry [2~3] show that
the core plasma is stabilized only if the ring beta exceeds the critical
value given by Eq. (3) that is required to produce a distinct local mini-
mum in B. At higher values of ring beta, the earlier decoupled MHD calcu-
lations [1) indicated stable core betas to be as high as the ring beta
(BCore n 30-40%). Coupled kinetic calculations [2-3], on the other hand,

indicate a saturation in core beta to values near 0(8 ). The various

aspects of the EBT stability were treated at this worﬁztgp, and readers
should refer to other papers for details [6].

In the present experiments, the core B is limited to Bcore < 0.5%
because of transport and heating consideraticns (small size as well)

rather than stability, whereas Br ~ 10-40% is routinely attained

and the stabilization of a low Bczzi plasma by the hot electron rings
has been amply demonstrated [5]. Experimental confirmation of high
Bcore predictions is not possible at the present time. However, the
next planned device, the EBT Proof-of-Principle (EBT-P)} experiment,
is expected to have BCore values on the order of a few percent that
could be able to test some of the predictions.
In this paper, we will briefly discuss the results of coupled
core~ring stability calculations, the stability of the hot electron rings,

and the implications of these stability limits for a reactor.
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2. COUPLFD CORE-RING STABILITY LIMITS

Stability problems often fall into two categories, macrostability
and microstability. In EBT, these distinctions are somewhat compli-~
cated by the requirement of a kinetic treatment for traditional macro-
scopic modes (iaterchange, for example) because the requirements for
MHD are not satisfied for the hot electron rings. This also results
ip a given class of modes being called different names by different

authors in the literature.
At present, EBT stability calculations have indicated the existence

of three modes which can limit the core R, core density, and ring density;
these are the core interchange, the compressional Alfvén wave stability,
and the hot electron interchange [6-8]. For simplicity, these are often
treated as separate modes and will be considered as such in the following.
However, calculations in slab geometry which take all three modes into
account indicate that [9-10] in certain parameter ranges two of these
modes can become coupled, resulting in lower stability boundaries than
would be found by considering each mode separately [8]. Such coupling

requires further examination in the reactor case.
2.1 Core interchange and MHD ballooning modes

These are low frequency modes and are identified as the modes
responsible for the quiescent mode of operation (C-T transition [5]).
These modes are driven by curvature in the magnetic field and by the
core pressure gradients. The stability boundary of these modes is

sensitive to the hot electron distribution function. They are stable

if [2-37

B

ring 8R > 4A/<Rc> i (42)

HI

B

core - Py § ac/(1 + 8) (4b)

where a v 2~4, depending on the hot electron distribution function, ¢ =
A/Rc is the ring radial scale length divided by the radius of curvature
within the ring length, and Bl is the perpendicular component of the hot
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electron pressure (beta). The first inequality [Eq. (4a), which is the
same as Eq. (3)] is the requirement that the hot electrons form a mag-
netic well, and the second inequality is the fundamental Bcore limitation
in that well, which is normally in the 5-15% level for a reactor.

The estimate given by Eq. (4b) is based on a slab model that neglects
variations along the field lines. Such variations have been taken into
account in a generalized energy principle [11] derived for low frequency

modes (w << w ). Preliminary estimates of the beta limit from the

dh’ “*n
energy principle indicate values in the same range as Eq. (4b). However,
by taking into account details of the equilibrium fields and modifica-

tions introduced in Rc by supplementary field shaping [i.e., aspect ratio
enhancement (ARE) and symmetrizing (SYM)] coils [12], it may be possible
to optimize the B, limit to higher values than would be predicted by the

simplified local slab theory.
2.2 Compressional Alfvén mode

The compressional Alfvén mode places a limitation on the core plasma
density [8-10). This does not appear to be a severe problem for either
present—~day or reactor-like devices provided the mode is sufficiently
localized to the ring region. For radial wavelengths on the same order
as the ring thickness (krA > 1), a local slab model predicts {8] for

stability

22 2

kivy > 4(AB/RC)wB (5)
where k? = ki + kg; k, = 2n/b withn =1, 2, ... 5 kg = m/ap withm =1, 2,

B
finite B ring VB scale length; and wg = keVB (= wdh) is the VB hot electron

.. and ap the plasma radius; VA is the Alfvén velocity; A_ = 2A/BR is the

drift frequency.
2.3 Hot electron inteichange mode

The hot electron interchange mode results in a lower limit on the

ratio ncold/nhot (= ncore/nring)' This mode is stable in the local slab

model {8] if
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2 N 2
wi(8,/R )? (4v§/ABRC)(ke/kl) . (6)

It is conjectured in Refs. [8-10] that this mode could exist near the T-M
transition in EBT [5], especiall, when its coupling with the compressional
Alfvén mode is taken into account. For a reactor, this mode will result
in an upper limit on the hot electron beta (BR), but this should be in
excess of what is required to reverse the magnetic field gradient and

create a well,.

2.4 Coupling of various modes

The importance of core-ring interaction has led to slab models which

take into account nonadiabatic terms (%w/wdh) and ion cyclotron harmonics

CF
earlier [9-10]. The inclusion of O(w/wdh) terms shows results with de-

~ wci) in order to treat the coupling of various modes discussed

. (= . imit.
pendence on lring/TCore ( TR/T*) and a slightly lower B* limit. The
inclusion of ion cyclotron terms results in coupling of compressional
Alfvén waves to interchange modes with higher permissible core B, and

core density limits [10].



288
3. STABILITY OF HOT ELECTRON RINGS

As has been observed in earlier electron cyclotron heating (ECH)
experiments in simple mirrors [13], the rings themselves may be subject
to various macroscopic and microscopic instabilities.

One of the more fundamental electron ring stability limits is the
mirror instability, which may be related to a loss of equilibrium. Con-~
ditions for the stabilization of th#,; mode (driven by pressure anisotropy
P >> p") relate to properties of the ECH process, particularly the effec-
tive (mirror) ratio at the resonant magnetic field. In both theory and
experiment [13], if B /B . > 1.2, then T /T, [= (B /B, -1)71] can
be kept below a certain threshold and the plasma is relatively free of
the instability. In addition, a class of MHD instabilities occurs; these
are flute interchanges at fairly low values of ring beta and finite beta
ballooning modes. Interchange modes have been examined using both guiding
center theory [14] and Vlasov-Maxwell kinetic models [15]. These show
that the modes could be stabilized by the self-dug well, provided BR >
15% [14], and by the presence of sufficient cold plasma density [15].

At sufficiently high ring beta, ballooning modes are also energetically
possible, but kinetic treatments of these instabilities have indicated

that they may be significantly stabilized by the large drift frequency

of the hot electrons relative to the ion cyclotron frequency [4] and by
the presence of cold plasma [16].

Most of the possible ring microinstabilities are driven by the aniso-
tropic nature of the ring distribution function. Such modes could potenti-
ally have an adverse effect on ring power balance. However, it has been
experimentally observed that nearly classical ring energy losses are ob-~
tained if off-resonant heating is applied [17]. An example is the Whistler
instability, which is an electromagnetic mode. A relativistic analysis
[18] of this instability indicates that sufficient relativistic spread in
the electron cyclotron frequency results in resonant particles in the
high energy tail contributing damping rather than growth. Such insta-
bilities could be suppressed by building up the tail demsity of hot

electrons to some critical level. A recent study [19] indicates a similar
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damping effect; however, the instability persists if Tl/T” is large

enough. A second type of microinstability is the Timofeev half-harmonic
modes. These are electrostatic modes and are commonly seen in ELMO but
not in EBT. The modes are stabilized if T"/Tl is sufficiently large (i.e.,
if T"/Tl > 1/6) [20]. In the experiments this is attained by added off-

resonant heating [17].
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4. DISCUSSION OF THE RESULTS AND THEIR IMPLICATIONS FOR A REACTOR

As discussed in the previous sections, the theoretical models have
indicated the existence of several modes that can limit the performance
of the ring and core plasmas. All of these analyses predict a stable
finite beta operating regime with reasonable and self-consistent para-
meters. However, predicted limits on core beta range from B, ~ few per-
cent to B, > 10-20% for reasonable but different parameters and/or
assumptions within the same model. Some of the parameters that enter
into these beta limits are a, € = A/RC, AB/RC, fR = ncold/nhot’ mdh/mci’
mdh/kVA, TR/Ti’ BR, etc. Some of these parameters change significantly
in going from present-day experiments to reactor-like devices. Because
of uncertainties in extrapolating results of simplified models to a re-
actor plasma, dependence of stability limits on the above parameters can-
not be determined accurately at the present time. In the following, we
will show the sensitivity of the reactor Q value to some of these uncer-
tainties. It should be pointed out that it is not clear what the non-
linear consequences of the various instabilities will be and it is not
clear that the system has to be stable against all of the possible modes.

The core interchange is one of the most serious modes that will
limit the core B, with two key parameters a and € determining this limit;
core plasma is stable if B, < ae [see Eq. (4b)]. Depending on the hot
electron distribution function and details of the equilibrium fields, o
varies from 2 to 6. An accurate determination of € = A/RC in a reactor
requires knowledge of the ring thickness A and the radius of curvature
RC, both of which are difficult to extrapolate at the present time. Using
scaling data from the present experiments, ¢ = 1072 - 5 x 1072 is likely
in a reactor. In the experiments, the hot electron rings form at the
location of the second harmonic (w ™ 2wce) resonance with a radial half-
width A of a few hot electron gyroradii Per [13]. For ring temperatures
characteristic of past, present, and near-term ECH experiments (TR < 1.5
MeV), drag losses dominate [13] and ring energies are limited by non-
adiabatic particle behavior, obeying oeR/AB N 5-6 x 1072 scaling [21].

In a reactor, the ring temperature (TR > 2 MeV) is expected to be in a
radiation dominated regime, and ring energies will be limited by radiation

cooling.
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Defining a reactor Q value that is roughly the ratio of the fusion

power produced (Pt n B2BY) to the ring sustaining power (PuR N BRB; N

h
fﬁlﬂzB;) and taking into account the appropriate conversion efficiencies,
*

the overall QE Q ) value can be given as [13,22]

electric

I

18 2 (p2nk/p2pl
QE 7.7 x 10 fR(VP/VR)<cv>DT(T*/T) (B“B /B*BR)G(Y,B*)

I}

4 x 1018 « £ o g7l e <ovs e K2 - G(YLBY) @)

where V, and V, are the toroidal and ring plasma volumes (VP/VR = 1.3/¢
for a system with a mirror ratio of %2-2.3), B, " n*T*/Bﬁ is the toroidal
core plasma beta near the vicinity of the ring (which enters in the sta-

bility calculations), k = fi/n, = T/T, is the profile factor, 8 ~ u T/B% ~
B*k?/z is the volume average core beta, Y is the relativistic factor, and

G(y,B,) is given by
G(y,B,) = [¥/vy2 = 1+ 1.3 x 107%(y2 - 1T, /8,171 . (8)

Figure 2 shows the variation of QE/fR with the ring temperature for
the possible range of uncertainty levels involved in € and a. As pointed
out earlier, the stability of hot electron rings requires an appreciable
cold electron density component near the vicinity of the rings and the
value of fR in a reactor 1is 0(101—102). This leads to QE values ranging
from as low as few (v2-5) to ~50 depending on the uncertainties in ring
scale lengths (Fig. 2a) and B, limits (Fig. 2b). It can be seen from Fig.
2 that at low temperatures (TR < 1.5 MeV), where drag losses dominate,

QE indicates an almost inverse linear dependence to ring scale lengths
for fixed o (basically dependence on ring volume and not on core beta
B,). At high ring temperatures (TR >> 1 MeV), there is an almost linear
dependence of QE on B, for fixed scale lengths.

As pointed out, the compressional Alfvén mode does not appear to be
a severe problem for a reactor and imposed core density limitations are
in excess of what is needed in a reactor. However, the hot electron

drift mode, which is stable (see Refs [4,16]) if
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with ring temperature indicates (a) an almost inverse 1§g%gr hot
dependence to ring scale lengths for fixed o at low ring tem-

peratures ('1‘R < 1.5 MeV, Q ™ 1/e ~ 1/ring volume) that is

basically due to change in ring volume and (b) an almost linear
dependence on a or B,(= ae) for fixed scale lengths at high
ring temperatures. The value of fR in a reactor is 0(10!~102).
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“dn 2 mci and ncold/nhot >1 ., ®
or the hot electron interchange, which is stable (see Ref. [8]) if Eq.
(6) is satisfied or, alternatively,

2 2
mdh/mci > f(AB/Rc, ke/kl’ mpi s eee) s (10)

requires careful analysis and trade-off. 1In a reactor, achieving the
first inequality in Eq. (9) will require either very energetic 0(>10
MeV) electrons or very small A, i.e., very small €. Similar conclusions
can be drawn from Eq. (10); however, the picture is somewhat complicated
because of the involvement of various mode numbers (ke/kl)' In both
cases there is a trade-off between the hotter electrons, which cause
severe radiation losses, and smaller € (smaller A), which lowers the

B4 limit. This trade-off can be seen from Fig. 2.

ACKNOWLEDGLHENTS

The authors would like to thank J. W. Van Dam, C. L. Hedrick, and

H. L. Berk for many helpful discussions.



[

10.

11.

12.

13.

l4.

15.

294
REFERENCES

D. B. Nelson, C. L. Hedrick, Nucl. Fusion 19 (1979) 283.

J. W. Van Dam, Y. C. Lee, Stability Analysis of a Hot Electron
EBT Plasma, EBT Ring Physics: Proc. of the Workshop (N. A. Uckan,
Ed.), Oak Ridge National Laboratory CONF-791228 (1980) 471-489.
D. B. Nelson, Phys. Fluids 23 (1980) 1850.

G. E. Guest, C. L. Hedrick, and D. B. Nelson, Phys. Fluids 18
(1975) 871.

R. A. Dandl, et al., Plasma Physics and Controlled Nuclear Fusion
Research 1978, Vol. 2 (1979) 365; R. A. Dandl, et al., Plasma
Physics and Controlled Nuclear Fusion Research 1974, Vol. 2 (1975)
141.

See papers in this proceedings.

D. A. Spong, Review of Recent EBT Coupled Ring Core Stability
Theory, in this proceedings.

J. W. Van Dam, et al., Radially-Dependent Stability Theory for
EBT; D. A. Spong, et al., Numerical Solutions of the EBT Radial
Eigenmode Problem, in this proceedings.

D. A. Spong, A. M. El-Nadi, The Interchange Mode in Three-Species
Bumpy Torus Plasmas, Bull. Am. Phys. Soc. 25 (1980) 964.

K. T. Tsang, C. Z. Cheng, Stability of Hot Electron Plasma in

the ELMO Bumpy Torus; C. Z. Cheng, K. T. Tsang, Analytical

Theory of Interchange and Compressional Alfvén Imnstabilities in
EBT in this procendings.

J. W. Van cam. M. N. Rosenbluth, Y. C. Lee, A Generalized Kinetic
Energy Principle, IFS Report #12 (1981).

L. W. Owen, N. A. Uckan, EBT Reactor Magnetics and Particle Con-
finement, J. Fusion Energy (to be published).

N. A. Uckan, Ed., EBT Ring Physics: Proc. of the Workshop, Oak
Ridge National Laboratory CONF-791228 (1980).

G. E. Guest, C. L. Hedrick, D. B. Nelson, Oak Ridge National
Laboratory Rep. ORNL~TM-4077 (1972).

H. L. Berk, Phys. Fluids 19 (1976) 1255.



16.

17.

18.

19.

20.
21.

22.

295

R. R. Dominguez, H. L. Berk, Phys. Fluids 21 (1978) 827;

R. R. Dominguez, Flute Interchange Stability in a Hot Electron
Plasma, in Ref. [13], pp. 383-407.

R. A. Dandl, et al., in Plasma Physics and Controlled Nuclear
Fusion Research, Vol. 2 (1969) 435; Plasma Physics and Con-
trolled Nuclear Fusion Research, Vol. 2 (1972) 607; R. A. Dandl,
Review of Ring Experiments, in Ref. [13], pp. 31-57.

C. L. Hedrick, Suppression of the Whistler Instability by
Relativistic Effects, QOak Ridge National Laboratory Rep.
ORNL-4688 (1971) 6-9.

N. T. Gladd, et al., Microstability of EBT Boundary, in this pro-
ceedings.

G. E. Guest, D. J. Sigmar, Nucl. Fusion 11 (1971) 151.

N. A. Uckan, Adiabatic Energy Limit in ECH Hot Electron Plasmas
(unpublished).

N. A. Uckan, Physics Issues of an EBT Reactor, IAEA Proc. Symposium

or. Physics Problems of Fusion Reactors (to be published).



:—lEJ)OPZﬁO:Z’}‘JWOEl“UH

. Alexeff, 83
. E. Baldwin, 1

Bighel, 75

Berk, 1, 97, 115, 249
. Cheng, 141, 161
Cohen, 211

. Dominguez, 249

. Gladd, 181

Grad, 1

E. Guest, 15

Hamasaki, 181

R. haste, 63, 75

Hoxmom N

. L. Hedrick, 1

Ishiguro, 229

Kamimura, 229

297

AUTHOR INDEX

U).L-c.Z.K.UL-qZ'IZF-]ZU'<Z:>

Komori, 75

A. Krall, 1,
Matsuda, 211
B. Nelson, 281
211

181

M. Nevins,
Onigo, 229
N. Rosenbluth, 97, 115
Sanuki, 229

Saylors, 83

L. Sperling, 181

A. Spong, 1, 33, 97, 115, 281

T. Tsang, 141, 161
A. Uckan, 1, 63, 281
W. Van Dam, 97, 115

. Yoshikawa, 265



ATTENDANCE LIST

EBT STALILITY THEORY WORKSHOP
May 13-14, 1981

Oak Ridge, Tennessee

I. Alexeff

Dept. of Electrical Engineering
University of Tennessee
Knoxville, TN 37916

W. B. Ard, Bldg. 107

McDonnell Douglas Astronautics Co.

P. 0. Box 516
St. Louis, MO 63166

F. W. Baity

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

D. E. Baldwin, L-630

Lawrence Livermore National Lab.

P. 0. Box 5511
Livermore, CA 94550

D. B. Batchelor

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

H. L. Berk

Institute of Fusion Studies
University of Texas at Austin
Austin, TX 78712

L. A. Berry

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

L. Bighel

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

S. K. Borowski

The University of Michigan
Dapt. of Nuclear Engineering
Cooley Bldg., North Campus
Arn Arbor, MI 48105

J. D. Callen

University of Wisconsin
Nuclear Engineering Department
Madison, WI 53706

R. B. Campbell

TRW, Incorporated

One Space Park, Bldg. #1
Redondo Beach, CA 90278

B. A. Carreras

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

C. Z. Cheng

Princeton Plasma Physics Lab.
P. 0. Box 451

Princeton, NJ 08544

M. Clark, Jr.

Combustion Engineering, Inc.
1000 Prospect Hill Road
Windsor, CT 06095

J. A. Cobble

Cak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

R. J. Colchin

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

K. A. Connor

Rensselaer Polytechnic Institute
ECSE Department

Troy, NY 12181

W. A. Cooper

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830



e

R. L. Copeland

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

E. C. Crume, Jr.

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 27830

W. A. Davis

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

R. R. Dominguez
Gereral Atomic
P. 0. Box 81608
San Diego, CA 92138

R. A. Dory

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

J. L. Dunlap

Oak Ridge National Laboratory
P. 0. Box ¥

Oak Ridge, TN 37830

H. 0. Eason

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

W. R. Ellis

Office of Fusion Energy
Department of Energy
MS-256

Washington, DC 20545

M. E. Fenstermacher
University of Michigan

Dept. of Nuclear Engineering
Ann Arbor, MI 48105

H. H. Fleischmann

Cornell University

Derartment of Applied Physics
Ithaca, NY 14853

N. T. Gladd

JAYCOR

11011 Torreyana Road
San Diego, CA 92138

J. C. Glowienka

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

R. C. Goldfinger

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

M. R. Gordinier

McDonnell Douglas Astronautics Co.
P. 0. Box 516

St. Louls, MO 63166

M. J. Gouge

Department of Energy
Oak Ridge Operations
Oak Ridge, TN 37830

H. Grad

Courant Institute
New York University
251 Mercer Street
New York, NY 10012

W. Grossmann
Courant Institute
New York University
251 Mercer Street
New York, NY 10012

G. E. Guest

Applied Microwave Plasma Concepts
2210 Encinitas Bldg., Suite F
Encinitas, CA 92024

G. A. Hallock
RPI/ORNL

P. 0. Box Y

Oak Ridge, TN 37830

G. R. Haste

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830



C. L. Hedrick

Oak Ridge National Laboratory
P. O. Box Y

Oak Ridge, TN 37830

D. L. Hillis

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

J. T. Hogan

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

E. B. Hooper, Jr.

Lawrence Livermore National Lab.
P. 0. Box 5511

Livermore, CA 94550

W. A. Houlberg

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

H. Iguchi

Institute of Plasma Physics
Nagoya University

Nagoya 464, Japan

H. Tkegami

Institute of Plasma Physics
Nagoya University

Nagoya 464, Japan

E. F. Jaeger

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

R. E. Juhala

McDonnell Douglas Astronautics Co.
P. 0. Box 516

St. Loulis, MO 63166

T. Kammash

University of Michigan

Dept. of Nuclear Engineeriug
Ann Arbor, MI 48105

301

R. J. Kashuba

McDonnell Douglas Astronautics Co.
P. 0. Box 516

St. Louis, MO 63166

N. A. Krall

JAYCOR

11011 Torreyana Road
San Diego, CA 92138

L. L. Lao

TRW, Incorporated

One Space Park

Redondo Beach, CA 90278

B. J. Leikind

UCLA

Physics Department
Los Angeles, CA 90024

J. B. McBride

Science Applications, Inc.
1200 Prospect St.

La Jolla, CA 92037

W. H. Miner

Science Applicatioms, Inc.
1710 Goodridge Dr.

McLean, VA 22102

M. Mond

New York University
251 Mercer Street
New York, NY 10012

M. Murakami

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

D. B. Nelson

Office of Fusion Energy
Department of Energy
MS-256

Washington, DC 20545

W. M. Nevins

Lawrence Livermore Naticnal Lab.
P. 0. Box 5511

Livermore, CA 94550



L. W. Owen

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

Y. Pao

New York University
251 Mercer Street
New York, NY 10012

R. E. Price

Office of Fusion Energy
Department of Energy
Washington, DC 20545

R. K. Richards

Oak Ridge National Laboratory
P, 0. Box Y

Oak Ridge, TN 37830

J. R. Roth

University of Tennessee

Dept. of Electrical Engineering
Knoxville, TN 37916

M, J. Saltmarsh

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

H. Sanuki

Institute of Plasma Physics
Nagoya University

Nagova 464, Japan

T. Shoji

Institute of Plasma Physics
Nagoya University

Nagoya 464, Japan

G. W. Shuy
UCLA

6291 Boelter Hall

Los Angeles, CA 90024

A. Simon

University of Rochester
MAS Department
Rochester, NY 14627

302

T. C. Simonen, L-441

Lawrence Livermore National Lab.
P. 0. Box 5511

Livermore, CA 94550

L. Solensten
RPI/ORNL

P. 0. Box Y

Oak Ridge, TN 37830

D. A. Spong

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

D. W. Swain

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

J. S. Tolliver

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

K. T. Tsang

Science Applications, Inc.
934 Pearl Street, Suite A
Boulder, CO 80302

J, M. Turner

Office of Fusion Energy, ER-56
Department of Enerzy
Washington, DC 20545

N. A. Uckan

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

T. Uckan

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

C. M. Van Atta .

Lawrence Livermore National Lab.
P. 0. Box 5511

Livermore, CA 94550



303

J. W. Van Dam

Institute of Fusion Studies
University of Texas

Austin, TX 78712

H. Weitzner

New York University
251 Mercer Street
New York, NY 10012

J. B. Wilgen

Oak Ridge National Laboratory
P. 0. Box Y

Oak Ridge, TN 37830

J. T. Woo
Rensselaer Polytechnic Inst.
Troy, NY 12181

S. Yoshikawa

Princeton Plasma Physics Lab.
P. 0. Box 451

Princeton, NJ 08544



305

EBT STABILITY THEORY WORKSHOP
May 13-14, 1981
Holiday Inn, Oak Ridge, Tennessee
Sponsored By

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee

AGENDA

Wednesday, May 13, 1981

9:00
9:15

11:00

12:00
1:00

2:45

A.2

A.3

B.2

C.3

C.4

L. A. Berry: Welcome

Session A: Overview

N. A. Krall and N. A. Uckan, Chairmen

G. E. Guest, "Rudimentary Theories of the Stability of
Microwave Heated Plasmas”

D. A. Spong, "Review of Recent EBT Coupled Ring-Core
Stability Theory"

N. A. Uckan and G. R. Haste, "Brief Survey of Experi-
mental Investigation of Instabilities in Microwave
Heated Plasmas"

Session B: Experimental Observations
W. B. Ard and H. Grad, Chairmen

L. Bighel, G. Haste, and A. Komori, “Fluctuation Measure-

ments in EBT"
I. Alexeff and M. Saylors, "Hot-Electron Ring Stability

at The University of Tennessee'
LUNCH

Session C: Ring-Core Coupling, Low Frequency Modes
D. E. Baldwin and C. L. Hedrick, Chairmen

J. W. Van Dam, H. L. Berk, M. N. Rosenbluth, and D. A.
Spong, "Eigenmode Stability Analysis for a Bumpy Torus"
D. A. Spong, J. W. Van Dam, H. .. Berk, and M. N,
Rosenbluth, '"Numerical Solutions of the EBT Radial
Eigenmode Problem”

K. T. Tsang and C. Z. Cheng, "Stability of Hot Electron
Plasma in the ELMO Bumpy Torus'

C. Z. Cheng and K. T. Tsang, "Analytical Theory of Inter-
change and Compressional Alfven Stabilities in EBT"

BREAK
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3:00 Session D: High Frequency Modes
H. L. Berk and D, A. Spong, Chairmen

D.1 N. T. Gladd, N. A. Krall, S. Hamasaki, and J. L.
Sperling, "Microstability of the EBT Boundary"
D.2 W. M. Nevins, R. H. Cohen, and Y. Matsuda, "ECRH Electron

Distribution Functions"
4:00 Session E: [Equilibria and Calculational Formalism of

Stability
H. Grad and N. A. Krall, Chairmen

E.1 H. Sanuki, T. Ogino, S. Ishiguro, and T. Kamimura,
"Numerical Analysis of Equilibrium and Stability in

Bumpy Cylinder"
E.2 R. R. Dominguez and H. L. Berk, "Kinetic Stability

Analyses in A Bumpy Cylinder"
E.3 Shoichi Yoshikawa, "Generalized Ballooning B Criterion

for Closed Machines"

6:00-9:00 COOKOUT, CARBIDE PARK

Thursday, May 14, 1981

9:00 Session F: Reactor Implications
C. L. Hedrick, Chairman

F.1 N. A, Uckan, D. A, Spong, and D. B. Nelson, "Effect of
Beta Limits on Reactor Performance in EBT"

9:30 Session 0: Open Forum
Panel: D. E. Baldwin, H. L. Berk, C. L. Hedrick, H. Grad,
N. A. Krall, D. A. Spong, and N. A. Uckan

11:30 Session S: Summaries by Chairmen
12:15 CLOSING
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