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PREFACE

Oak Ridge, Tennessee was the site of the May 13-14, 1981, EBT

Stability Theory Workshop. It waa attended by more than 80 partici-

pants, Including essentially all of the physicists who have worked

and/or are presently working on stability (theory and/or experiment)

relevant to the EBT configuration.

The workshop organizing committee members were:

N. A. Uckan, Chairman, Oak Ridge National Laboratory

C. L. Hedrick, Chairman, Oak Ridge National Laboratory

D. E. Baldwin, Lawrence Livermore National Laboratory

He L. Berk, University of Texas at Austin

H. Grad, Courant Institute, New York University

N. A. Krall, JAYCOR

D. A. Spong, Oak Ridge National Laboratory

The purpose of the workshop was to provide a forum for (1) discus-

sion and review of the status of the EBT stability theory not often aired

at more academic conferences and (2) assessment of the various models

used as well as the importance of modes predicted from these models on

the operating regimes of past, present, and future experiments.

The first part of the workshop was devoted to presentations of 15

papers describing the status and various aspects (theory and/or experi-

ment) of the EBT stability. The second part of the workshop was devoted

tc enthusiastic open-session discussions of (1) critical evaluations of

existing models and (2) the Influence of predicted beta limits on reactor

performance.

These proceedings include (1) workshop summaries prapared by the

session chairmen (N. A. Uckan, D. E. Baldwin, H. L. Berk, H. Grad,

C. L. Hedrick, N. A. Krall, and D. A. Spong) and (2) full-length manu-

scripts that were submitted to the workshop and presented at the

following workshop sessions: Overview (3 papers); Experimental Obser-

vations (2 papers); Ring-Core Coupling, Low Frequency Modes (A papers);

High Frequency Modes (2 papers); Equilibrium and Calculatlonal Formalism

of Stability (3 papers); and Reactor Implications (1 paper). An Author

Index, the Attendance List, and the Agenda conclude the proceedings.

ill



(Because of the camera-ready publication, the variations in style and

format were inevitable.)

The workshop was sponsored by the Fusion Energy Division (FED) Oak

Ridge National Laboratory (ORNL) and could not have been successful

without the efforts of many dedicated individuals — the Workshop

Organizing Committee, Session Chairmen, Authors, participants, and last

but not least, the workshop secretaries.

The chairman wishes to acknowledge a special appreciation to four

delightful coworkers: Caila Cox, the workshop secretary, who handled

a myriad of details prior to, during, and after the workshop in an

efficient, complete, and professional manner; DeLena Akers, her secre-

tary, who handled all aspects of the abstracts and preliminary program

along with the preparation of many of the drafts and/or incomplete

manuscripts submitted by some of the authors while simultaneously

performing her ORNL work in exemplary fashion; Susan Stockbrldge, who

handled all of the art work and designed the covers of the abstract

booklet (distributed during the workshop) and these proceedings; and

Ethel Cagle, who coordinated the assembly of the papers. Thanks are

also due to the staff of the FED Reports Office, the editors, and graphic

artists who handled much of the workshop paperwork.

Nermin A. Uckan
Oak Ridge, Tennessee
June 1981
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1. INTRODUCTION

The first workshop on the ELMO Bianpy Torus (EBT) stability theory was

held at Oak Ridge, Tennessee, May 13-14, 1981. It was attended by about

80 participants, including essentially all of the physicists who have

worked and/or are presently working on stability (theory and/or

experiment) relevant to the EBT configuration in one way or the other.

The organizing committee members who arranged the workshop were:

C L. Hedrick and N. A. Uckan (Chairmen), D. E. Baldwin, H. L. Berk,

H. Grad, W. A, Krall, and Do A. Spong.

The purpose of the workshop was to provide a forum for (1) discussion

and review of the status of the EBT stability theory not often aired at

more academic conferences and (2) assessment of the various models used as

well as the importance of modes predicted from these models on the

operating regimes of past, present, and future experiments.

The first part of the workshop was devoted to presentations of 15

papers uescribing the status and various aspects (theory and/or

experiment) of the EBT stability. The second part of the workshop was

devoted to enthusiastic open-session discussions of (1) critical

evaluation of existing models and (2) influence of g limits on reactor

performance.

The proceedings containing the summary of the workshop and the

full-length papers presented will be published by the Oak Ridge National

Laboratory [EBT Stability Theory, Proceedings of the Workshop,

CONF-810512, Oak Ridge, Tennessee (1981)]. It is convenient to review the

workshop under subject headings chosen for the sessions.

2. OVERVIEW (Chairmen: N. A. Krall and N. A. Uckan)

There is perhaps more background information on EBT stability, both

theoretical and experimental, than most of us realize; thus, the workshop

began with an overview session that described a good bit of this

background. Theoretical reviews were given by Guest and Spong, A brief

survey of experimental investigations was presented by Haste.



The EBT has several features that make the theoretical treatment of

its stability difficult and quite different from other confinement

devices. This is due largely to the presence of high-g, hot electron

rings that modify the magnetic field to produce a local magnetic well in

each mirror sector., Stability problems often fall into two general

categories, macrostability and microstability. However,, in EBT these

distinctions are somewhat complicated by the requirement of kinetic

treatment for traditional macroscopic modes (interchanges, for example)

because the requirements for MHD (large scale length, long time scale,

slow drift velocity, etc.) are not satisfied by the hot electron rings.

This also result-.s in a given class of modes being called different names

by different authors in the literature, and the clarification of mode name

definitions wias one of the lengthy and fruitful discussions in the open

foruni(?)o Nevertheless, there are macrostability properties that

influence g limits,, stable operating regimes, acceptable geometries, etc.,

and there are micro.instability properties, that influence boundary layer

behavior, radial transport„ arabipolar potentials, possible impurity

transport and heating, etc. Both of these aspects of stability were

treated in the workshop.

There is a large body of stability work relevant to EBT, including

studies based on mirror machines, Z~pinch, 9-pinch, and general high-B,

hot electron, and strong curvature studies, in addition to studies

specific to EBT. The general form of these results is to determine the

limits of density (a> /u>c), beta (g), anisotropy (1^7^), etc.; theories in

increasing layers of complexity have attempted to derive these limits.

Instabilities considered by the early MHD work, reviewed by Guest,

include anisotropy driven modes and loss cone modes, which predict a

stable window of density, centered around u>_e = wce(1 surrounded by

instability at both much lower and much higher densities. Another

instability of this type is the Whistler, which limits the anisotropy

Tj_/Ti. of the ring plasma. The most annoying instability in early MHD work

was the ring interchange mode, which in simple model predicted instability

even at g •> 0 for global modes and at higher g for ballooning modes, which

is contrary to the experimentally observed stability. Later work has

provided an explanation for ring stability in that the inclusion of a cold

plasna background stabilized the global ring interchange, and the high



precessional drift frequency of the hot electrons u ^ (which is comparable

to ion cyclotron frequency woi) permitted stabilization of ballooning

modes. Conventional fluid or guiding center theories were inadequate

because thr. kinetic effects were expected to be important due, for

example, to the observation that the hot electron diamagnetic drift was

comparable or greater than the thermal speed of the background plasma and

larger than characteristic frequencies for typical MHD of interest.

Further, the ring width was not a great deal larger than few hot electron

and cold plasma ion gyroradii, and the perpendicular wave length of the

flute modes can be comparable for relatively low poloidal mode numbers.

During the past several years, EBT stability calculations have

evolved with respect to treatment of ring-core plasma coupling effects.

Some effects„ reviewed by Spong, of treating the multispecies problems and

of including kinetic effects were that (1) the core is unstable against

interchange instability at low ring fj (bad curvature), and rings stabilize

the toroidal core if ring pressu-e is high enough to create a local

magnetic well (e.g., #ring & 2A/<RC>, where A and <RQ> are the

characteristic ring scale length and average magnetic radius of curvature,

respectively), (2) ring stability requires a finite level of core density

(e.g., ncold/'nhot > sorae number), (3) core plasma becomes interchange

unstable if core g is larger than a few A/Rc, (4) high m modes (where m is

the poloidal mode number) are dominated by kinetic effects, (5) core

density is limited by compressional Ali'ven waves, and (6) ring density is

limited by ring interchange instability at high ring 3.

On the experimental side, there is a wealth of observations of

fluctuations on devices related to EBT. These devices include simple and

minimum=B mirrors, canted mirrors, and toroidal geometries. A brief

survey of results from these experiments, presented by Haste, indicated

that fluctuations from very low frequencies (<100 kHz) to frequencies in

the few GHz range are observed, with peaks that can be related to

theoretical prediction. For example, fluctuations are observed in the

plasma core, which disappear when the ring 6 reaches a value consistent

with theoretical predictions of average min=B stability. Anisotropy

driven modes of hot electrons were also observed, however, they were

stabilized by the addition of upper off resonance heating. Theoretically,

the stabilizing effect of upper off resonant heating was shown to be due



to the reduction in temperature anisotropy of the hot electrons and the

relativistic broadening of the particle cyclotron spectrum. It would be

far too sanguine to imply that all or most of these observed fluctuations

correlate with theory. The diagnostics of most of these experiments would

not be sufficient to demonstrate such correlation even if it existed. The

details of this overview, contained in three papers by Guest, Spong, and

Haste of this workshop, provided the framework for the ongoing research,

which was the business of the workshop.

3. EXPERIMENTAL OBSERVATIONS (Chairmen: W. B. Ard and H. C-rad)

Nearly twenty years of experimental investigations of instabilities

exist in hot electron plasmas; much of it was surveyed in the overview

session and much of it was compiled in the EBT Ring Physics Proceedings

[1]. In this session two specific papers were presented by the Oak Ridge

group (Bighel et al.) on fluctuation measurements in EBT and by Alexeff on

a small scale hot electron ring experiment.

The study of plasma fluctuations could play an important role in

understanding EBT transport as well as stability. Fluctuations in EBT

have been measured with several techniques, including rf measurements with

loop antennas, movable Langmuir probes, and visible light sensors. As

described by Bighel, several features of the fluctuations have been

observed: (1) they are predominantly low frequencies (<200 kHz) , (2) the

C-T-M mode hierarchy can be correlated with the fluctuation activity where

the fluctuation amplitude decreases at the C-T transition with the

formation of hot electron rings and increases near T-M transition, (3)

high frequency fluctuations, especially in the T-mode, are generally found

outside the rings, and (H) enhanced fluctuations near the T-M transition

may have some correlation with the increased high energy ion-tail

densities and deep potential wells [2].

In a small magnetic mirror experiment, a hollow ring has been formed

by electron cyclotron heating (-2.8 GHz) in close proximity to the wall.

Alexeff pointed out that the ring was stable and the ring stability was

not due to "line tying;" however, moving the ring from the wall caused

instability. It was pointed out that there was not enough cold plasma to

stabilize the ring.



1. RING-CORE COUPLING, LOW FREQUENCY MODES

(Chairmen: D. E. Baldwin and C. L. Hedrick)

The theory of Van Dam and Lee, developed two years ago and presented

at the Ring Physics Workshop [1], which limited the core plasma 3-value

that could be MHD stabilized by a hot electron ring, had profound

implications for the EBT reactor concept. It also has an important

bearing on certain elements of the tandem mirror thermal barrier concept.

That theory (which was an extension of the theory by Nelson) concluded

that the plasma, or toroidal core, 6-value was limited by a value

proportional to the ratio of ring thickness to the vacuum magnetic field

radius of curvature (e ~ A/Rc). Thus, an important EBT reactor design

concept, that the rings could be made thin to minimize ring power losses,

appeared to necessitate low plasma (j values.

Although ir, arriving at this result a number of simplifications and

approximations were made, which led to some ambiguity in the

interpretation, the qualitative validity of the result has by now been

generally accepted, and much of the ambiguity has been removed in the past

year. Attention has shifted to detailed calculations of beta-limits,

including effects of proper line averaging, radial mode structure, hot

electron distribution function, and general sensitivity to the several

physics parameters entering the theory. This has uncovered other modes of

instability, as described in the papers of this session, but the original

Van Dam-Lee limitation appeared to be the most important.

Interest in this problem for tandem mirror application relates to the

implications for the low frequency behavior of the hot, anisotropic

electrons now seen as necessary in versions of thermal barriers, viz.,

those formed by sloshing ions such as in TMX upgrade and MFTF-B. Roughly

speaking, the Van Dam-Lee result shows that for plasma 8 below the

critical value, the hot electrons are rigid in the sense of not

participating in the low frequency modes. For plasma 3 above the critical

value, the hot electrons behave as a MHD fluid. Correspondingly, the hot

electron pressure should not or should, respectively, be included in MHD

stability analyses. The desirability of doing so will depend on whether

the hot elections are in a well of bad or good curvature. Again,
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determination of the critical 3 value and its dependence on parameters is

important for assessing design options.

The four papers of this session were given by two sets of authors,

each separately presenting analytic and nunerical results.

The papers by Van Dam et al. and Spong et al. extend the original

slab calculations to shortwave length modes (1 to B) in general geometry,

giving a local condition with appropriate line averages. These results

confirm the result that B values and curvatures are to be measured at the

location of the hot electron ring rather than the field line average of

the curvature as had been assumed in the early interpretations of slab

models. Since the curvature in a bumpy cylinder changes sign, the local

value is larger than the average value; hence, the newer 3 limits can be

significantly larger. The authors then map the EBT problems to a related

Z-pinch configuration in order to examine radial mode structure in a model

cylindrical geometry. They find modifications to the local results;

however, the quantitative implications for the original EBT configuration

are not clear. In particular, a new region of instability, when <» ~

w^, should be strongly influenced by the axial nonuniformity of mod-B in

real geometry.

Cheng and Tsang, in two separate papers, examined a wider parameter

survey of the original theory (following the formulation of Nelson),

including finite hot electron drift speeds and a variation of the hot

electron distribution function. They found sensitivity to these effects,

and they calculated different shaped, and perhaps wider, g (core) versus 3

(hot electron) windows of stability.

5. HIGH FREQUENCY MODES (Chairmen: H, L. Berk and D. A. Spong)

The paper by Gladd et al. was a discussion of microinstabilities of

the core plasma in the steep gradient region and of the hot electron

rings. It was pointed out that in the edge region, where gradients are

the steepest, anomalous transport could be present due to instabilities,

such as the lower hybrid drift mode and the drift cyclotron instability.

These could alter the fraction of a cold-to-hot plasma density, which is

an important factor in the stability of the ring-core system. A local and



it was concluded that the presence of the diamagnetic well produced by the

hot electrons could lower the growth rate for this mode.

The Whistler instability of the hot electrons was also examined to

determine if it persisted at relativistic temperatures (because earlier

work indicated relativistic stabilization of Whistlers) . This mode is

driven by the extreme temperature anisotropy of the ring and could result

in an enhanced energy drain on the ring electrons above classical values.

A localised dispersion relation was solved for the mode, assuming a model

hot electron distribution function that is not necessarily characteristic

of the EBT ring, but it may well represent tandem mirror, including

relativistic effects. Although relativistic effects were stabilizing,

growth rates remain finite at relativistic temperatures for sufficiently

large anisotropy (T±/T|| > 10) .

In a paper by Nevins et al. preliminary numerical results were

discussed of a bounce-averaged, Fokker-Planck code that solves for the

energetic electron tail formed by electron cyclotron heating at the second

harmonic. The distribution functions were non-Maxwellian and indicated

that at high energies, the frictional drag from Coulomb collisions was

less than that from rf collisions. Estimates of these critical energies

were made both with fundamental and second harmonic heating. The

calculations were based on a nonrelativistic model with the distribution

function going to zero at the speed of light. There was discussion about

what effect properly including relstivistic corrections would have on the

results, and it was difficult to make any projections. Although the study

was focused primarily on mirror-confined electrons, it was felt that a

bounce-averaged Fokker-Planck code would be very useful in studying the

electron distributions in EBT as well as for analyzing both the stability

and power balance of the hot electron rings.

6. EQUILIBRIA AND CAI.CULATIONAL FORMALISM OF STABILITY

(Chairmen: H. Grad and N. A. Krall)

This session featured work on equilibria and stability, particularly

the approach to equilibrium and a variational-like technique for stability

analysis.
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In treating the approach to equilibria, Sanuki and co-workers of

Nagoya presented a numerical solution of the nonlinear time evolution of

double, adiabatic (anisotropic) macroscopic equations in a bumpy cylinder

configuration. Artificial viscosity (;iV2v) and damping (vv) allow an

approach to static equilibrium. These time-dependent equations are not

used for stability study, but the resulting equilibria are examined for

stability by an assortment of currently available theoretical criteria

(interchange, Van Dam, etc.). The ring and core are fully Interactive

with regard to equilibrium and the approach to equilibrium. The stability

interaction (ring with core) depends on what is built into the package

used to calculate stability. It was pointed out that the ft estimates,

which were lower than predicted earlier, should be considered as

tentative.

In contrast to the standard approaches of normal mode analysis of the

Vlasov-Maxwell equations to predict stability, a variational-like

technique was discussed, which could eventually combine some of the

complexities of EBT geometry, along with kinetic effects. In this light,

a fully kinetic formulation was presented by Dominguez and Berk,

applicable to the core-ring stability interaction in a bumpy cylinder

configuration. Trie work is preliminary, involving an ingenious reduction

of the complicated coupled Ma jewel 1-Via sov system to a form that should

involve less numerical work than other techniques to approximate global

eigenfunctions and their related eigenvalues. The simplification is

obtained despite the nort-self-adjoint character of the system and not (as

is claimed) by a reduction to self-adjoint. Numerical results are not yet

available.

In an attempt to derive a generalized, marginal stability condition

of ballooning instabilities in toroidal geometries (tokamaks, multipolas,

stellarators, EBTs, etc), Yoshikawa pointed out that the EBT geometry is

very simple in that it is a closed field line device, and stability

analysis should reduce to one obtained from £d£./B.
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7. REACTOR IMPLICATIONS AND OPEN-SESSION DISCUSSIONS

(Panel: N. A. Uckan, D. E. Baldwin, H. L. Berk, C. L. Hedrick,

H. Grad, G. E. Guest, and N. A. Krall)

In order to provide a focus for open-session discussions and point

out the difficulties involved in interpretation of results from the

present theories, the paper by Uckan considered the influence of core B

limits on EBT reactor performance and discussed the uncertainties involved

in the extrapolation.

In the present experiments the plasma core B is limited to

3nnr<. < 0.5X because of transport and heating (small si7.e as well) rather
cor" ****

than stability, whereas Br^ni, ~ 1CM0J is routinely attained, and the

stabilization of a low B c o r e plasma by the hot electron has been amply

demonstrated. Experimental confirmation of high B c o r e predictions are not

possible at the present. However, the next planned device, the EBT

Proof-of-Principle (EBT-P), is expected to have 0 c o r e values on the order

of a few percent and should be able to test some of the predictions

discussed at the workshop.

At present, EBT stability calculations have indicated the existence

of three modes that can limit the core (3, core density, and ring density;

these are the core interchange (Van Dam and Lee) , the congressional

Alfven, and the hot electron interchange modes. Although the most

limiting modes depend on which models and/or assumptions are used, all of

the analyses indicate that a stable finite e operating regime does exist,

however, estimates on the core 0 limit range from a fuw percent to 10-20%

for reasonable but different parameters within the same model. Some of

the parameters that enter into these S limits (A/Rc, "cold^hot* *hot^Ti«
wdh/coci' u)dh/kVAt 0ring» etc») change significantly in going from

present-day experiments to reactor-like devices. Results from a

parametric study that include boundaries of the operating regime for an

EBT reactor indicated that the overall reactor Qgiectric velue range from

as low as 2-5 to ~50 depending on the uncertainties, mostly in ring scale

lengths (A) and limiting core f$. It was pointed out that providing

stability against the hot electron interchange mode vfill require a certain

minimum value of wdn/ajcl, which requires large T h o t or small A. Of

course, there is a trade-off between the hotter electrons, which cause

large radiation losses, and smaller £, which lowers ring volume and core

B.
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The rest of the discussions in the open session were centered on the

following: (1) detailed understanding of the models used, (2) validity of

the approximations made, (3) applicability of the results obtained, and

(4) clarification of the definitions used. It Is difficult to draw any

conclusions from these discussions. It should be pointed out that in the

absence of experimental data, theoretical analyses have been undertaken to

establish the limits of core 8. These analyses require simplification of

the physica (although considerable progress has been made in numerical and

analytical treatment of the ring and core coupling), since the full

problem involves a multispecies, kinetic, and finite gyroradius effects in

3-D geometry. However, these simplified models give a qualitative picture

of EBT stability and are a valuable guide for experiments, not only

because of the possibility of finding optimization paths but because of

the interesting conjecture that deoptimization might permit experimental

verification of theory at modest 3 values. It is also fair to say that at

the present time, the theory is in a state of flux. There is agreement on

general features, but details and the quantitative predictions will

require perhaps another year's work.
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RUDIMENTARY THEORIES OF THE STABILITY OF

MICROWAVE-HEATED PLASMAS

G. E. Guest

Applied Microwave Plasma Concepts
Encinitas, California 92024

The ELMO Bumpy Torus poses several difficult problems in the theory

of plasma stability whose resolution affects important practical issues

such as the extent of stable operating regimes, limits of the maximum

stable core-plasma pressure, and so on. The difficulties arise largely

because of the importance of both microscopic and macroscopic properties

of the system, such as kinetic effects, multiple-species effects, and

specific aspects of the magnetic configuration. Limitations in readily

available theoretical techniques have led to the evolution of a patch-

work of theoretical predictions for idealized models of EBT, with in-

complete and generally qualitative or indirect empirical confirmation.

Here we review briefly the main results from early theoretical

studies of two obvious sources of plasma instability; viz., anxsotropic

distributions of particle velocities and locally unfavorable curvature

in the magnetic lines of force. We identify three distinct components

of the underlying theoretical models and assess the degree of realism

or completeness achieved in each: the basic equilibrium model; the

set of field equations and polarizations assumed; and the plasma con-

stitutive relations used.
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RUDIMENTARY THEORIES OF THE STABILITY OF

MICROWAVE-HEATED PLASMAS

G.E. Guest

AMPC

1. INTRODUCTION

The theory of plasma stability has played an important role in the

evolution of the ELMO Bumpy Torus concept, starting with the fundamental

assumption that the ELMO rings could stabilize low-frequency modes in a

bumpy torus, and continuing to the present efforts to predict the value of

core plasma pressure at which that stabilization might break down. Indeed,

many of the relevant theories date to the earlier days of fusion research

when various notions of "line-tying" were invoked to explain the empirical

stability of mirror-confined, hot-electron plasmas, the forerunners of the

ELMO rings. Despite this long history, the stability theory for EBT remains

an unsatisfactory patch work of idealized models and specific modes, with

relatively little experimental validation.

Thi difficulties in achieving greater scope and predictive capability

in EBT stability theory arise largely from the simultaneous importance of

both microscopic and macroscopic properties of the EBT plasma configuration.

This is particularly true with respect to curvature-driven instabilities

such as interchange and ballooning modes. Ideal, single-fluid models of

these instabilities generally predict the ELMO ring plasmas to be unstable,

whereas the experiments generally exhibit a stable plasma, provided the

ambient gas pressure is above a critical value. This striking disparity

between theoretical predictions and empirical fact has spawned roughly two

decades of theoretical effort to de\elop models that described more accurately

the basic experimental observations. These models were usually based on

more microscopic descriptions of the plasma response than in the fluid

pictures, in order to include in the model a number of physical phenomena

expected to contribute to the observed stabilization of "flutes": the
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response of cold electrons, particularly in plasmas of finite axial extent;

the finite gyroradius of plasma ions and the finite radial dimension of

the plasma; the broad distribution in energy of hot electrons in "2CH plasmas,

and so on. In order to describe these phenomena theoretically, if. vas

necessary to use greatly simplified models of the plasma equilibrium; so

that, although many stabilizing tendencies were found, the predictive

quality of the theory became questionable. r*
t

f
This possible loss of predictive capability is, again, mo:3t likely in

regard to the curvature-driven modes. For example, in the case of "balloon-

ing" modes, the essential physics thought to govern the on-sec of instability

is the competition between growth of the wave in a region of unfavorable

curvature and damping of that same wave in regions of favorable curvature.

As long as the local growth rate is less than the rate at which the (shear

Alfven) waves can communicate between the two regions, the plasma is expected

to remain stable. Since the local growth rate increases with beta, while

the Alfven speed decreases with beta, the local growth rate will exceed the

effective damping rate above some critical value of beta.

In the more microscopic description of the finite-beta plasma, it has

not yet been possible to include this stabilizing coupling to the shear

Alfven waves. The current theoretical models arc forced to treat slab models

without regions of favorable curvnturt, and generally investigate only the

compressional Alfven waves in the flute limit (kn = 0) in which they are

decoupled from the shear Alfven waves. This unsatisfactory theoretical

situation is the object of a very intensive effort at the present time.

Fortunately, the simplified models are more likely to provide a reliable

description of the v^ty high frequency, velocity-space instabilities that

can also be important to the EBT concept. We therefore wish to provide a

brief review of some of the anticipated modes for ECH plasmas in general

and EBT plasmas in particular. For a more complete discussion, the reader

is urged to see Ref. 1 and other works cited there.
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2. QUALITATIVE FEATURES OF MICROSCOPIC MODES

IN ECH PLASMAS

It is a fundamental property of electron cyclotron heating to produce

a plasma with two distinct groups of electrons, one of which is very ener-

getic and generally anisotropic in velocity space, while the other is much

lower in temperature and m?re nearly isotropic. Since the plasma ions are

heated only indirectly b> ECH,, they are also generally isotropic and low

in energy. In such a plasma, the propagation of waves at frequencies near

the electron gyrofrequency is determined mainly by the colder, isotropic

electron group. Whether these waves will grow or decay is determined largely

by their ability to extract the excess free energy of the hot-electron

group. In anticipation of modes with wavelengths comparable to electron

gyroradii (and thus much smaller than the dimensions of the plasms), we

will use infinite, homogeneous, uniform magnetic field strength models of

the plasma equilibrium. We can then describe the plasma dynamics with the

Vlasov equation, and adopt some limiting case of Maxwell's equations to

describe the fluctuating fields of the waves. Because

2 ,72 ,-.2
a) V Q

5_ = . . < !
2, 2 n2 2 2..2 ~c k fi c k Ve e

for plasma parameters and waves typical of ECH situations, we shall consider

electrostatic and electromagnetic modes separately [2], starting with the

electrostatic modes.

The essential results ol the dispersion relation for electrostatic

modes near the electron gyrofrequency are shown in Figure 1. Normal

modes of the plasma must satisfy the cold-electron dispersion relation

shown there, while the growth or damping is determined by the real part

of the longitudinal conductivity. This is simply because the work done by

the field of the wave is
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QUALITATIVE FEATURES OF MICROSCOPIC MODES

IN ECH PLASMAS

WAVE PROPAGATION DETERMINED MAINLY BY "COLD" ELECTRONS:

2 2 2 2co kM ID k,pe.c II pe,c l
2 , 2 2 O 2 .20) k In) - I/ Ke

WAVE GROWTH OR DAMPING DETERMINED BY "HOT" ELECTRONS

THROUGH NEGATIVE DISSIPATION

Re a, tu ie,h e
exp

n=-

- nfi

k-.a,.

Dn(A) E - T

a'il /

dgc

A 5

Figure 1
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<E-j> = ~ Re(E -g.E)

=||E|2

If OQ > 0, the wave does net work on the plasma, and the wave will

damp if its characteristic energy is positive. If c« < 0, the plasma does

net work on the wave, and a positive-energy wave will grow. Since all waves

satisfying the cold-electron dispersion relation are positive-energy waves,

we shall only be concerned here with identifying the conditions necessary

for On < 0, i.e. conditions for negative dissipation. The sign of On is

determined by the weighted moments of the distribution function, C and

D . These have been discussed extensively in Ref. 3, and illustrative

examples are shown in Figure 2 and 3.

We first consider waves propagating nearly perpendicular to the mag-

netic field so that kM is small in the sense that

H E k.,a..A2 « 1If II e

Here, a is the parallel thermal speed of the hot-electron group and Q is

the electron gyrofrequency. In this limit, the contributions to Or. from

the infinite series of gyroresonances are well separated and can be adequately

approximated by the two harmonics bracketing a given frequency, as shown in

Figure A.

If the temperature anisotropy is extreme, T. « T, (or T « 1 in the

language of Figure 4), a^ can become negative if

- N)C < 0
n

and

|NTD J < j (di/Q - N)C |
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PROPERTIES OF MODES WITH LONG PARALLEL WAVELENGTHS

JF H E o /f le « 1

exp [ f t + "
exp

CN + NTDJ

C N + 1 M N + 1)TDN + 1

Figure 4
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In Figure 5, we show frequencies near the first gyroharmonic and wave-

lengths for which Recr* < 0, using the temperature anisotropy, T, aJ a param-

eter and fixing A = 0.69 to maximize C.. Strong negative dissipation is

thus possible if

(i) w/fi > 0.5

(ii) k,.a,, - Q - w < ft/2

(iii) k.a./fi > 1
i i

The conditions under which normal modes of the appropriate frequency and

wavelength will exist are determined from the cold-electron dispersion

relation

3 I + SAT
Q2 - 4 3 - SAT '

Ever, if the hoc-electron distribution is as nearly isotiopic as per-

mitted by collisicaless confinement in a magnetic mirror (T ->• 1), negative

dissipation is still possible if

and

NTD < 0
n

(w/fl - N)C J < JNTD |

For modes near the first gyroharmonic, and specializing to the illustrative

distribution fi

is possible if

distribution function for which D has been shown here, negative dissipation

(i) w/n - 1 < 0.67 T

(ii) k..a,| = u) - ft

(iii) k^/ft > 1

The appropriate normal modes are upper hybrid waves:
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uli po

: 1 H 0.67 T

or

1. 34 T + 0.45 T"

The characteristics of these two distinct classes of modes can be

summarized on a Brillonin plot, as in Figure 6. The solid lines show

the normal modes, while the dashed liiu i indicate conditions for strong

growth. Note especially that anisotropy-driven modes can occur if the

density exceeds a threshold value,

1
s -r for anisotropy-driven growth,
~ 4

while the loss-cone modes can occur if the density is less than a critical

value,

2

— — •-' 1.34 T + 0.45 T" for loss-cone driven growth.

Theri is thus a stable intermediate :ange of cold-electron densities, as

shown in Figure 7.

On Figure 7, we also show a curve obtained by numerical solution of

the dispersion relation for an artificial case in which al1 electrons are

hot. The general conclusions are not altered, indicating a rather weak

dependeuce on temperature of .he normal mode dispersion relation. In fact,

the character of these modes has been analyzed in great detail and the

interested reader is referred to Ref. 1 for additional detail.
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Unstable electromagnetic waves propagating in the whistler mode are

known to occur in ECH plasmas [4] if the pressure is sufficiently anisotro-

pic. Here, we shall only cite a few key criteria. In particular, the

growth changes from absolute to convective if [5]

3/2 /u.o

and growth ceases if [6]

The unstable whistler modes are also stabilized by the relativistic spread

in electron mass in hot-electron ECH plasmas. Stability criteria have been

obtained only for specific distributions.

To this point, we have used the temperature anisotropy simply as a

parameter, without any regard for its relation to other system parameters.

However, electron cyclotron heating permits some useful conclusions regard-

ing this contribution to the hot-electron free energy, since heated electrons

tend to be confined within the resonant surface:

B = B = 2iTf m/e
U V

Here, B is the magnetic field strength at which the electron gyrofrequency

equals the applied microwave frequency. Since heated electrons turn within

that surface, the individual electrons satisfy

^ < B
H - V

On the mid-plare, where B = B , the electrons lie in a region of velocity

space given by



30

12 ~ B~
V i o

Thus it is reasonable to suppose that

Bo

If the magnetic field strength and microwave frequency are such that

B > B , T will be small and instabilities may occur. If, on the other
V - o

hand, B /B exceeds a certain critical value, the anisotropy may be

moderate enough to circumvent some of these modes. Moreover, as the plasma

beta increases, B /B will increase, roughly as

and the anisotropy will diminish still further.

We conclude this material with a brief summary in Figure 8 and 9.
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SUMMARY

1.0 MICROSCOPIC MOOES

1.1 Temperature Anvsotropy

0.5 < w/fi < 1

VTi i

1.2 Loss Cone/Anisotropy

u/Q. > 1

V,c/"e^-3 4 T | , /T i +0.45Tjf/Tf

1.3 Whistlers

Figure 8
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SUMMARY (Continued)

2.0 MACROSCOPIC MODES

2.1 Mirror Instabilities

pUr - 1 J < 1 for stability

But,

II n l U
< R

Therefore,

R > 1.2 for stabi l i ty

2.2 Curvature Driven Instabil i t ies

2.2.1 Fluid Models (Bumpy Cylinder)

o real ist ic geometry, arbitrary beta, non-local

o generally unstable: interchange at low beta
ballooning at high beta

o models lack

FLR stabilization

cold-plasma stabilization

other kinetic effects

2.2.2 Microscopic Models (cf Don Spong)

Figure 9
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REVIEW OF RECENT EBT COUPLED
RING-CORE STABILITY THEORY

D. A. Spong
Oak Ridge National Laboratory

Oak Ridge, Tennessee

During the past several years Elmo Bumpy Torus (EBT) stability

calculations have evolved with respect to treatment of ring-core plasma

coupling effects- This evolution began with recognition of the

important role of ring compressibility and paramagnetic effects on core

beta limits.. Since then, models have continued to increase in

sophistication, including ring-core frequency coupling, velocity space

and hot electron distribution function effects, and radially dependent

models. Some of these features have resulted in wide variations in

predicted plasma performance limitations*. A number of the models will

be reviewed and assumptions to which they are particularly sensitive

will be discussed..

ft.
Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract W-7405-eng-26 with the Union Carbide
Corporation-
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Io Introduction

Elmo Bumpy Torus (EBT) stability theory has become an area of

increasing interest recently due to the recognition of a number of

novel nonmagnetohydrodynamic effects associated with a hot electron

annulus and its coupling to the core plasma.. Such effects are of

importance both in understanding the various operating regimes of the

present device and in extrapolating to future larger devices*

The earlier calculations of EBT stability tended to decouple the

ring and core plasmas and treat them as separate components for

simplicity. Ring stability calculations1"3 generally assumed cold,

pressureless core plasmas, whereas core stability calculations often

used rigid noninteracting ring models."4 Ring-core coupling effects

were first included in slab models6"7 which treated the ring as an

interacting charge and current element but which did not retain the

full frequency coupling between ring and core due to the assumption

that their temperatures were widely separated. Such calculations

indicated the importance of ring compressibility and paramagnetic

effects on the core beta limits. That is, the magnetic well and

resulting maximum in £ d£/B can only stabilize interchanges up to some

maximum core beta at which the ring and core begin to interact. More

recent calculations8"14 have included the ring-core coupling in greater

detail. This has resulted in the appearance of a new mode involving

interaction between the congressional Alfven wave of the core plasma

and the free energy of the hot electron component, which leads to an

upper limit on the core density. In addition, the core interchange6"7

and hot electron interchange1"3 modes still remain. These set upper
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limits on the core beta and lower limits on the core density,

respectively.

IT this review, the development of EBT coupled ring-core stability

work will be traced over the past several years, beginning with the

early slab models6"7 and going through some of the recent nonlocal

models which treat the radial dependence of the modes.

II. Vlasov-Maxwell Slab Model

The first detailed treatments6"7 of ring-core coupling in EBT were

made in simplified slab geometry in order to isolate the coupling and

kinetic effects from the geometry. The analysis is normally localized

to the outside half of the annulus where magnetic field gradients are

fully reversed. This is related to the fact that only in this region

can substantial core pressure gradients be stably supported. In the

normal magnetic gradient region (i.e., B' < 0), a finite pressure

gradient can stably exist up to a certain value. However, this is not

usually the limiting region for overall stability; rather, the outside

region is. The slab models continue to be investigated as they provide

a useful framework in which qualitative effects of various changes in

the model may be investigated.

The slab geometry is displayed in Fig. 1. It normally consists

of a wave propagating in the y direction, an artificial gravity in the

-x direction, a magnetic field in the z direction, magnetic field and

density gradients in the x direction, and a guiding center drift in the

y direction. The B field is modeled as
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B

Fig. 1. Directions of gradients, B field, artificial gravity, drift
velocity, and wave propagation in Vlasov-Maxwell model.
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B = Bo(l + ex)ez (1)

In this geometry the constants of the motion are: H, the total energy;

x , the guiding center position; and Vn , the velocity component along

the magnetic field line. An equilibrium distribution of the following

form may then be chosen:

fo(H,x ) = N0(a/TT)-
3 e" ( v 2 + 28 x>/ a(l + e'Xg) (2)

Taking moments of this distribution and using charge neutrality

(Poisson's equation), the momentum balance equation, and Ampere's law,

the parameters e and e' are obtained as

Ln Rc

\<± + ±) (3)
2 Ln Rc

For the configuration shown in Fig. 1, the single particle orbits

are

x = v^sin x

a

y = - vicos X + vD (4)

where

+ kT
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The perturbed distribution Is then obtained by solving the

linearized Vlasov equation. For the model unJer consideration, the

perturbed electromagnetic fields may be described by the electrostatic

potential <(> and the vector potential A . In this case the kinetic

equation may be written as

( t. V xA x) (5,
m x x

where

D = m +
3H fi

+
3H oifi 3x

The perturbed distribution is then obtained, using standard orbit

integration techniquess as

' 1
J
m
J n e

m nkT v gJ n, m

JmJn

a) - ojft) Z } (6)
n,m kvd - ID - mR

From this the perturbed charge and current may be obtained as

- - -| • [ 1 +(<•>-<•>*) J d2vf R Z m
k v d - to - mfi
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i u r

a2 V u

2
P x y

a 2

a,2

f d2vf

u>ft) j d2vfB

z

B k v d

kvd

v l J m J m
- oa — mfl

1 m m
— u> — mfi

2 , 2

Combining Eq» (7) and (8) with Maxwell's equations one obtains the

following dispersion relation:

DesDem + CT2 = 0 (9)

J2
2 e v mvf B £

kvd - to -

.2 T'2

k2c2a2

U) „ Vi J J

C T = - _ K _ ( W - u 4 ) 1 d 2 v f B Z
 lmi

kAo* " kvd - u) - mttc

where

42v =

We shall now discuss several of the approximations that have been

made in solving the above dispersion relation in recent years and their

relationship to each other»
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A. WVL Approximation

In work by Nelson7 and Van Dam and Lee (referred to here as NVL)

Eq. (9) is reduced to a quadratic equation in w by assuming w,^,, w ^ <<

oi << (iî y, ̂ dH' ^ci> where the i subscripts refer to the ions and the H

subscripts refer to the hot electrons. The resulting dispersion

relation Is

Aw2 + hu) + C = 0 (10)

where

DH

Two models for the hot electron distribution were considered in this

work, a delta function1" and a Majcwelliano In the case of the delta

function, the constants Cj, C25 and C^ are all equal to unity- For the

, they may be expressed in terms of e:cponential integrals:

C, = 1 + — - F(a)
1 W W W
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C, = _*1 [l - aF(a)] (ID
"BH

C. = — [l + a - a2F(a))
"'BH

where

F(a) •= e"aEl(a)

"BH

The resulting stability boundaries, obtained by requiring B - 4AC > 0,

are plotted In Fig. 2 for the delta function and In Fig. 3 for a

Maxwellian. These show that the (5̂  threshold for stabilization of

flute modes In the core Is similar to that obtained from some of the

earlier nonlnteractlng ring models; I.e.,

4&/R

^ = 1 5~ 2 0 %

where

A = ring half width

Rc = radius of curvature

However, the upper limit on &c is now In the 20-30% range for a delta

function and In the 10-15% range for the Maxwellian. For the delta

function this is given approsciiaately by:
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Fig. 2. S tab i l i ty boundaries as predicted by Eq. (10) for a delta
function hot electron dis t r ibut ion with nu/nc = 0.05, ka^ =
0 1 d A/R 0 0 50 .1 , and A/Rc = 0.05.
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Fig. 3. Stability boundaries as predicted by Eq <, (10) for a Maxwellian
hot electron distribution with n^/n = 0.05, kaj = 0.1, and
A/R 0 0 5A/Rc = 0.05.
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(13)

whereas for the Maxwellian it is

2A/R
} < — (14)
c 1 + 6A/R

In applying the above results, there is some ambiguity over what value

to use for the magnetic field-line radius of curvature Rc> Energy

principle calculations, which will be mentioned latter, have indicated

that the curvature at the rings, rather than the field line averaged

curvature, is the appropriate value to take.

The upper limits of £ c o r e given by Eqs. (13) and (14) are related

to the ineffectiveness of the self-dug well of the hot electrons in

stabilizing perturbations in the core plasma. At very low $ c the well

stabilizes the core plasma by reversing the ion drift velocity to the

opposite direction from the ion diamagnetic drift. As (3 is raised,

the ion drifts begin to be influenced14 by 6BZ such that the drift

reversal which is stabilizing at low B can no longer be attained. As

a result, the plasma response to the perturbation changes phase and the

well is ineffective. In terms of Eq. (10), D e m becomes very small due

to a near cancellation of terms near the stability boundary, and the

magnetic field perturbation <5BZ is greatly enhanced. This effect

depends on the presence of the hot electrons and can also be viewed as

an enhancement in their compressibility since p̂ jj scales directly as
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B. Inclusion of Ring-Core Frequency Coupling

As mentioned earlier, the NVL approximation is based upon the

ordering w^, utDi << to « U)*H, w ^ , flcl# From the results of this

calculation, it would be expected that a breakdown of this ordering

should occur near the stability boundaries. For example, at the

boundary in the lower left-hand corners of Figs. 2 and 3 (i.e., where

the hot electron beta is just sufficient to produce a well and

stabilize the core interchange mode), u ^ and u ) ^ pass through zero and

reverse direction. Thus, the assumption that w^j << u> « w ^ is

inadequate in this region. Also, near the upper limit on Pcore» the

frequency w becomes large and is comparable to the hot electron drift

and diamagnetic frequencies. These considerations motivated a more

accurate treatment of the frequency dependence in the slab model

dispersion relation.

A dispersion relation which retains w relative to the hot electron

drift and diamagnetic frequencies is given below:

DesDem + CT2 = 0 (15)

where

8 (u - w

Us

n a) -
7 ^
l UBS
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F(xg) = e"
xs Ei(x8)

B S

k a s e

* i

£ = sum over species s
s

n , T = density and temperature of species s

A, Rc = ring half-width and B field radius of curvature

The stability boundaries for this dispersion relation may be examined

by plotting the zeros of Eq» (15) for w real and looking for points

where two roots coalesce into a single rooto An example of this is

given in Fig. 4 where zeros of Eq° (15) are plotted for T = T^,

TH^ Ti = 500 and 1 0 0 0 » k a i = O o l» nH^ nc = O o 0 0 1 » & H = ° ° 5 ' and c

0o05 along with the zeros of the quadratic dispersion relation of Eq.

(K.) for a Maxwellian hot electron distribution- As may be seens the

instability boundaries of Eq<> (15) are somewhat lower than those of

Eq« (10)= Also, there is now a scaling with TH/T. present when w,

^dH" a n d tOftH a r e retained as being of similar order. It may be seen
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4. Roots of dispersion relation (15) vs 6C for TH/TC = 500, 1000
as compared with the roots of Eq. (10). Here, ka^ = 0.1,

c = 0.001, 3H = 0o5s and A/rc = 0.05.
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from this figure that the &c limit is related to a coupling between the

core interchange mode (the upper half of the solid curves) and the hot

electron drift frequency (ugn/w*£ - - 90, I.e., the lower half of the

solid curves)°

This observation of coupling between two disparate frequencies

then motivated the inclusion of additional physics in the model, namely

' fl—<?the ion cyclotron harmonics and the core Alfven wave. Such terms can

be of importance in EBT since the hot electron drift frequency in the

present device is on the same order of or larger than the ion cyclotron

frequency..15 Including these effects then results in the following

modifications to the dispersion relation given in Eq. (15).

k2p?
1

8- (to - u)ftl)(u - a) .)

(0) -

o •> V (18)

where BeS9 BemJ, and CT are given in Eq» (15). This dispersion

relation then incorporates the first ion cyclotron harmonic. Higher

harmonics have been included,,9 but generally the first is sufficient to

accurately describe the resulting modes. In Fig. 5, the zeros of this

dispersion relation have been plotted against the core beta for several

values of Che parameter Q = kv^/n^o This parameter controls the

of the ion cyclotron terms. That is» for Q << 1, & c i is
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effectively infinite in comparison to o>, and one returns to the

approximation given in Eq= (15); however, when Q = 1, Eq. (15) is no

longer adequate and u) is comparable to ft .„ As may be seen from Fig.

55 for small Q the results of Fig. 4 are recovered. However, as Q is

raised a new type of frequency coupling enters in, resulting in a

higher frequency mode which goes unstable at lower values of B c than

the NVL mode. This mode has generally come to be known as the

compressional Alfven wave mode and is related to a coupling between the

hot electron drift frequency and the core Alfven wave, as may be seen

from the figure.

This instability results in an upper limit on the warm core

density and was first recognized within the past year.8"9}11-12 The

original estimates8""9 s11 of the density limit from this mode were quite

low (i.e., ^core ^ 10 t o 1 0 ) and, in some casess less than that

obtained in the present experiment. This led initially to speculation

that the Alfven mode could possibly be a cause for the T-M transition.

However, subsequent work s resulted in significantly higher

values for the density limit which were well above the achieved

densities in the existing device. A number of factors are responsible

for this change and will be mentioned briefly here. For one thing, the

earlier estimates generally used the lowest azimuthal wave number

(m = 1) which would fit in the machine since this resulted in the most

limiting density. However, the localized theory should only be

expected to be valid when the radial wavelength is small compared with

the azimujhal (the direction the small way around the torus)

wavelength. Since the earlier localized theories took the radial

wavelength large compared to the annulus half width (k = 0), they are
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not really applicable to low in modes. Another problem with the

original estimates is that they assumed the ratio of the hot electron

to core density was quite small. Later calculations11 have allowed

this ratio to be finite and have maintained a self-consistent relation

between it and the other free parameters: ^core» ^hot'
 atl(* Thot/Tcore"

Also, recent calculations1*^ have included finite values for the

radial wave number. This can enter in through factors of (k^/k ) ,

o

which scales as the aspect ratio of the ring squared, (a /A) . This is

a large factor (=100) and significantly increases the limiting density.

Such calculations will be discussed in more detail in Sect. IV.

Finally, a number of detailed refinements have been made in the

calculations involving such things as: retaining the full

two-dimensional energy and pitch angle dependence of the hot electron

drift frequency [in Eqs. (15)—(18) only the energy dependence is

included] , using both the delta function and the Maxwellian and

anisotropic Maxwellian distribution functions11 for the hot electrons,

and taking into account the shift from particle position to guiding

center position in evaluating the perturbed distribution f, . The

importance of the latter effect was first pointed out in Ref. 5 for

the hot electron interchange mode and is generally important for high

frequency modes when inhomogeneities are present. Sensitivity of the

results to the form of the hot electron distribution function was

investigated in Ref. 11 where both delta function and Maxwellian

models were used. It was found that coupling between the hot electron

drift frequency and the core Alfven wave was not present when a delta

function hot electron distribution was used; however, with the
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MaxwellIan this coupling again entered in for sufficiently high

(i.e., 6hot k 0.15).

In addition to the Alfven congressional mode, most of the more

recent calculations mentioned above11~1'1 also find lower limits on the

ratio of nc/n^ due to the hot electron interchange mode. The different

models presently predict a range of results which will not be reviewed

in detail here, except to point out that this mode is presently

expected to be responsible for the T-M transition.

In conclusion, the Vlasov slab models generally predict a finite

operating window with the upper limit in 3 c o r e due to either the Alfven

mode or the NVL mode and with the lower limit due to the hot electron

interchange. This lower limit is relatively easy to satisfy by

providing sufficient n
c o r e/

nh ot* Estimates of the upper limit depend

on tl.e model used, and there is presently some controversy as to

whether this is ultimately determined by the Alfven mode or the NVL

mode. The scaling of the NVL mode boundary was given in Eqs.

(13)-(14). Some specific estimates of the Alfven mode boundary will be

given in Sect. IV, and others are contained in the references quoted

earlier.

III. Generalized Kinetic Energy Principles

Paralleling the development of the Vlasov-Maxwell slab models,

work was underway on generalized kinetic energy principles which could

be applied to the hot electron rings in EBT.12"13»16"17 These

calculations also Indicated the existence of a congressional Alfven
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instability arising from similar terms in the energy principle, which

resulted in the mirror instabilityo

These calculations differ from previous work on energy principles

for guiding center, anisotropic plasmas18"21 in that the magnetic lines

of force are not assumed to be frozen in the plasma. This assumption

is not applicable to the energetic electron rings in EBT where energies

can be in the 100-500 keV range. The earlier energy principles18"21

may generally be derived from the condition that the single particle

magnetic moment (p = mv^/2B) and longitudinal invariant (J ~ p dH V|| )

be conserved during the period of a fluctuation.17 In the generalized

energy principle v, J5 and the magnetic flux invariant (* = p B • d5)

are assumed conserved by the perturbation.17 This avoids the assumption

that the plasma is tied to the magnetic field lines. The drift orbits

are free to leave magnetic lines provided the magnetic flux they

enclose is conserved. This will be satified if the frequency of the

fluctuation is low compared to the drift frequency of the hot

electrons. Such an approximation is appropriate for the core

interchange modes but not necessarily for the compressional Alfven mode

or the hot electron interchange.

Application of the generalized energy principle to EBT geometry is

discussed in detail in Refs. 12, 16, and 17. A few of the results

given there will be mentioned here. First, the interchange mode is

found to be stabilized if the following inequality is satisfied.

B

B^ < 0

3



Here k = x - V<|i, < is the field-line curvature, p and p™ are the core

and hot electron pressures, and prime denotes derivatives with respect

to i> - Equation (19) has not been evaluated using computed EBT

equilibria yet; however, a local approximation to this equation

indicates 8C < 15%,
2 which is In reasonable agreement with the earlier

slab models.fe~7 Evaluation of Eq. (19) also provides insight as to the

value of the magnetic field-line radius of curvature R , which should

be used in the local models.22 This indicates that the radius of

curvature at the ring location (near the midplane) is the appropriate

value rather than a field-line-averaged curvature. The generalized

energy principle further provides a stability condition for the lower

£?hot threshold to reverse the magnetic drifts and stabilize the core at

low &„:17

4 <p — k

W ' ' B 2 x d * r ~ ( 2 0 )

i B i> i

B3

This again is in rough agreement with slab model results.^ 7

Unfortunately, the generalized kinetic energy principle is not

adequate to treat high frequency modes where OJ > OJ , . due to the use

of the flux invariant- Also, it has been shown" recently that it only

provides a necessary condition for stability in the case of equal

temperature Maxwellian ions and electrons, which is not the case in

EBT. It indicates the presence of a purely magnetic mode (i.e., the

compressional Alfven mirror mode) precisely when Eq. (19) is

satisfied.17 It would therefore predict no stability window since the
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Alfven mode would be unstable when the core Interchange is stable and

the core interchange would be unstable when the Alfven mode is stable.

This lack of stability is a result of the fact that the Alfven mode

occurs at a higher frequency than Eq. (19) Is valid for. A

longitudinally dependent normal mode analysis of this Instability has

been given In Ref. 17 which Indicates that a frequency shift is

introduced by retaining terms of order m/u.. The resulting stability

condition given there (for the isotropic case)

B'

indicates that there is a finite window where both the core interchange

[Eq. (19)] and the Alfven mode [Eq. (21)] will be stabilized.

To summarize this section, the generalized kinetic energy

principle provides a useful means for taking into account the variation

of quantities along the field line without actually solving the

longitudinal problem. Its applicability is limited to low frequency

modes such as the core interchange for which it is in approximate

agreement with slab models. For higher frequency modes, such as the

compressional Alfven instability, it must be supplemented by a suitably

fleld-llne-averaged normal mode analysis.
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IV. Radially Dependent Normal Mode Analysis

The radial structure of elgenmodes In EBT has become of Interest

since both modes which are localized within the annulus (Alfven mode,

hot electron interchange) and modes extending into the core plasma

(core interchange) have been predicted to be unstable* The localized

models cannot yield any information on how such modes connect to the

inner core and outer surface plasma regions. Several radially resolved

calculations have recently been attempted.10'13 They are generally

based on using either the Vlasov or drift kinetic equations for the hot

species, coupled with fluid-like equations for the core plasma.

For example, in Ref. 13 the momentum balance equation with ion

inertial effects is used:

5 Z = j x B - V • P (22)
dt —

This is augmented by the drift kinetic equation for the hot electron

pressure tensor: _P = py _bb + P_L (I. - Vb) where

Pj.

dHdwB (P?j F(r>H>p) (23)

IP[|I PB

and F Is described by

It V ° - B2
 + VdJ * 7F + ^E * Vd + V — ) ^ _ Q
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Now if the 6 component of Eq. (22) and the result obtained from

operating on Eq. (22) with B • Vx are combined and if a

transformatic: is made from a bumpy cylinder to a z pinch geometry, a

purely radial eigenmode equation results:

(24)

2aB2S^e_ku•) _1 (SB/r)2

o-T a - T

r 3r La - T r

•»• -•

Here, X = " ^ ^ / ( f l ^ - u>2), a - XA 2vJ, and C r - i(E x B)r/u)B
2; T, S,

and R are kinetic integrals, the details of which are given elsewhere

in these proceedings• ** Equation (24) has been solved both locally, by

using a WKB approach, and nonlocally, using numerical shooting methods*

The stability criteria which result from the localized, short

wavelength approximation are as follows:

2VA

<25>
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(compressional Alfven mode)

0 9

T" * \z (26)

Vk± 4 [1 + (-

(hot electron interchange mode)

where V ^ is the hot electron curvature drift velocity and Ag is the

magnetic field gradient scale length in the ring. These havs been

obtained from a cubic dispersion relation by considering small and

large VA limits, respectively. When the results from this dispersion

relation are compared with instability boundaries obtained from

numerical solutions of Eq. (24), the agreement is reasonable (within a

factor of 3-4) for the cases which have been considered. For further

details on this calculation, see Ref. 24.

Agreement between numerical shooting solutions and local

approximations was also obtained in Ref. 10. Here, the continuity

equation was solved in conjunction with the Vlasov equation and

Maxwell's equations over the outer half of the hot electron ring

region.

In addition to the short radial wavelength modes localized to the

annulus region, which are considered above, preliminary estimates have

been made of stability boundaries for longer radial wavelength global

modes-22 Dispersion relations for such modes have been obtained by

integrating the radial differential Eq. (24) over the annulus region
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and by assuming the eigenfunction £ does not vary appreciably over the

width of the annulus. Such modes have been predicted to be

potentially more dangerous (i.e., occuring at lower density) than the

short wavelength modes. They generally are o.f a resonant nature and

depend on the hot electron curvature drift w^ being close to the ion

cyclotron frequency Mc±- The present thinking is that the longitudinal

variation in B is likely to have an important effect on these modes

since it will tend to smooth out this resonance. Such effects have not

been included yet in these models. Current estimates of density limits

from such modes are below those observed experimentally.

V. Conclusion

To conclude, a number of different models have been applied to the

EBT stability problem in recent years. These include the

Vlasov-Maxwell slab models, generalized kinetic energy principles, and

various types of radially dependent calculations (fluid drift kinetic,

fluid Vlasov). Although these models differ in various details, which

have been discussed here, they agree qualitatively that a

triangular-shaped stability window exists for EBT. On the left-hand

side the window is bounded by the hot electron stabilization of the

core interchange mode, requiring a threshold 3̂ o»- °f 15-20%. The upper

side of the window is bounded by the compressional Alfven mode and the

core interchange (or NVL) mode. Which of these two modes is the most

limiting is not presently agreed upon and depends on the parameters and

model used. Finally, the lower part of the window is related to the
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hot electron interchange mode which requires some minimum core density

for stabilization.

Elmo Bumpy Torus stability theory is incomplete in a number of

areas, some of which have been mentioned earlier. First of all, the

sensitivity of the models to various forms of the hot electron

distribution function requires further work. If the results are

sensitive to fQjj, it would then be of interest to understand what

characteristics of the distribution are of particular importance.

Next, the coupling to the shear Alfven wave (k|| 4 0) has not been

investigated in any detail yet.

Related to this, it would be desirable to examine in more detail

the effects of longitudinal dependence of equilibrium quantities.

Preliminary estimates of this have been made from the energy principle

analysis. Next, the present radially dependent calculations generally

assume k^Pjj, k^Pj << 1» Since this is only very marginally satisfied

in the existing experiment, it will be necessary at some point to

include finite Larmor radius corrections. As the radially dependent

calculations become more developed, it will be of interest to examine

the coupling between the cold outer surface plasma region (usually

unstable) and the inner core plasma. Finally, over the longer term,

multidimensional models which simultaneously take into account the

radial and the longitudinal dependences will be necessary.
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BRIEF SURVEY OF EXPERIMENTAL INVESTIGATION OF
INSTABILITIES IN MICROWAVE-HEATED PLASMAS*

N. A. Uckan and G. R. Haste
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

ABSTRACT

Nearly two decades of experimental investigations exist on in-

stabilities in hot electron plasmas in open (simple and minimum-B

mirrors) and closed (bumpy tori, EBT and NBT) geometries. A brief

review is given for some, but not all, of the results from these

experiments. Also discussed is the observed behavior of the plasma

in C-T and T-M transitions in EBT.

*Research sponsored by the Office of Fusion Energy, U.S. Department of
Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.
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DISCUSSIONS

There is a wealth of observations of fluctuations on devices related

to the ELMO Bumpy Torus (EBT). These devices include simple and minimum-B

mirrors, canted mirrors, and toroidal geometries. The hot electron plasmas

in these experiments are created by electron cyclotron heating (ECH). Re-

sults from these experiments indicate that the observed frequency spectrum

of the fluctuations range from very low frequencies (̂ 100 kHz) to frequan-

cies in the GHz range. In most cases, these fluctuations can be corre-

lated to theoretical predictions; however, some of those correlations are

qualitative rather than quantitative because of the limitations of the

diagnostics and the theory.

Tables I and II summarize the observed modes in various experiments.

A partial listing of references is provided at the end for detailed infor-

mation. The following is a brief summary from these observations.

ELMO and Canted Mirror [1]

Three microwave heating sources (10.6S 35.0, and 55.0 GHz) were avail-

able for use in various combinations of fundamental resonance and off-

resonant heating. Low frequency (^74-kHz) stable oscillations were observed

with end-loss detectors at low pressure and low cold plasma density. Tnese

flute-like modes were thought to be electrostatic in character and,

therefore, susceptible to cold plasma stabilization. Anisotropy driven

modes of hot electrons were also observed. With only resonant heating,

although low power experiments exhibited narrow band instabilities near

the half harmonic of the ECH frequency, high power experiments displayed

broad-bands because of the excitation of the cavity modes. However, upper

off-resonant heating (UORF) suppresses this instability, and perhaps

othersj by reducing the hot electron anisotropy (by heating throughout

the volume) and by relativistic effects.



Table I. Instabilities in hot electron plasmas (low frequency)

Frequency

74 kHz

150 kHz

3-30 MHz

1.50 MHz

n f c i

fci

Identification

Flute-like

Flutes

Hot electron flutes

Lower hybrid (?)
Beam-plasma (?)

DCLC
Two component (?)
Hot electron
instability (?)

Device

ELMO

IMP

PTF

INTEREM

PHOENIX

ALICE

Remarks

Observed with end-loss detectors
Stable oscillation

Affected by feedback to circum-
ferential electrode. Not stabilized

Loss of hot electrons across magnetic
field lines. High m mode numbers
(4-10) stabilized by cold plasma

Observed at collector of electron
beam along the axis.

^10 W (average) at 33 GHz stabilized
n = 3, "sort-of" n = 2; dc stabilized
n = 1

10 W ECH decreased repetition rate, but
increased amplitude of f .. Density
increases ̂ 25%



Table II. Instabilities in hot electron plasmas (high frequency)

Frequency

n * 2.1 GHz
( M / 3 fce}

3/4 fce
(̂ 4 GHz)

8.6-8.8 GHz

9.5 GHz

11 GHz

5.1-5.3 GHz

5.3 GHz
M / 2 fce)

Identification

Whistler

Whistler

Whistler

Double distribution

Upper hybrid

Timofeev
(one-half harmonic)

Mirror mode

Device

TPM

Bille-en-Tete

INTEREM

INTEREM

INTEREM

ELMO

PTF

Remarks

Could be triggered ES or EM
Axial loss of hot electrons
Anisotropy driven

e-pinch, T -v. 6-8 keV,

P||/Pi -v- 10%

20% reduction in 2ns of p.
Anisotropy driven

f > f (1-T,. /T. ) , narrow band
C O II JL

at threshold. Originates on
edge of mininum-B volume. All
axial current arrives in bursts.
Limits confinement. Stabilized
by UORH

Originates on axis
Stabilized by UORH

Stabilized by UORH

Axial loss of electrons
Stabilized by UORH

Tiggering of instability
depends on B (as B lowered
limiting beta increased)

O
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PTF [2]

Two types of instabilities were observed. One of the modes was

identified as a flute mode driven by hot electron VB drifts, which

caused loss of energetic hot electrons across magnetic field lines.

The oscillation frequency was ^3-30 MHz (̂ 10 MHz appeared to be most

prevalent), and flutes with m > 1 were dominant (A < m < 10). This

mode was stabilized by increasing the cold plasma density. The second

mode, which was high frequency (̂ iw ^5.3 GHz; with 10.6-GHz as the

ECH source), was driven by beta and identified as mirror mode (loss of

equilibrium). This instability, which dumped the hot electrons out

along the field lines, depended on an external magnetic field value,

which indicated that the instability was associated with velocity space

anisotropy.

INTE-'EM [3]

The INTEREM device used 10.6-GHz resonant power in combination

with 35 GHz. With 10.6 GHz alone, high frequency instabilities (w ̂  w )

associated with velocity space anisotropy were observed. The observed

frequency spectrum indicated three modes: (1) 8.6-8.8 GHz results from

Whistler instability, (2) 9.5 GHz from the double distribution mode,

and (3) the band at ^10-11 GHz, corresponding to the frequency expected

frcm upper hydrid or negative mass. These modes were suppressed by U0RH

(at 35 GHz), Also, oscillations at ̂ 150 MHz, possibly due to beam-plasma

interactions were observed.

TPM [4]

Additional hot electron plasma was produced by a microwave pulse

(̂ 200 ms) at 6.4 GHz, which permitted external triggering of microinsta-

bilities. Strong electromagnetic instabilities at one-third harmonic

(̂ 2.1 GHz) were observed. The instability was characteristized by the

sudden loss of hot electrons, but not of cold electrons. This insta-

bility was triggered by either pulsed IIP crowave power (electromagnetic

triggering) or the extraction of cold electrons (electrostatic triggering),

Associated with the extraction technique, a flute-like low frequency

instability was also detected.
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EBT [6]

Experimental results from EBT indicated many similarities in the

behavior of hot electron plasma (hot electron rings) to simple mirror

results. However, many of the instabilities observed in mirrors are

not present in the bumpy torus experiments. For example, the half-

harmonic microwave emission common in ELMO is not present. In EBT,

the toroidal core plasma fluctuations are mainly low frequency (̂ 100

kHz) with high frequencies restricted to the region outside the ring

(surface plasma). By forming a magnetic well of sufficient depth, the

rings provide stabilization for the core plasma. Experimentally, sta-

bilization is evidenced by a reduction of the fluctuation amplitude

coincident with the formation of rings with sufficient beta (C-T tran-

sition) . The experimental value of critical ring beta at which this

transition occurs is consistent with the theoretical predictions of

average min-B stability. Figure 1 shows the range of beta values at

the C-T transition for various power levels in EBT-I. Near the T-M

transition, enhanced fluctuations are observed. Experimental and

theoretical investigations of the T-M transition are in a relatively

early stage of development.
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Figure 1. The experimental values of beta at the C-T transition fall

in the range of a few per cent.
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FLUCTUATION MEASUREMENTS IN EBT

L. Bighel, G. Haste, A. Komori

Oak Ridge National Laboratory

Oak Ridge, Tennessee 37830

Fluctuation studies in EBT have been aimed at questions of plasma

stability and transport. The stability aspects associated with fluctu-

ations in EBT-I have been investigated with probes and with light de-

tectors. The EBT-S environment is not suitable to the use of probes,

except near the wall. Laser-microwave scattering techniques are being

investigated for spatially resolved fluctuation measurements in EBT-S.

A large effort is currently aimed at correlating the fluctuation be-

havior with the atnbipolar potential and the hot ion component in the

plasma. There is also considerable interest in studying fluctuation

phenomena associated with ICRH experiments in EBT.

Figures 1, 2 and 3 show the fluctuation amplitude, spectrum, and

spatial distribution respectively as a function of background pressure.

The quantity I is the photodetector current output. Figure 4 shows the

spatial distribution of the fluctuation amplitude as a function of fre-

quency. It is seen that the core fluctuations are mainly low frequency

with the high frequencies restricted to the region outside the rings.

This observation is further verified with Langmuir probes as shown in

Fig. 5.

These observations generally indicate that:

(1) The C-T-M hierarchy- is clearly correlated with plasma fluctuation

activity.

(2) Most of the fluctuation energy is at low frequencies (<100 kHz)

(3) High frequencies appear at low pressures and high microwave power,

and are generally found outside the rings.

(4) Enhanced fluctuations near the T-M transition correlate with in-

creased ion-tail densities and deep potential wells.

There is a considerable diagnostic effort currently aimed at studying

fluctuation phenomena in the EBT plasma. Figure 6 shows schematically the

CW FIR laser scattering system.
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Figure 1. (a) Fluctuation of I and normalized fluctuation level I/I as
o

a function of neutral pressure. (b) I/I in the regime of high

neutral pressure; the vertical scale is different from that of

(a).
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Figure 2. Frequency spectra of I as a function of neutral pressure.
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Figure 3. Spatial distribution of I for 2-kHz fluctuations. Hatches

represent locations of hot electron annuli on the equatorial

plane.
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Figure 5. Spatial distribution of the fluctuation amplitude at 150-

kHz obtained with a Langmuir probe in the midplane (P =

6 x 10'6 torr).



EBT CAVITY

DIELECTRIC WAVEGUIDE

BEAM

DUMP

V

LASER

IN

BEAMSPLITTER

MIXER

LEAD WALL

Figure 6. FIR laser scattering system for fluctuation measurements

on EBT-S.

00





83

Hot-Electron Ring Stab i l i t y
at The University of Tennessee

Igor Alexeff
The University of Tennessee

and
Marshall Saylors

The University of Kentucky

We supply a model that is suf f ic ient to explain the observed s tab i l i t y

of the hot-election ring at The University of Tennessee. We have created a

hot-electron ring with the following approximate parameters; T ^ 10 electron

-vo l t s , n ~ 10 - 1012 cm"3, T = 1/30 second. The plasma was created by 10

cm electron cyclotron resonance in a magnetic mirror with B = 1 kilogauss at

the ring posit ion.

We observe that the plasma forms a hollow ring in close proximity to the

copper- wal l . Moving the ring away from the copper wall causes i n s t a b i l i t y ,

plasma loss, or simply prevents the ring from forming. The ring was moved

from the wall by magnetic compression or by a metal or a ceramic l im i te r .

The s tab i l i t y was not due to current flow along B-l ines, or " l ine ty ing" ,

because the ring was stable both at low pressure ( : 10" torr gauge), and

with nonconducting glass end wal ls.

We explain the s tab i l i t y quant i tat ively by the fol lowing model. We

note that the ring is not homogeneous, but appears to have a precessing

azimuthal structure. As a l i m i t , we approximate the ring f i r s t as a

precessing sector, then as a precessing r i g id magnetic dipole. This dipole

is repelled from the wall and stabi l ized by an image magnetic dipole in the

wal l . Quantitatively we compute that the ring is 1 cm from the wa l l , as

is observed, and that moving i t 2 cm from the wall results in i n s t a b i l i t y .

This distance appears as the 4th root of an equation, and is remarkably

invariant to the parameters of the r ing.

Our main inte l lectual step was in demonstrating that the power required

to maintain the image dipole in the wall was small enough not to l i m i t the

confinement time of the r ing . This was done by using the MHD equations to

f ind E and B in the copper wa l l , and then by evaluating Poynting's vector

at the plasma - metal interface.

*Supported in part by NSF grant ENG-78-03400

Workshop on EBT Stab i l i t y Theory, May 13-14, 1981, Oak Ridge, Tennessee
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The basic objective of this calculation is to explain how the hot-

electron ring in the Mirror-Machine experiment at the University of

Tennessee is stabilized by a metal wall.

The f i rs t part of this calculation explains how such a ring may be

stabilized; the second part explains how the power losses are not abnormally

high, and the third part puts limits on the amount of material that may be

confined.

The experiemnt works as follows. A microwave source at A = 10 cm heats

plasma electrons confined in a magnetic mirror. The electrons are heated to

Te = 10 electron - volts, or 10 °K. The electrons form a hollow, precessing

shell near the metal wall. The observed confinement time is about 1/30

second. Moving the electrons away from the wall by moving the magnetic f i e l d ,

or by placing a ceramic scraper in the system results in a rapid plasma loss,

or inhibits the formation of the r ing, respectively. The conclusion is that

the ring is stabilized radial ly, by the presence of the conducting wall. This

is the observation that we now must explain.

Two features are present when hot electrons are confined in a magnetic

mirror.

1. The electrons precess.

2. The electrons are diamagnetic.

The electrons precess in a magnetic mirror because the magnetic f ie ld

decreases with radius. Thus, the portion of an electron orbit in the outer

region experiences a lower f ie ld than the portion in the inner region, and

the electron precesses, as shown in FIG. 1.



85

O*BtT

Consider a positive change for example, t = ev* x $. The precession is

shown above.

The electron is diamagnetic. This means that an electron or ion acts as

a magnetic dipola oriented against the magnetic f i e ld . This feature is shown

in FIG. 2 below w

F/G.Z

Consider a charge above. A positive charge in orbit generates a magnetic

field inside its orbit that opposes the intitial magnetic field, and outside

its orbit that aids the initial magneitc field. In general, inside a hot

plasma in a mirror, the magnetic field is reduced, meaning that the plasma is

diamagnetic (y<y0).

A third featur, that seems to be present in our device is that the plasma

seems to form a clump rather than a ring. The precession frequency is about

10 Hz. This feature is needed for stabilization. See FIG. 3 below.
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Frs.3

In view of the above, l e t us represent the plasma as a precessing

magnetic d i p o l e , and show that i t is kept o f f the w a l l . Consider a l i n e a r

model as dn example. See FIG. 4 below.

H
Fl6.

If the dipole precesses rapidly, the magnetic field cannot penetrate the

conductor. One way of computing this is in terms of the skin depth Zo.

Another way is using the method of images. A way of keeping a magneitc dipoles

field from penetrating the surface is by having a second, imaginary dipole of

equal strength inside the conductor. See FIG. 5 below. This formalism allows

us to compute the restoring force on the dipole'.

H
C . £-

B iMAGtAJAZY PtPOL£
s IN
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My major objection to the above formalism is that we have to drag a

magnetic f i e l d through a conducting medium, and this involves losses. I

needed a method of computing the energy losses, and this is where MHD comes i n .

For s impl ic i ty , consider a magnetic f i e l d propagating over the surface of

a conducting medium. Let £ = j £ o e ^ ' (complex notat ion). Inside the

medium, the relevant equation is v2B = ouo -|r- To f i t this equation, we need

something f i t t i n g inside the medium, plus f i t t i n g the boundary condit ions. A

solution is given by

ff= jB Q e i ( k x x + k z z " w t )

Putting this into the above equation, we get the following d i f fe ren t ia l equation,

( i k x ) 2

The above equation MUST fit, because it fits both the differential equation,

and the boundary conditions. It has two limits of interest. 1st, w-*O. In
2 2this case, k + k = 0. or + i k,, = k . Hence,

X Z rs 2

or the spa t i a l dependence is e x x " z z . Thus, the dependence i s s inuso ida l

in x- space, and decays exponent ia l l y in Z- space. This "h the D.C. response.
p

The second l i m i t i s i f w -*•<», so tha t k = iu>avi0. Here

kz = ± ( 7=
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Having obtained the expression for the magnetic f i e l d in the medium, we

can compute the energy f lux through the surface of the medium. Power flow is

given by iJ = If x Ff. = t x f . On the average, where E and B are peak values,

D 1
W> = Tj"

B O

Now If - J

Assume E has the same form as If, except for a phase shift and direction

t - I

i — E
1 3X bX

i 3- E
J 3y y
h —

<)Z Z

no current flow = 0

— E = - i — E
32 L y 1 32 L

aS _
at

S C E Q =

And < w

-

k

>

Bo

1
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NOTE that k is a complex number and only the value of jjr that is real

contributes!

i k . )
? ~ = W~ s i n c e

k + i k = —i
K r + 1 k i kr.^ + k

B 2

Thus < B , . l. J L

The + value of < W > means that the power is moving in the + - Z di rect ion

INTO the metal.

Our f inal equation for power flow into the metal is as follows

2

2
Bo

OVc

2|/r °
3/2

Let us now estimate the power loss for a typical case.

v = 10 Hz •+ 2-rr x 10 radian/sec

Bo = 0.1 tesla (max-B f i e l d in problem)

a = 108 mHo/meter

\i0 = 10" henry/meter

. l )2 / 2 x I
y io8

(o . l ) 2 / 2 x I x 1Q6 i = 8.86 x 105 watts/m2

y 8
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Next, consider the energy stored in a cubic meter of plasma.

Work = nKT = 10 x 1.38 x 10 x 10 = 1.38 x 10 Joule

T = Work 1 - 3 8 x l ° = 1.56 x l O " 2 second.
P 0 W e r 0.86 x 105

This number is remarkably close to our value of 30 msec (3.3 x 10~ second),

considering that Bo ~ 0.1 tesla is an upper l i m i t . Thus, the power loss through

the. metal surface is to lerable, which is the question posed at the s tar t of this

section of th is invest igat ion.

Next, we consider the relat ive forces between magnetic dipoles as shown in

FIG. 6.

a <&
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The repulsion between b and d is

Fr = — y- (An electrostatic analogy is used)

The attraction between b and c is

P _ be cos 9
9 4nG o(r2 + i2)

be

(r2 + i2) (r2 + Z2)]/2

be jr

" 4iTC° (r2 + l2)3/2

The difference is (for al l 4 units)

Fr = 2 ( 9 o - "

- 2

,r2 ^ 2
a 2 + . . .

= 2
,r4 2

3 q V
4

4TT£0r
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Hence, the repulsive force is the product of the dipole moments, qi,

and varies as the inverse 4th power.

NEXT, we compute the destabilizing effect of the magnetic mirror. We

represent the magnetic mirror as a uniform magnetic f ie ld, plus a magnetic

dipole. The field of a magnetic dipole can be represented as follows.

E = - s i n

sin (Q+)

.7
E = 2

4ireor

_ f\

4ireor"

At oar radius we represent B as B + B,. The value of B, is determined by the
1 1

magnetic field gradient, f f R" = 2 \ l - (-3r~ ) 5— = add = measured gradient.

We now can find an effective dipol'e moment

measured

Now9 the repulsion of the plasma dipole from the center can be computed.

F = 3r x —2~ (- j Bo (—
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The wall restoring force is (noting that the wall - dipole spacing S = TJ-)

4TT£ O(2S)2

For s t a b i l i t y , we get

r 3B 1 v - q i

measured

Minus

' l i 1 \ „ * 5 1 _
w °' u 4 , e 0

We must evaluate the magnetic analogy of a d ipo le , §^—, but one thing is

clear - STABILITY INCREASES wUh dipole moment.

The equation obviously f a i l s when S becomes comparable with the skin depth.

Computation of dipole moment.

= Boa
2£ ^ T — = 0.1 tesla x (.01cm)2x 0.1cm x 0.1 = 10"7 ($ = 0.1)

0.1 tesla -1 meter"

PUT INTO INEQUALITY

n i -i TO"7
-0.1 < .i = j

(2S)4

(2S)4 < 3 x

S = 2cm.
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-CORE COUPLING, LOW FREQUENCY MODES

D. E. Baldwin and C. L. Hedrick, Session Chairmen
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Eigenmode Stability Analysis for a Bumpy Torus

J. W. Van Dam, H. L. Berk, M. N. Rosenbluth
Institute for Fusion Studies, University of Texas, Austin, TX 78712

and

D. A. Spong
Fusion Energy Division, Oak Ridge National Laboratory

Oak Ridge, TN 37830

Abstract

The analysis of eigenmodes in a bumpy torus yields several stability

boundaries that indicate the existence of a parameter regime for generally

stable operation consistent with current experiments. However, there are a

relatively narrow band of parameters where instability persists.
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I. Introduction

The bumpy torus has several features that make the theoretical treatment

of its linear stability quite different from that of other confinement

devices. In particular, its plasma contains an extremely energetic high-beta

electron population, which creates a deep diamagnetic well in each mirror

sector. Conventional fluid or guiding center theories are inadequate because

the magnetic drift frequency of the hot electrons is comparable to the ion

cyclotron frequency and larger than characteristic frequencies for typical

magnetohydrodynamic fluctuations of interest. Furthermore, the plasma ion and

the energetic electron gyroradii are comparable, and the diamagnetic well has

a half width of several gyroradii, which suggests that the radial mode

structure and finite Larmor radius effects are important.

The stability investigations reported in this work have their roots in

several previous findings: (1) a hot electron plasma can be stabilized with
1 2respect to interchange if there is enough cold ion plasma present; (2) the

hot electron rings in the bumpy torus device stabilize the toroidal core

plasma against interchange if the ring pressure is high enough; and (3) the

core plasma becomes interchange unstable if its pressure exceeds a cert^n

4 5threshold. * The last observation led to some concern about whether the

bumpy torus would be a viable reactor and hence underscored the significance

of linear stability theory for this device. Subsequent studies extended th>

linear stability theory to include non-local geometrical effects and high
7 8frequency mode coupling. '

In the present work, we consider the axial eigenmode equation and we

point out the importance of considering the radial eigemode problem. The

major results is that we obtain various stability boundaries that generally

indicate the existence of a parameter regime for stable bumpy torus operation

which is consistent with current experiments. However, over a relatively

narrow wavenumber band instability still persists in the otherwise stable

regime.
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In order to appreciate the significance of this result, we will first

describe the somewhat pessimistic stability predictions that were obtained

from an energy principle analysis. Then, in Sec. Ill, the development of

normal mode equations for a bumpy cylinder is sketched. Axial and radial

eigenmodes are separately discussed in Sees. IV and V, respectively.

11. Kinetic Energy Principle Approach

A useful way to approach the problem of linear stability has often been

through the use of an energy principle, since this makes quite clear the

physical mechanism for possible instabilities. However, usual fluid or

guiding center theories are not adequate, since the plasma in a bumpy torus

contains an extremely energetic electron population. Due to their large

cross-field magnetic drift, these electrons cannot be considered to be "frozen

in" with the magnetic field in the usual fluid sense.

A new kinetic energy principle has been developed, which accounts for

this interesting mn-fluid feature by using single-particle adiabatic

invariants to describe the behavior of the hot electrons. These invariants

are the magnetic moment u = Mv /2B, the longitudinal action J. = § v. d£,

and the magnetic flux through the particle precessional drift orbit. Although

developed for the bumpy torus, this new energy principle is of more general

interest since it provides a rare application of the third adiabatic

invariant. It has also been used to study linear stability in the tandem
9 10mirror and tokamak devices.

In a bumpy torus, this energy principle has been used to examine low

frequency fluctuations whose frequency is larger than the diamagnetic

frequencies and the magnetic drift frequencies (evaluated at typical energies)

cf the ions and electrons in the toroidal core plasma, but smaller than the

diamagnetic and magnetic drift frequencies of the energetic electrons.
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Application of the Schwartz inequality to this energy principle shows

that a new, purely magnetic mode will be unstable in a bumpy torus at low

values of tise core plasma pressure given by

„

Here, pc is the core pressure, assumed to be isotropic; dz is the arc length

Irtcremant along a line of force; g« ih are the anisotropic hot electron

pressure components; $ is the magnetic flux, used as the "radial" coordinate;

and k a (b • £b) • %}li/\$}l>\ is the field line curvature in the $ direction,

normalized by |£t{>| *> rfl. In obtaining Eq. (1), we have assumed arimuthal

symmetry and considered m >> 1 modes, with m the azimuthal mode number.

The criterion of Eq. (1) may be more easily understood if we use a local

-1

approximation (i.e.» i^l^ •* - Rl » where R is a measure of the mirror

field curvature, and |Wi|(3p/3(j;) * - p/&, with the scale length 4 taken to be

the ssats for the ring and core pressures) to rewrite it as a core plasma beta

limit (8C
 3 2p c/B

2):

6core < 2(^) f1 * ̂ j) • W

If wa use A / R C S Q . O 5 (although this experimental ratio is not well known),

as obtain the threshold eore bsta vaiue to be about 10% for a fairly

anisotropic ring. Note, howaver, that this threshold for the core beta is

approximately half the ring beta threshold for § d£/8 stability due to a

rigid ring, i.e., half of the ring beta value that is usually associated with

the operational C-T transition.
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For core pressures p above the limit specified in Eq. (1), the

magnetic mode is stable. However, the new energy principle, minimized with

respect to the magnetic field perturbation, shows that the low frequency

interchange mode can then be unstable.

This apparent dilemma is resolved by noticing that the new energy

principle is sufficient, but not necessary, for stability. Necessity has been

demonstrated only for high-m modes in a plasma o< equal temperature Maxwellian

ions and electrons, which is not the case in bumpy torus experiments. Thus,

the actual determination of stability will require a normal mode analysis,

which is presented in the following sections.

Nonetheless, the energy principle approach does serve to indicate (a) the

existence of a new potentially dangerous magnetic mode, similar tc the well-

known mirror instability (i.e., compressional Alfven mode) although driven not

by extreme anisetropy but by the negative compressibility of the paramagnetic

hot electrons, and (b) the existence of an upper limit on the core plasma

pressure for interchange stability. The latter was previously pointed out
4 5from a local slab-geometry dispersion relation * and is thus confirmed by

the non-local energy principle analysis.

III. Normal Mode Equations for an Axisymmetric Bumpy System

The bumpy torus Is a large aspect ratio device. Not only is the

major radius much larger than either the plasma radius or the inner radius of

the mirror coils, but also the curvature of the local mirror field is much

larger than the toroidal curvature. Thus, it is reasonable to assume

azimuthai symmetry and reduce the investigation of stability to a two-

dimensional problem, viz., that of a bumpy cylinder. For such a system, we

choose the orthogonal curvilinear coordinates *, 3, and X, where <J> is the

magnetic flux function, 9 is the azimuthal angle, and X is the coordinate
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along the equilibrium magnetic field, which is represented as 3 = ̂  x _78 =

1/r (7ip x S). Let g- [(2^ x 3.®) ' 7x1" s (8 |Vy|)" be the Jacobian

for this coordinate system.

Our basic equation of motion will be taken to be that for momentum

transfer:

dv

This is the exact first velocity moment of the Vlasov equation. No electric

field appears in Eq. (3) as long as we assume charge neutrality. The mass

density o =" N ^ in Eq. (3) is mostly that of ions; also, £ is the fluid

velocity, J = 7x 8 the total current, and P the total stress tensor. In this
*"^»p *\* »«̂ 3» **ltf

study, we will neglect Larmor radius effects. Then the pressure has the

diagonal form_P = p..bb_ + p.(^-bb), withj) =^B 0/8. the unit vector along

the equilibrium field. The pressures p<, • are to be obtained from a guiding

center distribution function f(x, e, u, t), which obeys the drift kinetic

equation:

af / * c£ x l \ / 3B\ 3f
3 \ *" ~d . B / \ " 3 7

This drift kinetic equation is derived by averaging the Vlasov equation over
the rapid gyromotion, in the small Larmor radius limit. The spatial gradient

4)2f in Eq. (4) is taken with the velocity space variables u = Mvx /2B and

c = 1/2 Mv,f + yB held fixed. Also, £ is the electric field and ̂ d =

(c/qB)b x (Mv b • 1b •*• M%) the curvature and gradient-8 magnetic drifts.

When vje take E = 0 and neglect the longitudinal motion (i.e., the

coupling to drift waves), the momentum equation (3) yields two scalar
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equations. One is its azimuthal component:

2pii il - 78 • [7(^ B 2 + pL) - JJ • 7 (cB) ] , (5)

where ̂  » dj^/dt and a » 1 + (p, - p )/B . As the other scalar equation,

instead of the ̂  component, we will use the parallel component of the curl of

Eq. (3). After linearization, it may be seen that this operation conveniently

annihilates information about the Alfven mode already contained in the

azimuthal equation, (5). Taking B . 7 x of Eq. (3) yields

• 0 /o" J • 8 \ * *• /i ? \
7 • (8 x pv) + B^B . 7 I ~ 9 ~ I - (B x b . 7b). 7(7 B^ - 0 I

+ p̂ v • (£ x VB) - 0 . (6)

The next step is to linearize Eqs. (5) and (6), using J3 * B + T and

E * E* , with tildes indicating perturbed quantities. Me will not consider

ambipoiar effects associated with an equilibrium electrostatic potential.

Also, once having linearized the equations, we will drop the nought subscript

on equilibrium quantities. Perturbed quantities are taken to vary as

exp(im8 - ioot). The magnetic field perturbation may be written as B * vx (e x 8 ),
**• «** ^ <̂ o

where Z[x) * i(£x b)/a)8) is the displacement of a field line. In particular,

it is useful to define the two contravariant components of the displacement,

X » £ • 7i// and Y » £ • 76, in terms of which the longitudinal pertubed field

can be written as 8||/B = -imY - 3X/30.

The linearized azimuthal momentum equation is

-lap ̂  • 79 . - i.H7e|2 (BB|, + pL) * !V8|2 B • 7 (-£-* I ' 7Y j . (7)

Linearizing the parallel current equation, (6), is slightly more complicated.

It helps to note that 8* • Vtl; a B • 7X and if« 78 = B • 7Y and that, for an
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axisymmetric system, _J • 7p 3 0 = ^ and Ĵ • 78 » - (B^J'/JTa 8 (8'/B - Ic)

where a prime means 3/3<C. We obtain the following linearized form:

MV8B,,)

i 8 • VY <~
•j. 1 " )h • 7 |Be'

" afi* *otj • 7g' + _j±_ [) • 7B 3
(8)

Eqs. (7) and (8) must be supplemented by the solution of the linearized

drift kinetic equation for the hot electrons:

^ <MB' • v,,2k>

(v,,2k + W B ' ) X > . (9)

He have taken the hot electrons to be trapped and rapidly bouncing in the

magnetic mirror of each bumpy sector, so that field quantities must be bounce

averaged using <»••>» [ f d£("«)/v ]/[ f d£/v ]. The two pressure

components are calculated from \P||tPj.r a J deduBvM f \Mv|| , u B f +

niiW^^ff-f" The equilibrium pressure p_ for the core plasma ions and
'• I do dB \ C

electrons is much smaller than tfut for the ring and is assumed to be

isotropic To calculate the perturbed pressure p* , we may use either a

fluid theory or a distribution function approach.

Finely,, since the ion beta is small,, it is sufficient to use the cold

plasma response and include only 1on £ x B and polarization drifts in the

inertia term:

v. (10)
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where u> . => e8/M.c is the ion gyrofrequency. All other kinetic effects

enter through the perturbed pressures. Eq. (10) can be decomposed into two

components:

-iu7

1w7 " 79 a - X Y -( iU>8 x-)X , (12)

with A. = u u ./(u . •= u ).

Eqs. (11) and (12), together with (7), (8), and (9), constitute the

linear system of equations whose stability is to be investigated.

11/. Axial Eigenmodes

The equations for the full two-dimensional bumpy cylinder problem are

fairly complicated. We are, however, able to make some progress QT\ the basis

of two assumptions. First, we argue that the magnetic field line bending term

in Eq. (8) should be eliminated if we wish to consider the most unstable types

of perturbations possible. Thus, we assume that X is predominantly flute-like.

Second, we assume that the diamagnetic well is sufficiently strong so that the

field curvature term is small in the equilibrium condition, i.e., B (3B/3ty)

j*=8° (3p, /3t*#) » k. In other wordss if we define a gradient-B scale length

Ao and a curvature scale length R , we have 4 , % 2tyS,. (since B.. » 8 )
B C o *n *n c

and Ag/B K 1« For the ratio ^g/Rc to be a respectable expansion

parameter requires a large ring pressure: 8j. > 20% at least. For such high

beta rings, wa then find that the lowest-order solution of Eq. (7) for the

perturbed magnetic field is B-j 3 c(t̂ )3B/3i/*. Here, 8, is the lagrangian

perturbsd parallel magnetic field, measured in a reference frame moving with

ths lines of force and hence related to the Eulerian perturbation ?„ by
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We now multiply the two normal mode equations, (7) and (8), by the

lowest-order solutions for 8, and X, respectively, and integrate over all

space. This procedure ramoves the dominant terms and leaves two consistency

conditions which specify the higher order behavior of the 'Misplacement and

the longitudinal perturbed magnetic field.

To illustrate this procedure, let us specifically consider modes with

m » 1 so that the analysis can be performed on individual field lines. This

corresponds to looking only at the axial eigenmodes, with no consideration for

the transverse structure.

In particular, if we set X = 0 in Eq. (7), we obtain a line-averaged

dispersion relation for the modified compressional Alfven mode:

2 df d a / pB'2 \ a) r 3 (Hb\
w Y H—i ^ — — i - — ® dx. -r— I us—

\ 7 7

03,

Here, N. = f dedyBv " f. is the equilibrium ring density. Consider the

frequency™independent term in Eq. (13). If the sign of the term in brackets

is negative, the dispersion relation can be unstable. With negligible

pressure k = B'/B, and the sign of the term is positive and the balance of the

first and third terms give the usual Alfven wave. However, with sufficiently

large hot electron pressure, kS'/B becomes negative and the sign of the third

term is negative when p is sufficiently small and m sufficiently large.

This then gives the modified mirror instability that was pointed out in the

energy principle analysis described in Sec. II. However, this mode can be

stabilized by the frequency shift due to the term linear in OJ if

k(P]|h • p i h ) ' - ^ i H j <[/d^(^)J , (14)
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where we assumed p « p h and |kB/8* | « 1. The term linear in u in

Eq. (13) represents non-adiabatic behavior of the hot electrons; that is, w i«*

not small compared to the magnetic drift frequency, and the hot electrons do

not respond instantaneously to changes in the magnetic flux through their

drift orbits. The significance of Eq. (14) is that the modified mirror mode

and the interchange mode can both be stable at low core pressures, when the

ion cyclotron frequency is treated as large. This suggests that in this limit

there is a parameter regime for stable bumpy torus operation.

If we solve Eq. (7) for C(*) 3 ^(aS/S*)" 1 in terms of X = x(*) and

use the result (with cu set equal to zero) in Eq. (8), we obtain a dispersion

relation in the high m limit for the low-frequency flute interchange mode

41
pc pih|

= 0 (15)

This yields the same upper limit, (1), on the core pressure for interchange

stability as was obtained from the energy principle treatment.

V. Radial Eigenmodes

That the radial mode structure should be important in a bumpy torus is

suggested by the following rough plausibility argument. The azimuthal mode

number should not actually be infinite, as in the axial analysis of the

previous section, because of the presence of finite Larmor radius effects.

Also, bumpy torus stability is mainly determined by what happens within the

ring region, which is somswhat narrow. Thus, if we suppose a mode could be

localized within this region, we may estimate its radial wavenumber to be

k =s IT/A. Comparing this with the azimuthal wavenumber kg 3 m/a, where
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a 3* (5-10)A is the radial ring location, we see that the mode is dominated by

its radial variation even for sizeable mode numbers (m <15-30, approximately).

We can isolate the exact radial problem by considering the bumpiless

liiiit0 i.e.s no equilibrium variation along the magnetic field lines.

Howsver, because the magnetic field curvature is important [cf. the beta limit

of £3. (1)3, we prefer that it enter naturally and not through an artificial

gravity. The simplest model of a bumpiless, axisymmetric device with natural

curvature is the 2-pinch. We will adopt this model in order to pursue the

purely radial problem.

The geometry for the z-pinch model is cylindrical, with coordinates

(r, <$»„ 2)0 The system Is periodic in the z-direction with length 2irL. The

magnetic field linesj * B(r)<|> lie on nested concentric cylindrical shells,

which we associate with the flux (or mod-8) surfaces. Also, the coordinates

r, #„ and z correspond to the flux coordinate ij>t the longitudinal coordinate x.

and the azimuthai angle 89 respectively, of a bumpy system. Finally, the hot

electron pressure 1s localized radially about a radius r , whose value we

choose so as to bi equal to the effective radius of curvature, R , of a

bumpy system. Since there is no equilibrium variation along S, we will

consider the case of flute modes.

The general geometry theory of Sec. Ill can be readily transformed to the

z-pinch geometry by means of the relationships v$ 3 ^ 6 L , £9 = -J/U -2x 3 ^/r,

$* r/B, X " IBCp, 3/3* » (IS)"1 3/3r, and k » -(LBr)"1. The result is

that we can coiibine Eqs.. (7) and (8) to obtain the following radial eigenmode

equation:
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2 2In Eq. (16), we have used the notation a * ^A'vjj, wnere k2 " m^

corresponds to the azimuthal wavenumber of a bumpy system, .*A • B / V P 7

Is the Alfven speed, and X » uA^/fwj^ - u2) was Introduced earlier,

with u». the 1on gyrofrequency. Also, we have defined three kinetic Integrals:

C deduB [ 3f . (ckz\ 3f

f
4

deduB f 3f . / c k z \ 3fl y

where

the velocity integrals are understood to Include a sum over species.

These kinetic integrals have been evaluated In two ways.

One is to use the A./R- <K 1 approximation discussed earlier, for which we

find

~ ** I dPnh/dr\ .. / dp/dr \

for example. The integrals S and R can be evaluated similarly. The quantity

is then a characteristic grad-8 drift frequency for the hot electrons.

Another approach 1s to use a delta-function distribution for the hot



110

electrons: £ = (pih/u 8 )<5(y-u )<5(v(|), in the extreme anisotropic limit,

normalized to yield the equilibrium transverse pressure. With this approach,

one obtains

where

„, 3 ku dB Jcu
T)B if dr • cv er

and so forth.

Numerical solutions of the differential equation (16) are reported in the

companion paper by Spong and in forthcoming publications. Sy means of

analytical considerations, however, it is possible to glean certain

information about the radial modes.

Two general categories of modes emerge when we analyze the radial

equation (16). The first category is that of modes with radial wavelength

larger than the annulus width. To treat this type, we integrate Eq. (16)

across the ring layer, the mode being nearly constant over the annulus region

and then connecting to an evanescent solution outside. One such mode arises

2 2 2 2-1from a denominator singularity and is described by urar.(;«n. - cu ) =

(k vA) T(OJ)» This is similar to the electromagnetic mirror mode discussed

earlier, although it experiences strong gyrofrequency effects. This mode is
2 2

stabilized when (k2vA) (Ag/Rc)
 >U)

c-j« but it leads to a rather serious

instability when the gyrofrequency u)ci and the hot electron characteristic

curvature drift frequency, OJ C V 1 are close in value, which occurs in current

bumpy torus experiments.
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Another such long wavelength mode is the interchange mode driven by the

gradient of the core pressure only. This is again seen to be stable for

6. < 2(A/R.) and unstable above.
c c

The second category is that of short wavelength modes. For these, we may

use a VJKB approach and replace the radial derivative on the perturbation by an

effective wavenumber k , where it is assumed that krA > 1 . In fact, for a

linear density gradient, Eq. (16) can be approximately solved in terms of

Bessel functions, from which we estimate k % 2n/A (n = 1, 2, 3, ...) for

the modes that can fit within the ring layer. The WKB procedure yields a

fourth-order dispersion relation in the frequency if we use the small

&,/R expression for the kinetic integral T (fifth order if we use the

<5=function expression). The explicit form of the dispersion relation is given

in ftef. 11. One of the modes is low frequency and corresponds to the core

plasma interchange. As before, it imposes an upper limit on the core pressure

for interchange stability. Specifically, it is unstable if

Eq. (22) includes the effect of finite Larmor radius, rh, for the hot

electrons.

The other modes described by the local dispersion relation are higher

frequency. These modes are manifestations of the mirror-like instability and

the hot electron interchange. We find that the stability condition for the

former mode is given by

<
u . 4 v ? R kc i cvi c 2

(23)
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2 2 2 2

where < s o l - R p /dS and k| a k!; + k£. This mode limits the density

of the &ecfcgrouod plasma, for sufficiently large 'j>ci this density limit is

quite tolerable for E8T operation. However, when

fcfoa background density threshold dips to zero. This condition for ins tab i l i ty

is readily fir.2t in current eapepiment and thus there is an apparent

with experinen^al ©&sefvation c,nd this theory. However, a more

GvoHuafiion of ttte eifaewade Is rseeded In this parameter regime. In

f i n i t e GiGCtrQin Lanrar radius effects are stabi l iz ing when (kA«*n) >

Tte cenditiera for stabilizing tfo® hot electron interchange mode is found

Fer B w suffieientiy large K Q see that Eqs. (23) and (24) tend to have

a stability «iftd®» of ©peration if p c ̂ e/a < 1. However, for finite

tti3 sta&ility tjiRdQu discppaars for special values of k /kL . The

article ea^i&its varieys stability plots for parameters

•oittn typical epGPatien of EiT-S/P devices.
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VI. Summary

A new kinetic energy principle that was developed to study low frequency

modes in bumpy tori is pessimistic, since it predicts a new mirror-type

instability below the core pressure threshold for interchange stability.

However, the energy principle approach does not include several effects, e.g.,

hot electron non-adiabatic behavior, that are important for stability and is

not strictly necessary for stability.

Linearized equations for normal modes in an axisymmetric configuration

were developed. Small Larmor radius effects can be included. This

two-dimensional problem was decomposed into two one-dimensional problems first

by considering only the axial mode structure in the high m limit and then by

studying radial effects exactly in the z-pinch model.

An analysis of the radial eigenmode equations indicates the existence of

a parameter regime for stable bumpy torus operation if certain resonance

regions in parameter space are Ignored. The present-day EBT-l/S devices

typically operate within this stability window, and scaling up to the proposed

EBT-P device appears possible.

We still find conditions where instability persists. For example, the

long-radial-wavelength denominator mirror-type mode seems to pose stability

difficulties when <ts frequency, which is approximately the hot electron

curvature drift (evaluated at a characteristic transverse temperature), is

near the ion cyclotron frequency in value. Likewise, the WKB mirror-like mode

has stability difficulties if v ^ k ^ . ^ 2 s *• H«w«vert our

theory probably needs to account for the axial variation of the magnetic field

in order to handle this point properly. We are also working on incorporating

full Larmor radius effects.
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NUMERICAL SOLUTIONS OF THE EBT
RADIAL EIGENMODE PROBLEM*
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ABSTRACT

The radial structure of eigenmodes in EBT is of interest since

both modes which are localized within the annulus and modes which

extend into the core plasma have been predicted to be unstable within

appropriate parameter regimes. Radially resolved calculations have

been done for a z-pinch model which corresponds to a bumpiless,

azimuthally symmetric version of EBT. A shooting method is employed

which solves two-point boundary value problems on the inside and

outside of the ring and which matches derivatives at the center.

Comparison of these results with those of a localized dispersion

relation will be discussed.

Research sponsored by the Office of Fusion Energy, U.S. Department of
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I. Introduction

Recent calculations have indicated the important role of ring-core

coupling effects on EBT stability. Since the hot electron rings are

radially localized to regions of the electron cyclotron resonances, it

is of interest to examine how modes which are driven by the presence of

both hot and cold plasma components connect to the inner core plasma

and outer surface plasma regions. lo address such questions, a

radially resolved eigenmode calculation is required. Eventually, more

multidimensional models may be necessary to treat the variations of

quantities along the field lines as well; however, it is desirable at

this point to consider radial and axial variations separately. The

formulation of such a radial problem in a 3-plnch geometry (which

allows a decoupling of the radial and axial problems) was discussed in

the previous talk.1 In the present paper, we shall discuss methods

and results of numerical solutions of the resulting radial eigenmode

problem and their comparison with localized solutions.

II. Basic Equations

Using the momentum balance equation for core plasma and hot

electron ring components,, supplemented by the drift kinetic equation

for perturbed ring pressures, the following radial eigenmode equation

has been derived:

2 2 ,
A jd_ t XrB T 9£i .̂r a) A O, T

rB2 dr vJ(T - a) 3r VJ(T - a)
 T ~ °
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v 2 2
2Xkws VA 3 , XB*r (S kuT^

- a) B 2 r 3r l
v 2 ( T . o )

 l r fi

rBz a r r £ r"(T - a)

where k ~ azimuthal wave number

n - o»

x
o • ——

1 ( 1 x B.)

uB

In deriving this equation, a transformation from a bumpy cylinder to a

z-pinch geometry has been made and variations of quantities along field

lines have been neglected. The quantities T, S, and R are kinetic

integrals given by:

> _ + m —-J _

u> -

ID V -

R - a - J - j 15H£_if !ilv
B 2 V | a) - uid •
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where

1 = 1 - 1 - - — —
B 3B

o = l +
B2

, r dB v i ^
d r Rc

A number of different models and approximations have been used in

evaluating these integrals. For most of the calculations discussed in

this paper, the hot electron thin annulus limit has been taken* This

assumes that the ring electrons are sufficiently hot that w << wpg, <̂ *JJ

and Ag/Rc << 1 where Ag is the magnetic field gradient scale length in

the ring region, RQ is the magnetic field line radius of curvature, and

Wpg and u)AH are the hot electron gradient B drift and diamagnetic drift

frequencies, respectively. In this limit the above integrals are not

dependent on the details of the distribution function and may be

written as follows:

T ~ B f l , , , 1 ^ _ * + p ^c
Rc

 L BdB/dr J wDB
 PJ-c BdB/dr l ;

dp., H / d r ,

" ' " TS737- " \ B-c ( 6>

,,H + BXc + 2B | |C) (7)
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Since Ag/Rc is of 0(1/4 to 1/3) in EBT experiments and u> is not

necessarily small compared to to^ for some of the high frequency modes

of interest, the kinetic integrals have also been evaluated for models

of the hot electron distribution function where it is not necessary to

make these approximations. One such model is a delta function in y and

%ot = - ^ r «(w - Po)«(v,) (8)

In this case, the integrals are:

u>(l + B) - u j l - (RC/A)(PC/B
2)(1 + 2A/AB)]

T = (9)
u - o) D B

S = 1 + 0(Bc) (10)

R = o = i +le H + 0(ec) (ID

where

(Y2 - l)c2ke
U ) T , , =

It is also relatively simple to evaluate these integrals for the case

of Maxwellian times a delta function in Vn• In this case they may be
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expressed in terms of exponential integrals* As mentioned above, the

results given in this paper are based on the approximations of T, S, R

given in Eqs. (5)-(7). Work is presently underway to use better

approximations for these integrals*

111= Localized Model

Before discussing the radially dependent calculations, results of

a calculation localized to the ring region will be mentioned. The

radially dependent calculations will then be compared against certain

of these results«

A local dispersion relation may be obtained from Eq. (1) by '

assuming the existence of an evanescent eigenmode, localized to the

annulus regions

cos(Qr') inside the layer

(12)

exp(-kr') outside the layer

where r' ~ r - r .

Neglecting gradients which act on equilibrium quantities, the radial

differential equation becomes

o 2 + k2 - (T - a> ( " 2 x = 2AktOs(
V2(T - a) rfi<T ~ a>
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Expanding this equation and collecting terms results in a cubic if we

assume B << A/R (we shall Investigate stability for a background beta

below the Lee—Van Darn limit where near term experiments operate)•

V2

kg

2 V
-AB t + - 0 (14)

2 2

where t = Qg

The expansion parameters for the validity of Eq» (14) are: A^/R

A, eH « i.

To analyze Eq° (14) for stability9 first neglect the last term

(valid procedure if VA Is sufficiently small) and we obtain a

dispersion relation for the compressional Alfven mode for which the

marginal stability condition is found to be:

where VQV =

If we assume VA is sufficinetly large then the first term in Eq. (14)

may be neglected and the resulting quadratic equation yields the

marginal stability condition for the hot electron interchange mode:
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VA kXARc
~< — =- (16)

A stab^ity window then exists if we can satisfy the condition,

ci kj; k£ ci

If V /to .A << 1, a stability window can be readily found* However, if

V /w .A > 1, one can find values of kg/k. where, there is no stability

window. In current experiments V /w .A = 5-10, hence there appears to

be disagreement with the experimentally observed stable operation. The

window disappears for a relatively narrow parameter range, and more

careful calculations with more realistic geometry are needed to restore

a theroetlcal stability window. In addition to these analytic

estimates of the stability boundaries, numerical solutions of the cubic

Eq. (14) have also been performed. Typical results of such

calculations are indicated in Figs. 1 and 2 where stability boundaries

in "coRE^HOT v s ^hot a r e pl°tted f° r mode numbers m = 1, 2, 3, 4 for

EBT-S and EBT-P. There is a substantially wider window of stability

present at high m numbers for EBT-P than for EBT-S due to the larger

values of Rc and the magnetic field.
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EBT-P STABILITY BOUNDARIES
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IV. Radially Dependent Calculations

In addition to the localized solutions ot .he radial eigenmode

equation (1), numerical solutions have also been obtained which take

into account the radial structure. In obtaining these results,

assumptions have been made concerning the plasma and hot electron

equilibrium profiles. These will be described below along with the

numerical method used in solving tha equations. Such calculations are

still in a somewhat preliminary phase, as various plasma and hot

electron models are under consideration, and those mentioned here may

not turn out to be the most appropriate.

The core plasma density and temperature are expected to be

relatively constant in the core region (within the hot electron ring)

and drop off through the ring region. It is likely the maximum core

gradients are localized to the outside of the ring (where magnetic

field gradients are reversed); otherwise, the inside half of the ring

could become unstable for core gradients above a certain level. Two

typical sets of core density, temperature, and pressure profiles which

exhibit these features are

El ss n
C CO

1
p c p c o

where

•\ fl - tanh(x

V 2
I

\£ 2

- tanh(x - a)
2

(Profile I)

r - ro

- a)

• a)
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rQ = annulus central radius

A = annulus half width

a = a variable parameter usually taken to be 1

and

1 x < 0

n
c

Tc

Pc

= n
CO

nc
nco

= Pco

Tco

r 1

1 2
(Profile

x >

X <

X >

II)

0

0

0

(19)

In the following, results will be given for each of the above core

plasma profile models. Both pressure profiles are plotted In

Fig. 3(a). With the profile I ipodel the core pressure extends somewhat

outside the ring region whereas, with the profile II model the core

pressure decays more rapidly outside the edge of the ring.

The ring density and temperature are localized on the outer edge

of the core plasma, centered about a minor radius r = rQ. A Gaussian

profile is topically assumed for the hot electron density and

tecperature as given beloi-j:

nHOe
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2
TH - T H Oe"

x (20)

PH " PHOe" X

Profiles of the hot electron density and temperature are shown In Figs.

3(b) and 3(c)•

Since the stability properties of EBT are strongly Influenced by

the existence of a finite B depression of the magnetic field, It Is

Important to use a self-consistent magnetic field equilibrium In these

calculations. An approximate model has been employed here which

assumes that the scale length for the variation of the field In the

annulus region Is separated from that for the variation In the vacuum

field (I.e., AB/Rc « 1).

The finite beta magnetic field equilibrium is described by the

momentum balance equation and Ampere's Law:

+ — •> •*•

V • p » J x B

+ - » • • »

WOJ - V x B (21)

Combining these equations and taking the component perpendicular to the

field lines results in

")K (22)
o

where K « (b • VJb - curvature. If Ag (finite beta gradient B scale

length) is assumed to be small compared to Rc (the radius of curvature

of the vacuum magnetic field), then the above equation reduces to
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Pi
B2 Bvac

2 l Jo

where B v a c = vacuum magnetic field. For the present calculations B v a c

has been taken as the vacuum magnetic field In a bumpy cylinder (such

as given In Ref. 4, for example). Using this In Eq. (23) results In

a B field profile such as plotted in Fig. 3(d). Here, the dashed line

indicates the vacuum magnetic field and the solid line Indicates the

self-consistent finite beta field. More exact equilibrium models for

the z-pinch model are under development and will be implemented into

the code in the near future.

The numerical solution procedure used for solving Eq. (1) is

based on the SUPORT code. This solves linear two-point boundary value

problems and uses the method of superposition coupled with

orthonormalization of the basis solutions to the homogeneous equation

when linear dependence threatens. It employs a variable-step

integration scheme.

Equation (1) may be written in the form

! A (rpii) - QC - 0 (24)
r dr dr

In order to use the SUPORT code, this is broken up into two coupled

first-order equations:

«*!
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(25)

dy2

where yi = 5 and y9 = P — » This system of equations is then solved as

two separate two-point boundary value problems on the intervals

rQ and rQ — xmax° The boundary conditions are

and

The SUPORT code then returns values for the derivatives of y, at r =

rQ, and these are matched at the center of the hot electron ring:

(26)
d r r = r+ d r

This condition determines the eigenvlaue w which is normally solved for

by using a Newton's method.

Some typical results of this calculation are shown in Figs. 4 and

5. Here, eigenfunctions are plotted vs radial position for profile

model I (Fig. 4) and profile model II (Fig, 5). The plasma and ring

parameters are indicated on the figures. As may be seen, both

eigenfunctions are characterized by two nodes — one near the center of

the ring and one somewhat outside the ring- The dip in the

eigenfunction outside the ring region is expected to be related to the
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RADIAL EIGENMODE (REAL PART)

5OOKeV, N H 0 T = 4 x i O * 7 m" 3

NCORE = 1 x10 1 8 m" 3 , RING WIDTH =0.01 m

R0=0.1 m, B O 3 O . 6 T . T L / T H = 2

T C 0 R E =100 eV, MODE No. = 2 , CU/WCI = H.7,

1.15 x10" 7

0RNL-DW6 81-2505 FED

-1.0 —

-1.5

-2.0 —

-2.5 —

-3 .0
-4 -3 -2 -4 0 1

X = ( R - R 0 ) / A

Fig. 4 Radial eigenmode as a function of x for profile I model.
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RADIAL EIGENMODE (REAL PART)

T H 0 T = 500 keV, N H 0 T = 4 x 1 0 u m"3

NCORE =l* x 1 0 1 8 m ' 3 , RING WIDTH =0.01 m

R0=0J m, BQ-0.61,^/1^ = 5

T C 0 R E =100eV, MODE No. = 2 , OJ/OJCI=9.5,

- 3 . 2 2 K 4O~6

ORNL-DWG 81-2809 FED

Y

-4 -3 -2

Fig= 5 Radial eigenmode as a function of x for profile II model.
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fact that d(£n n )/dr is finite outside the ring region for the profile

models used here, even though nc and dnc/dr are both going separately

to zero. This portion of the eigenfunction is not expected to be

related to the coupled ring-core stability properties and work is

presently underway to determine if it remains with profiles which have

d(£n n )/dr = 0 outside the annulus region. The inner peak in the

eigenfunction is located in the region where both annulus and core

densities and temperatures are still finite and is close to the

position where the maximum derivative in the core and ring pressures

occuro The form of this peak is qualitatively what one would expect

from analytic solutions of Eq» (1) using simplified (i.e., linear or

constant) dependences in the plasma and ring profiles. As may be seen,

the eigenfunction in Fig. 5 using the profile II model is somewhat

better localized than that in Fig« 4 due to the steeper falloff on the

outside of the core plasma parameters and the fact that these

parameters have no gradients within r = rQ.

Stability boundaries have been studied using the radially

dependent code by starting out at stable roots (i.e., as in Figs. 4

and 5) and varying an appropriate parameter, such as core density until

the imaginary part of u begins to be significant. Such results are

illustrate'' in Figs. 6, 7s and 8 where localized results [obtained

from solving Eq. (14)] are compared with the nonlocal results for

azimuthal mode numbers m = i 9 2 s 3 , 4 5 , respectively» The localized

theory used here would not be expected to be exactly comparable to the

nonlocal calculation since it has not been evaluated at the position of

the inside peak in the eigenfunction. In general, the nonlocal

boundaries are more pessimistic than those of the localized theory.
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m = '
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Fig. 6 Comparison of local and nonlocal stability boundaries for
m = l = o
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The results are with a factor of 3-5 of each other with the closest

agreement being for m = 2. Hie points indicated here are for the upper

density limit due to the compressional Alfven wave-hot electron

interaction. They are all obtained using the profile I model for the

core plasma. The code has been used to check a few points on the lower

density limit due to the hot electron interchange mode; the profile II

model has also been used. These again indicate qualitative agreement

with the localized theory, but more work needs to be done in this area.

Also, the calculations presented here use the AB/RC « 1 approximation

in evaluating the kinetic integrals [see Eqs. (5)-(7)]. Work is

underway to incorporate more exact evaluations of these integrals into

the code using the delta-function model of the hot electrons [Eqs.

(9)-(10)] and, eventually, a Maxwellian.

V. Conclusions

Results have been presented from both local and nonlocal EBT

stability models which are based upon a radial eigenmode equation. The

core plasma is considered as being cold with ion inertial effects

included while the hot electron plasma is treated using the drift

kinetic equation.

The local and nonlocal results show qualitatively similar trends

for the upper stability boundary (related to coupling between the core

Alfven wave and the hot electrons) over the range of parameters which

have been considered* As mentioned earlier, a wider range of

parameters, profile shapes, and models for the hot electron

distribution function are under examination. In addition, it will

eventually be of interest to incorporate finite Larmor radius effects
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Into such calculations. This will lead to higher order differential

equations, but these may be solved using similar techniques to those

outlined here-
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ABSTRACT

The stability of a hot electron plasma in the ELMO Bumpy Torus is

investigated using two different models. In the first model, where the

hot electron distribution function is assumed to be a delta function in

the perpendicular velocity, He find a new stability boundary in addition

to those discussed by Nelson and by Van Dam and Lee. In the second

model, where the hot electron distribution function is assumed to be a

Maxwell!an in the perpendicular velocity, we find stability boundaries

significantly different from those of the first model. Coupling of the

Nelson-Van Dam-Lee mode to the compressional Alfven mode is now possible.

This leads to a higher permissible core plasma beta value for stable

operation.
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1. INTRODUCTION

The beta limitation of a magnetic confinement system is a crucial

problem in determining its economic merits as a fusion reactor. In the

ELMO Bumpy Torus (EBT) this limitation is determined by the stability

property of the hot electron plasma. An early study by Nelson and

Hedrick [1] treating the hot electron annulus as a rigid noninteracting

current ring by a modified magnetohydrodynamic (MHD) approach predicted

a stable equilibrium for a beta value of the core plasma roughly propor-

tional to and comparable to that of the hot electron annulus, which is

on the order of 50%. This optimistic prediction placed the EBT far

ahead of the tokamak in the race of attaining a high beta value- Later,

N'elson and Van Dam and Lee [2-J] included the hot electron annulus in

the stability analysis using a Vlasov approach. They fotund a stability

boundary roughly given by 6. $ 4e/(l + r!,), where 3. and 6 are the beta

values for the core ions and hot electrons, respectively, and e is the

ratio of the density scale length to the radius of curvature. This

change of the stability boundary is attributed to the enhanced compress-

ibility of the plasma when the hot electrons are included.

Both calculations mentioned above investigated the stability of low

frequency (ui << .... where LJ is the mode frequency and :\. is the ion

cyclotron frequency; flute-interchange modes. However, the diamagnetic

drift and t:he magnetic gradient and curvature drift frequencies of the

hot electrons, which are the source of the instability, are greater than

or comparable to the ion cyclotron frequency for typical parameters in

EBT. Therefore, a more realistic determination of the stability bound-

aries should include the consideration of higher frequency modes (m "' Q.),
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In fact, Dominguez and Berk [4] included the high frequency (w ^ Q^)

flute interchange in their analysis and found these modes may exist with

a) >> ti.. However, it is not clear how their result related to those of

Nelson and of Van 0am and Lee [2-3].

In this work, we extend the work of Refs [2-3] to include modes

with LI "*- i!. . By removing unnecessary assumptions and using different

models for the equilibrium hot electron distribution function, we find

the stability boundaries can be significantly different.

Using a delta function in perpendicular velocity v^ for the hot

electron distribution function, we find our result qualitatively agrees

with that of Refs [2-3]. However, a new stability boundary not realized

by them is also discovered. The reason for this is that the Wu),

(where uj., is the magnetic drift frequency of the hot electron) expansion
dh

made by them is not valid because one of the stability boundaries is

roughly given by u,, ^ 0. With this additional stability boundary, the

Nelson and Van Dam and Lee result is basically valid and consistent with

the model they used (in that the frequency of the mode considered is

smaller than u. and there is no coupling of the low frequency mode with

high frequency modes).

However, when a Maxwellian in v^ (instead of a delta function) is

used for the hot electron distribution function, the situation is

completely changed. Coupling of the flute interchange (ID < H.) to the

high frequency compressional Alfven wave (OJ "v. fi.) is possible when the

hot electron beta 6 is sufficiently large. This is because the contri-

bution of g to the electromagnetic part of the dispersion relation is

weighted by a larger factor. Similar coupling has also been noticed by
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El-Wadi [5] although he used a delta function distribution for the hot

electrons and a slightly different dispersion equation derived from

fluid equations. As a result of this coupling, the stability boundaries

are greatly changed. The boundary roughly given by (J < 4e/(l + 6, )

discovered by Nelson and Van Dam and Lee is now roughly given by (3. <* 3, .

This change in the scaling of critical 6, may permit a higher core beta

operatEioei of EBT than that predicted by the Nelson and Van Dam and Lee

theory.
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2. DISPERSION RELATION

Our model is similar to that employed in Refs [2-3]: i.e., slab

geometry with density and magnetic field gradients in the x direction

and an equilibrium magnetic field B = B(x)z. The plasma is composed of

three species: core ions, core electrons, and hot electrons. The

temperature of each species is constant in space. We are interested in

waves with a zero parallel wave number k,. = 0 and a long perpendicular

wavelength k,p . << 1, where p. is the gyroradius of the core ion. We

restrict ourselves to local analysis and set k = 0.
X

Under these assumptions, the perturbed electromagnetic field is

completely specified by the electrostatic potential <j> and the x component

of the vector potential A . Employing standard orbit integration tech-

niques to solve the Vlasov equation for the perturbed distribution

function and relating the relevant perturbed quantities by Maxwell

equations, we obtain the dispersion relation for this problem. The

detail of the derivation is similar to that presented in Ref. [2], and

we present only the result here. We assume also u ./ft. » 1 and

w/ck << 1, where u> . is the ion plasma frequency and c is the speed of

light. These two conditions are well satisfied in experiments for the

modes we have considered. The dispersion relation can then be simplified

to the form

S- D3
(1)

where
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T) . u " u * i

w - a), <S 6
_^e d e _ + ( > __
•" " wde T Th

u - a) . f (w - w , . ) 2 1 w - OJ
D2 - 1 + 3. ^ 1 + ^ + 3 ^ + B. C2

^ I 2 2 J e

and

(u - u . J2? ui - u)
D3 o Si 1 + *S. (1 - <5) + C36

o> - U d i (ui - o ) d . )
2 - fi2 0) - (ode

In Eq. (1), 6 = Nh^N- is t h e d e n s i ty ratio of the hot electron to the

core ion8 T =• T /T. is the temperature ratio of the core electron to the

core ion, T, = T,/T. is the temperature ratio of the hot electron to theh hi

core ion, b - 0y> ±)
2 - T^CkyC/eB)2, 6g = 8TTNSTS/B

2, U^ • *s*-yPi<?s/*

0>i/Vfli» Uds = UBs + Wcs' "Bs = AsVi ( Ts / Ti ) ( Pi / LB ) f ii' Wcs =

Ask Pi(
T
s/

T
i>(Pi/

L
c)

J2
i»

 L s X = 3 4 n Ns/3x, L"
1 = 3 Sin B/3x, L"1 =

B • ̂ B • x/B2 is the radius of curvature of the magnetic field, s is the

subscript referring to the three species, A = 1 for the core ion, and

A = -1 for the core/hot electron.
s

The equilibrium density scale lengths are related by the neutrality

condition

(2)
Le Lh
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From the equilibrium MHD force balance equation, we have also

1/3, 3 e.

\ I e h

Using Eqs (2) and (3), we can eliminate two out of the five scale

lengths. Furthermore, we restrict ourselves to the outer region of the

hot electron annulus because it is most unstable and assume L. » L, as

in Refs [2-3]. Therefore, we choose L. and e » L./L as independent

parameters to specify the gradients.

For isotropic Maxwellian hot electrons, the constants C\, C2, and

C3 are given by

2 , N f x d x d y , o o . ,, \
Ci = r (u> - u) , ) I ^ exp(-x z - yz) (4a)

l /2 * " J rW

n l / 2

x^ dx dy / ? ?\ //i_\
^ exp(-xz - yz) (4b)

and

„ 2 , . f x ° dx dy /• 2 ? \ / / \

C3 = — — (u) - 00 }) I ^ exp(-x^ - y^) (4c)1 T l / 2

where UJ ' = u - (OJ x2/2 + oi . y 2 ) -

If a delta function distribution in v? is used for the hot electron,

then

- co ,)

)
dh
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With C;, C2» and C3 given by Eq. (5), Eq. (1) reduces to the same

dispersion relation as in Ref. [2] in the appropriate limit. The main

difference between the dispersion relation given by Eqs (1) and (5) here

and that of Nelson is that in Ref. [2] the limit to « to , , to,, was
*n dh

explicitly used so that Cx = 2C2 =€3=01 h/wdh> Because of this, the

temperature ratio T. does not appear in the dispersion relation in

Ref. [2], so that the density ratio 6 is a free parameter. Motivated by

the facts that to,. <= to,, and that the electrostatic interchange dispersion

relation D̂  = 0 roughly gives a stability boundary to ,. - 0 when 6 « 1,

we retain to compared with to,, as in Eq. (5). Now, 0 is no longer a free

parameter and relates to other parameters by

We choose to employ 6, , B.» and T as independent parameters because

they are directly measurable in experiments. We show in the next

section that this difference leads to a new stability boundary not

contained in the Nelson and Van Dam and Lee theory.
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3. NUMERICAL RESULT

Although the dispersion relation given by Eqs (1) and (5) is an

algebraic equation, it is sufficiently intractable to warrant numerical

investigation. We first solve Eqs (1) and (5) for real m for each set

of the parameters: 8±, Q^, \
p±' T» Th» pi^Li' a n d e*

In Fig. 1, we show a plot of w/fl. vs 8. for different values of 6̂

and for k p. = 0.1, x = 1, x, = 1000, p./L. = -0.04, and e = 1/40. On
y i h ii

each of these curves, <i> is a function of S. • Since the dispersion

relation is a real algebraic equation, an instability would appear when

two real roots merge to a double root or 3B./3w ° 0. For example, the

curve for 6, a 5% shows that the plasma is unstable for B. > 3.7% or
h l

B, < 2.5% and is stable in between.

In Fig. 2, we summarize the stability information provided by

Fig. 1 in the curve labeled x, = 1000. For scaling purposes, the curve

with T, = 2000 is also shown in Fig. 2. The plasma is stable within a

closed area in the B.-B, space and unstable outside. The stability

boundary is similar to that of the Nelson and Van Dam and Lee theory

except that the stable region is closed below by a new boundary not

contained in the previous theory. However, Fig. 2 also shows that as x

increases, the stable region approaches that given by the Nelson and Van

Dam and Lee theory. This is consistent with the discussion in the

previous section about the approximation involved in the Nelson and Van

Dam and Lee theory.

This new lower stability boundary in B. is related to the close

contours in the w-B. plane shown in Fig. 1. It is obvious from Eq. (6)

that <5 increases as B. decreases for fixed B, and x. . In the Nelson and

x n n
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FIG. 1. Low frequency mode solut ion of the dispersion r e l a t ion given

by Eqs (1) and (5) , de l ta function model, for k p. = 0 . 1 , T = 1,

1000, = -0 .04 , and c = 1/40.
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FIG. 2. Stability boundaries for the delta function model in 3.-2,

space with x = 1000 and x, = 2000- Other parameters are the same as

in Fig. 1.
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Van Dam and Lee theory, 6 is kept fixed and t, changes in Che 3.-S, plane.

However, this is not exactly the constraint we know from experimental

data.

Since 6 must be less than or equal to one, we have the inequality

(7)

An additional boundary in ^ - ^ space is then given by g^ = 6^/"^,

shown in Fig. 2 by the dashed line for x, = 1000, A similar line for

t, = 2000 is even lower and is not shown in Fig. 2. It is clear from

Fig. 2 that the additional inequality [Eq. (7)] has no effect on the new

stability boundary.

Figure 1 also confirms the low frequency assumption (<o « fl.) in

the Nelson and Van Dam and Lee theory. The mode involved in the sta-

bility discussion is the low frequency flute interchange due to the hot

electrons. There is no coupling between the flute-interchange and high

frequency (oo ̂  »2.) modes although the existence of such modes can be

seen from F.q. (1).

Analytically, we can take the limit of no gradients and <5 -*• 0;

then, Eq. (1) is reduced to

'v.
,2 -1

which is the dispersion relation of the compressional Alfven wave. For

typical parameters, we have u> ̂  n.. In Fig. 3 we show the existence of

the compressional Alfven mode in the dispersion relation given by Eqs (1)

and (5). The parameters used in Fig. 3 are the same as those in Fig. 1.
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0 0.5

FIG. 3. Compressional Alfven wave solution of the same dispersion

relation used in Fig. 1 and for the same set of parameters. The low

frequency solution shown in Fig. 1 occupied the shaded small box in

the lower left-hand corner.
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It is obvious from Figs 1 and 3 that the Alfven mode and the interchange

mode do not couple to each other.

To test the sensitivity of the stability boundary on r.he model hot

electron distribution function used, we solve the dispersion relation

given by Eqs (1) and (4), which is derived from isotropic Maxvellian hot

electrons. The constants Cj, C2, and C3 are evaluated numerically by

first converting the y integrals to the plasma dispersion function Z [6]

and then performing the x integration by the Laguerre method. The

imaginary part of the C's, which is due to the hot electron magnetic

drift resonance, is usually very small because w and UJ , >> UJ.

Therefore, C\, Co, and C3 again can be regarded as real quantities.

The calculation leading to Fig. 1 is repeated for Eqs (1) and (4),

and a surprisingly different result is obtained. Figure 4 shows the

result of such a calculation with the same parameEers as those in Fig. 1.

Unlike the previous delta function model, which shows no coupling between

the higher frequency compressional Alfven mode and the lower frequency

flute interchange, the Maxwellian model shows a strong coupling between

them when 8, is large enough. As shown in Fig. 4S when B, < 0.15 these

two modes do not interact with each other. The compressional Alfven

solutions represented by curves on the upper right-hand corner disjoin

with the flute-interchange solutions on the lower left corner. When

6, - 0.2, these two types of solutions "reconnect" and a new instability

region in 3. appears.

To verify that this new coupling is not due to numerical inaccuracy

from the two-dimensional integration of the constants Cj, C2, and C$, we

replace w' in Eqs (4) by to - u^ and peiform the integration analytically.
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FIG. 4. Solution of the dispersion relation given by Eqs (1) and (4),

the Maxwellian model, for the same set of parameters as in Fig. 1.
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This approximation is equivalent to evaluating u' at thermal energy and

gives

C, = C2 = C3 = (8)
u ~ u

This is the same result as given by Eq. (5) except C2 is larger by a

factor of 2. When Eqs (1) and (8) are solved for the same set of param-

eters as Figs 1 and 4, similar coupling between the Alfven and inter-

change modes is observed. This result is shown in Fig. 5.

The stability boundary implied by Fig. 4 is summarized in Fig. 6.

The stable region is vastly different from that in Fig. 2. The dashed

line in Fig. 6 is again the line g. = 6. ft, below which we have 6 > 1,

which is impossible. The most important feature of Fig. 6 is that the

upper critical 6. increases with 6, until a critical 8. (^0.35) is

reached. Then, the stability boundary turns around to form a cusp and

turns around smoothly to high 6, at a second critical 8, of about 0.2.

Between 0.2 and 0.35, for each 6, , there are three critical values of 8.

h 1

and a channel of stable region. This is due to the coupling of the

Alfven-interchange modes.
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0
0.16

FIG. 5. Solution of the dispersion relation given by Eqs (1) and (8),

the quasi-tfenrejellian model, for the satae set of parameters as in Fig. 1.
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0

FIG. 6. Stability boundary in S.~3, space for the Maxwellian model

and for the same set of parameters as in Fig. 1.
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4. DISCUSSION

We have solved numerically the Alfven-interchange mode dispersion

relation for a hot electron plasma in EBT and obtained the stability

boundaries for two different models of the hot electron distribution

function. In the delta function model, coupling between the Alfven and

interchange modes is not observed, and the stability boundary is similar

to that discovered by Nelson and Van Dam and Lee [2-3]. However, a

lower critical g. boundary is missed in their analysis because of the

approximation m << to they used. In the Maxwellian model, coupling

between the Alfven and interchange modes is possible, and the stability

boundary is significantly different from that of the delta function

model. The reason for this difference is that in the Maxwellian model

the contribution of S to D2, which relates the perturbed current to A

in Ampere's law, is larger by approximately a factor of 2. Thus, the

influence of the hot electron beta to the Alfven wave is stronger.

Results from the study of these two models suggest that the stable

operating region for a hot electron device such as EBT is very sensitive

to the model used. Inclusion of the radial structure, anisotropic hot

electron temperature, finite ion and hot electron gyroradius effects,

and additional coupling to shear Alfven waves [7] will undoubtedly

complicate the already complex stability pictures. Hopefully, the

results from these studies will converge to one that is consistent with

experiments.
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Abstract

The local stability of the EBT plasma is analyzed for the long

wavelength perturbations in the frequency regime, a) < £3, (Q. is ion

cyclotron frequency). In addition to the low frequency interchange

instability, the plasma can be unstable to the compressional Alfven

wave. Contrary to the previously obtained quadratic dispersion relation

in u) for the interchange mode, our dispersion relations for both types

of instabilities are cubic in oo. New stability boundaries are found,

for the hot electron interchange mode, to relate to the enhanced

compressibility of the core plasma in the presence of hot electrons.

The compressional Alfven instability is driven due to the coupling of

hot electron magnetic drifts and diamagnetic drift with the

compressional Alfven wave. The stability conditions of these two types

of instabilities are opposite to each other.
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1= INTRODUCTION

Stability of the plasma in the ELMO Bumpy Torus in the presence of the

hot electrons has been studied for the low frequency interchange mode

driven by the diamagnetic drift and magnetic drifts of the plasma. These

earlier works have confirmed that in order to obtain correct stability

condition, the hot electrons must be treated by kinetic theory. Nelson

and Van Dam and Lee have investigated the low frequency interchange mode by

retaining only the lowest order hot electron contribution in the

electromagnetic part of the dispersion relation, Dem. They find that the hot

electrons can enhance the compression of the core plasma and influence the

stability analysis. The enhancement of the compressibility of the core plasma

is due to a near cancellation in Dem. Therefore, when the next order hot

electron contribution in t>em is included, we will expect quite different

stability boundary. Since the core plasma compressional Alfven frequency can

be comparable to the hot electron magnetic drift frequency, we also expect the

compressional Alfven wave to be driven unstable by the hot electron magnetic

drifts. Therefore, a realistic determination of the stability of EBT plasma

should include both the interchange mode and the compressional Alfven wave.

Because the driving mechanism for these modes is the interaction between

the magnetic (VB and curvature) drifts and diamagnetic drift of the hot

electrons and the core plasma, the stability boundary is sensitive to the hot

electron distribution function. In this paper we will employ two different

models of the hot electron distribution function, 8-function and Maxwellian,

to analytically study the stability of EBT plasma. The difference between our

theory and the previous works 'J will be demonstrated.
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II. FORMULATION

Consider a slab model2'3 with density and magnetic field inhomogenieties

in the x direction and an equilibrium magnetic field B = B (x)Z + B (x)X where

B x << Bz» We also assume there are no temperature gradients. The plasma

equilibrium is composed of three species - warm ions, warm electrons, and hot

electrons. Then the equilibrium condition V(p + B /Q%) = B»VB/4it can be

written locally as

1 / L B = 1/Lc " <i)

where L_, L , L , L. , L are the magnetic field gradient, magnetic field

curvature, hot electron density, warm ion density and warm electron density

scale lengths, respectively. R = 8itN T /B for s = i, e, h, where N denotes
o So

the density and T is the temperature. the neutrality condition, N^ = Ng + N,

relates these equilibrium density scale lengths by

VL. = (1 - 6)/L + 6/L (2)
i eh

where 6 = Nh/Ni = (PhT±)/(P±Th)

We are interested in electromagnetic perturbations witi. zero parallel

wavenumber, X = 0, and long perpendicular wavelength k p. << 1, where p^ is

the ion gyroradius. We also restrict ourselves to local analysis and set kv =

0. Then the perturbations can be specified by the electrostatic potential $

and the x-component of the vector potential A . The dispersion relation can

be derived from the Vlasov equations and Maxwell's equations. In the limits

0L)i/Qi >> 1, a)/ck << 1 and to < Q. , where M ^, Q^ are the ion plasma and
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cyclotron frequency respectively, c is the velocity of light, the dispersion

relation can be simplified to the form

where

DesDem

2

D = "di u*i " udi + Te) , u " u * ^ Qi i

es (o> - w.. ) (u> - a). ) vu> - 0),. ' , .2 2
di de di (a) - a)..) - Q.

di x

) ( 6 / T ) + (C 1)(5/r
0), e 1 Ti
de

1 Ti

i 3L
D =

C t

e '•a) - <j), h 2 '
de

1/2 2 2
Xsbi Ts (Pi / Ls ) Qi' bi = ^yPi* ' Pi

1/2
wds = "BS + wcs' ^Bs = ^sbi T

S
(Pi / LB ) Qi '

1/2
Ts(Pi/Lc)Qi' Ts = W s = h' e'

and Xs = 1 for ion and -1 for electron. For Maxwellian hot electrons, the

constants C^, C 2 and C3 are given by

1/2 /CO i»QD 'J *>

= (2/w )(u - u^) Jo dx / ^ dy x e^>(- x - y^J/u
1 , (4(a))
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C = (1/it ) (to ~ (0*. ) I dxdy x
2 *h J

5 exp(- x2 - y2)/co' ,

C = (2/nV2)(u) - OJ*. ) / dxdy x3 exp (- x 2 - y2 )/«• , (4(c) )

and

where

If we further make the approximation with o>' - w - w ^ in eqs. 4(a) - 4(c) and

perform the integrations analytically, then this modified Maxwellian hot

electron model gives

C = C = C = (u> - (D.. )/(o> - a).. ) • (5)
11 2 3 *h dh

This turns out to be a good approximation when we compare the numerical

solutions from both Eqs. (4) and (5). In the following we will employ Bq.

(5) for the analytical investigation. If a delta function is used for hot

electrons, then

C = 2C = c = (w - w )/(o) - to ) . (6)
i d J "n fln

Note that the only difference between Eqs. (5) and (6) is in C 2 an<l we will

* A

write C_ = C_ (to - a w )/(a) - a),. ) with C_ = 1 for the Maxwellian hot electrons
2 2 sh ah 2

and c = 1/2 for the 6-function hot electrons.
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III. INTERCHANGE MODE

Let us first consider the low frequency interchange instability with w ^ ,

(0*• <o)<(i)-.u/ "'•h* ^n -̂n-"-s frequency regime, the three terms in the dispersion

relation, Eq. (3), can be simplified to yield

D - b. + (V. - w,. Iffi + T W . / w + 6/OJ]es 1 v *i di;Ll- e ; di J

D = D
em em

Udh

D = 1 + p. + B + C 8 . ok,/w,. , (7)
em i e

and

D = 6(0., /w,, + d + x )(co.. - a),. )/u)
ct *h dh e *i di

We note that Eq. (7) will give rise to the usual quadratic dispersion relation

if we neglect the second term in D which is of 0(co/o)^) • However, the hot

electron contribution will give a near cancellation in D and result in an
em

2 3 ~
enhanced compression of the core plasma. ' Therefore, we must treat D to

em

be the same order as the second term in Dgm at marginal stability. From Eq.

(7) the dispersion relation can be written as a cubic in to:

+ A-OJ + A (o + A = 0 , (8)
Z i o

where
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P. w ^ ^ (0 - (D 2

dh di

d h

(1 + ^ M u y . - o,di)

~ to
d

Without hot electrons (6 = Pv. = °) / Bq« (8) reduces to a quadratic in u> and

describes core plasma interchange instability. With hot electrons the

condition for stable interchange mode is that

Q3 + R2 < 0 , (9)

trhere

Q = (A1 - A. /3)/3, R = (A.^ - 3A Q)/6 - K^/21, and the frequency at marginal

1 /?
stability is to = -(R ' + A 2/3). In Fig. 1 we plot the stability boundary

from Eq. (9) in the pi - p^ space for the 6-function hot electrons with the

fixed parameters: p^/i^ = Pj/Li = -0.04, Lc/L± = 40, %h = 10
3, Te = 1, topi/Q±

= 25, m^/me = 1837, and k p. = 0.1. Within the closed stability boundary, the

interchange mode is stable. The solution from Eq. (3) (denoted by exact) is

also shown for comparison and our cubic dispersion relation gives amazingly

good results.

We have also plotted in Fig. 1 the stability boundary from the quadratic

dispersion relation ' by neglecting the 2nd term in Dem in Bq. (7). The

lower stability boundary (core plasma interchange mode) is a good

approximation because it is mainly determined by Des = 0. But the upper
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#8ITOI3O

Quadratic

Unstable

0

Fig- 1 Marginal interchange stability boundaries in p. - p. space for the 6-

function hot electron model. The fixed parameters are p^/Lj = P^/^i

= -0.04, Lc/L± = 40, kyPi = 0.1, Wpi/Qi = 25, \/Ti = 103, Tg/^ = 1,

and m^/me = 1837. Solutions of the quadratic, cubic, and full

dispersion relations are shown for comparison. The congressional

Alfven wave is stable for the set of parameters.
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stability boundary (hot electron interchange mode; unstable roughly when

D > 0) does not turn around at small fL which is due to the absence of the
em ~ i

OCoj/to^) term in Dem« In general, the quadratic dispersion relation predicts

more optimistic results than our cubic dispersion relation. Below 6 = 1 line

is the forbidden region with N^ > N^.

For the Maxwellian hot electrons, the stability boundary in p^ - P^ space

is shown in Fig. 2 for the same set of parameters as in Fig. 1. Our results

are very good in comparison with the solution from Eq. (3). Again stability

boundary from the quadratic dispersion relation is also shown for

comparison. Ttie lower stability is good, but the upper stability boundary is

again over optimistic.

Figure 3 shows that the finite Larmor radius stabilization of the low

frequency interchange mode. With the same set of parameters as in Fig. 1, the

stability boundaries for two different values of k p. (k p i = 0.1, 0.05) are

plotted in the 0£ ~ Pf, space. As kyp^ is reduced the stability boundary moves

toward larger p_ and does not intersect with the p. and p. axes. Therefore if

P^ is small, no matter how large p^ is there is no stability.

IV. CCMPRESSIONAL ALFVEN WAVE

Now we consider the compressional Alfven wave with a) ~ k VR ~ ŵ y,' but

, u d for the warm dpecies. Since (k yV A)
2 = (2bi/pi) Q A

2, kvft can be of

the same order as QJ . Therefore, one might expect the compressional Alfven

wave to couple not only with the hot electron magnetic drifts but also with

the ion cyclotron v/aves. In this frequency regime the three terms in the

dispersion relation, Eq. (3), can be simplified to yield:



170

3 1 T 0 I 3 •

Quadratic (Interchange

- ^.uDie ( Interchange

Compressional ALFVEN

Fig. 2 Marginal stability boundaries ir 6^ - 3^ space for the Maxwellian hot

electron model. The parameters are the same as in Fig. 1. Solutions

of the quadratic and cubic dispersion relations are shown for

comparison. The stability window is enclosed by the interchange and

the compressional Alfven stability boundaries.
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# 8 I T 0 i 3 2

CQ.

Cubic (Interchange)

Compressional ALFVEN

Fig. 3 Finite Larmor radius effects fk yp i
 = 0=0 5, 0.1) on the marginal

stability boundaries in p^ - (̂  space for the Maxwellian hot electron

model. The compressional Alfven stability boundary is independent of

kyp^» The other parameters are the same as in Fig. 1.



172

Des = b i —2 2 '

P

2 2
Q. - a)

Dem " 1 + h + Pe + fe . * Q 2 + S
I (u - Q. )

Q a) - <o
D = — — - — - + (1 - 6) + 6 ( ")
ct 2 „ 2 w - w,,

w - Q. dh

And the dispersion relation becomes

2b , , ( » ) - o)ft. _

- J ^ [1 + P± + Pe + C2Ph( ^Jll/fo)2 - Q/) = 0. (11)
1 w " wdh

We see that the compressional Alfven wave decouples from the ion cyclotron

waves even in the presence of hot electrons. We further note that in the

limits 6 = 0 and p^ = 0 (i.e., there are no hot electrons), Eq. (11) recovers

the wall known compressional Alfven wave with w = k ^i- (1 + p. + p ). The

compressional Alfven wave mainly couples with and, hence, is destabilized by

the hot electron magnetic drifts and diagmagnetic drift. If we also assume

that

dh

Then Eq. (11) can be c a s t i n t o a cubic form in u:

Z3 + AnZ2 + A.Z + A = 0, (13)
2 Ho
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Z = (wA p .0,) ,

M + P± + P. + c ^ ) < o ,

Since A , A-, and A2 are independent of k , the stability boundary is

also independent of k but the frequency w is linear in k . From Bq. (9), the

condition for stable solution is given by

| (OA)B2 + («3C2 = M 2 ) B + 8C3 > 0 , (14)

where

an

c = 1 + p. + pe + c 2p h > o.

In general Uajj/oô u < 0 and it is possible to obtain unstable solution only

when (C-A) = 3(1 + a + B + C a ) = 3 D < 0 » We note that this is
^ pi le 2 ^h u^' era

opposite to the instability condition for hot electron interchange mode. On

the other hand, D j> 0 is sufficient for stable solution. Considering

LC/LB>>1 and 6-function hot electrons with C = 1/2, we find
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( C - A ) (16)

and the compressional Alfven wave is always stable for 6-function hot

electrons when L^/L^ > 0 and I^/Le > 0. This has been confirmed by numerical

solutions. If D < 0 , then in the limit p^, p << p^, the stability

condition, Eq<> (14), can be approximately expressed as

1/2

where

2(1 + C p ) 2 - 3 (C (p - 6) - 2) 2

2 n — Z n

r
h e

and

P- L,
y , 4 0.

Note that for the Maxwellian hot electron model, C = 1 and x and y are weak

functions of fi^ and $e for pi# pe < (3̂  < 1. However, for the 6-function hot

electron model, C = 1/2 and x and y become inversely proportional to p. and

The stability boundary in pi - ph space for the compressional Alfven wave

from Eq. (14) is shown in Fig. 3 for the Maxwellian hot electron model with

the same parameters as in Fig. 1. The approximate solutions are very good in

comparison with the exact numerical solutions of the dispersion relation Bq.

(3). The behavior of the stability boundary at small pi can be very well

explained by Eq. (17). Now the stability window is enclosed by both the

interchange and the compressional Alfven stability boundaries. As kyP^
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decreases the stable region shrinks mainly due to the shift of the interchange

stability boundary. The compressional Alfven stability boundary is rather

insensitive to k p^ for k p^ << 1.

For 6-function hot electron model, the compressional Alfven wave may

become unstable only when L^/I^ < 0 and L^/Lg < 0 and at somewhat higher (̂

and ph than the Maxwellian hot electron model case. This has been confirmed

by the numerical solutions of the full dispersion relation.

V. CONCLUSION

In this paper we have correctly analyzed the local solutions of the low

frequency interchange and the compressional Alfven instabilities of the EBT

plasma in the frequency regime a) < Q. - The analytical solutions are then

compared to the numerical solutions of the full dispersion relation with good

agreement. These instabilities are mainly determined by the magnetic drifts

and dlamagnetic drift of the hot electrons. Therefore the stability boundary

is very sensitive to the hot electron distribution function. Two different

models of hot electron distribution function, 6-function and isotropic

Maxwellian, are employed in our analysis and yield very different results,

thlike the previously obtained quadratic dispersion relation in w, ' our

simplified dispersion relations are cubic in u) for both types of the

instabilities. For the low frequency interchange mode, our cubic dispersion

relation is due to an extra hot electron term of 0(u)/o)dn) in the

electromagnetic part of the dispersion relation, Dem« This term is ignored in

the previous quadratic dispersion relation, but is important because at

marginal stability the 0(1) terms in Dem nearly cancel with each other and
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become the same order as the Ofw/w^) term. The stability turns out to be

more pessimistic than predicted in the previous theories.

For the compressional Alfven wave, our cubic dispersion relation is due

to the compressional tern in D__ and is obtained in the limit
6 III

o2(udh - oafih)2/(u - wdh)2 < Minn» (wA^) 2 ] . The s tabi l i ty boundary i s

independent of K^Pi and the frequency is linear in kyP^* With

0, the compressional Alfven wave is shown to be stable for 6-functionL

hot electrons and can be unstable for Maxwellian hot electrons. With

0 and Ljj/Lg < 0 the compressional Alfven wave can be unstable for both models

of hot electron distribution function.

Then the stability window of the EBT plasma is determined by both the

interchange stability boundary and the compressional Alfven stability

boundary., This somewhat pessimistic result for EBT stability may be improved

by a nonlocal calculation in a realistic geometry and with a proper

equilibrium including anisotropic hot electron distribution and temperature

gradientso
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MICROSTABILITY OF THE EBT BOUNDARY

. T. Gladd, N. A. Krall„ S. Hamasaki, and J. L. Sperling

JAYCORs, P. 0. Box 85154, San Diego, California 92138

We discuss two aspects of the microstability properties of the EBT

boundary.

The first aspect is that the relatively sharp gradients in the core

plasma of the EBT boundary may excite a variety of drift-type microinsta-

bilities andD through their contribution to transport processes, significantly

affect the gross structure of the EBT boundary. In calculating this effect,

we take into account that the EBT boundary has several features (e.g., three

species of plasma, a diamagnetic well, a separatrix) which may have amelio-

rating effects on the level of microturbulence. Specifically, we first

present an analysis of the microstability properties of the EBT boundary,

using lor i theory to focus on the effects the relativistic electrons have

on low and high frequency drift waves. Essentially9 we find the ring electrons

to have a stabilizing effects primarily through their contribution to strong

magnetic field gradients. Next we use a more detailed nonlocal theory to

analyze the effects of the diamagnetic well on the lower-hybrid-drift insta-

bility, a particularly virulent high frequency drift instability. We find

that the presence of the diamagnetic well reduces this instability's rate of

growth but that unstable eigenmodes persist for reasonable values of 3r.-__

span a significant portion of the boundary layer. We discuss the rela-

tive importance of the residual anomalous resistivity when compared to

classical resistivity and classical viscosity.
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The second aspect of microstability theory deals with modes driven by

anisotropy rather than inhomogeneity. We present an analysis of a whistler

instability of the ring electrons driven by the temperature anisotropy built

up by the ECRH heating process. This kinetic instability, which persists

even in the presence of cold plasma, may cause substantial scattering of

ring electrons onto unconfined orbits, thus providing a large energy leakage,

not previously considered, in the power balance of the ring.
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I. INTRODUCTION

All magnetic confinement geometries, by virtue of their inherent

gradients in plasma density and temperature, have diamagnetic currents which

may potentially excite drift-like microinstabilities. These instabilities

can produce fine scaled turbulence and associated anomalous transport with

serious consequences for long time plasma confinement [e.g., drift-tearing

(microtearing) and/or drift modes are the likely cause of the anomalous elec-

tron thermal transport in tokamaks; the drift-cyclotron-loss-cone mode is

responsible for enhanced axial losses in mirrors]. Despite the universality

of the driving forces for drift-modes, they are delicate instabilities in their

sensitivity to the phase-space distributions of particles and many effects

(e.g., finite e, line tying, multiple species, magnetic shear) can either

eliminate them or reduce their deleterious effects. In principle, each class

of confinement geometries must be closely examined to ascertain the consequences

of microinstabilities.

For the purpose of analyzing microinstabilities in the ELMO Bumpy Torus

class of confinement geometries, we may divide the plasma into two parts: the

central core plasma which has relatively weak gradients (P-/L << 1, where p.

is the ion Laraior radius and L i s a macroscopic gradient scale length) and

the plasma edge or boundary layer, with much stronger gradients (p./L <, 1).

Our intent here is to discuss some aspects of microinstabilities in the EBT

boundary layer.

The boundary layer of EBT is a multispecies plasma consisting mostly

of cool ions and electrons (T ~ 100 eV) but with a smaller component (~ 10%)

of relativistic electrons (T ~ 100 keV). Specifically, we shall discuss two
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classes of microinstabilities - high frequency drift waves (w >, w .) driven

by the strong density gradients present in the cool plasma and a whistler in-

stability of the relativistic electrons driven by temperature anisotropy.

The drift waves are important because of their potential role in radial trans-

port and because they could affect the relative fraction of cool/hot plasma -

a factor crucial to the macroscopic stability of EBT. The relativistic whistler

could scatter hot electrons onto unconfined orbits and result in a serious
2

energy drain on the relativists electron annulus.
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II. PROPERTIES OF THE EBT BOUNDARY LAYER

In Figure 1 we illustrate some generic features of the radial profiles

of an EBT boundary layer at the midplane between two adjacent mirror field

coils. The magnetic field has a characteristic dip vMch is the result of

the dianagnetic well dug by the annulus of relativistic electrons. There is

also a potential well associated with an inwardly directed ambipolar electric

field. The core plasma density is relatively flat in the plasma interior but

falls rapidly in the boundary layer itself. The density of annulus electrons

is much lower than the core plasma density and is concentrated in the boundary

layer region. Some of the characteristics of the boundary layer plasma salient

to a microinstability analysis are:

1) strong plasma gradients (p./I >, .1)

2) three plasma components with different temperatures

?} a diamagnetic well

4) extreme temperature anisotropy of the relativistic electrons

5) nonuniformity of the ambipolar field

6) a background of microwave radiation

7) the presence of a separatrix.

In what follows*, we shall use a local theory to address the effects

of characteristics 1 and 2 on high frequency drift modes. We shall use a non-

local theory to ascertain the consequences of a diamagntic wells characteristic

3, on the lower hybrid drift instability - a particularly virulent high frequency

drift mode. Finally, we shall use a local theory to ascertain the relativistic
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annul us

icore

Figure 1. Generic features of radial profiles of an

EBT plasma at the midplane of a mirror cell
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corrections to the whistler instability nominally expected to be driven in

the temperature anisotropic electron annulus, characteristic 4. The other

characteristics, while important, are not as amenable to such straightforward

analysis and must await more sophisticated treatments.
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III. MICROSTABILITY OF THE CORE PLASMA

A. EQUILIBRIUM

Since the modes we consider are relatively short wavelength and are

confined to the boundary layer region, we may neglect cylindrical and toroidal

geometry effects arid use a slab model as the basis of our analysis. The geo-

metry, fields, and relevant particle drifts are illustrated in Figure 2. The

constants of motion are the energy,

1 2e = j mv - (mg - qE)x , (1)

and the canonical momentum,

Py = m(vy + x uc) , (2)

p

where > = qB/mc and g = v /L is used to model the inertial acceleration
due to axial field curvature. We choose a distribution of the form,

fo(x,_v) ~exp[- f] [1 +£x] , (3)

to represent the cool electrons, which are weakly inhomogeneous (p /L « 1)

and the form.

fe - op 1
f (x s l)~exp j-X-l , (4)
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4 y (e)
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B(x) = BQ (1

VE vde vvBe vge

!

- E

I I I
I t I

vdi vvBi vgi

(r - r0)

Figure 2. Slab model of boundary layer illustrating

particle drifts. Region depicted has vnvB<0.
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to represent the cool ions and annul us electrons which may be strongly inhomo-

geneous (P-/L ~ Pe^/L £ 1)- The v moments of these distributions yield the

diamagnetic drifts.

i . •. i 2 LN L c vi

2
where v. = (2T./m.), vF = cE /B and p, = v./w . Ampere's law yields the

consistency requirements

1 1 A~
 VT—' " V u " a' ~~Z— a ~ u — »

B Bo eA L vi i i J
2

where e . = 8TT nT «/B Q > A is the relative fraction of annulus to core elec-

trons, and L B o is the field gradient (due to toroidicity) in the absence of

lus.

Typical conditions in the EBT boundary layer suggest the scale length

LBo

the annulus.

ordering

LN * LB « Lc < LBo

the temperature scaling,

TeA >> Tec ̂ Ti

and that the ambipolar field force is small with respect to the diamagnetic

force of the annulus,



191

(9)

Under these circumstances the equilibrium is dominated by the annulus electrons

and Equation (6) is well approximated by

LB
do)

B. HIGH FREQUENCY DRIFT MODES (LOCAL ANALYSIS)

For perturbations with space-time dependenc

local Vlasov analysis to write the electrostatic dispersion equation,

For perturbations with space-time dependencies, e~lu> 1 y* , we use

1 + - 4
(ky

, (».k ) - 0 ,
1 J

where xQj.
2 - y

and the integral,

(11)

^ (̂ k) , aej - ky pej.

Foo(a8?) dx e"x JQ
2 (a (12)

allows for the possibility of vB resonances of the electrons. The form of

(11) assumes strongly magnetized electrons in the frequency regime u << u ;
3

its derivation is detailed elsewhere. The choice of a specific form for the
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electrostatic Ion response depends on the frequency regime of interest. If

density gradient is quite strong [(p/L) > (m /m-) 3, the ions are unmag-

«ky

In this regime the mode of interest is the lower hybrid drift mode. If the

gradients are slightly weaker [(m /m..) < PJ/ LR < («ne/m^)*], then the ions

are magnetized and (for « ~ £(jV-s)

e"bi] •
1 2where b. - w (fc p . ) c . In this case the mode of interest is the drift-cyclotron

oode. Detailed analysis of the transition between thesa modes has been made.

In the absence of the hot annulus, the modes which we study typically have

1n which case

a e c ~ l • <16>

Therefore, for a small component of annuius electronss we expect (because
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We may use these properties to establish that the contribution of the annul us

electrons to the dispersion equation (11) is small by

with respect to the contribution of the core electrons. Key points in the

argument are the highly oscillatory nature of the integrand of F 0 0U»?) when

a >> 1 and the fact that the resonant contribution of f^U*?)/? is 0 (1) for

? ~ 1. This establishes the important result that the annulus electrons make

a negligible direct contribution to the dispersion equation of high frequency

drift waves. The annulus electronss however, do make a strong indirect con-

tribution to the growth rates of these modes, fhis occurs because the equili-

brium relation (10) implies that the annulus electrons produce a strong magnetic

field gradient. This field gradient results in an vB drift of the core electrons

which may resonante (in regions where vn VB < 0) with the drift waves and have

a strong dampisie effect. We now analyze the extent of this stabilizing effect.

Since the pressure of the annulus electrons is substantial (e ^ >, .1), it may

reasonably be argued that the electromagnetic response of the annulus electrons

must be used to determine the correct dispersion equation for these modes. We

present elsewhere a detailed analysis which establishes that this is not the

case. In summary, we reiterate that the electrostatic dispersion equation

for the core plasma component only is required to describe the dispersive

properties of high frequency drift waves - the annulus electrons affect these

modes only through their influence on the equilibrium.
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B-l. Lower Hybrid Drift Mode

In the region of a sharply inhomogeneous [(p-/L^, > (m /m.) ] boundary

layer where vB vn < 0, there will be a resonance of the lower-hybrid-drift

mode with core electrons undergoing vB drifts. We expect this resonance to be

stabilizing and calculate here the extent to which this vB effect suppresses

lower-hybrid-drift activity in the boundary layer. In Figure 3 we show the

maximum growth rate (with respect to k ) of the lower-hybrid-drift as a func-

tion of the annulus pressure, 3», for different values of the plasma density

gradient. The inset in Figure 3 depicts the position within the boundary

layer at which the local calculation is performed. Relevant parameters are
urvQ/

u^« = 1 and T.../T. = 1. From equation (10) we see that e» is a measure
pG Cc 61 1 *»

of the magnetic field gradient. For all values of p.-/L^ we see a substantial

reduction of the growth rate.

B-2. Drift-Cyclotron Instability

In a boundary layer with somewhat weaker gradients [(m /m.)* ~p./L N

~ ( m /m.) ], the operative mode is the drift-cyclotron instability. This mode

has the same negative energy character as the lower-hybrid-drift instability

(although the ion response is quite different) and is also diminished by the

vB resonance of the electrons in regions where vB vn < 0. In Figure 4 we

show the maximum growth rate (with respect to k ) as a function of annulus

pressure for different values of density gradient. Relevant parameters are

^J^r.a
 = 1 and T«r./T-t = !• In tne case of tne drift-cyclotron mode, different

cyclotron harmonics are predominantly exited for different values of density

gradients. We consider a first harmonic case (u ~ wci, P^/L N = 0.15) and a

second harmonic case (w =2 2OJC1-, p^/L^s.25). In both cases, however, we again

see a substantial reduction of growth rate as the field gradient becomes sharper.
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Figure 3. Lower-hybrid-drift maximum growth rates as a

function of annulus pressure, BA» for different

density gradientss p ./LN. Inset shows the point

at which the local analysis was performed.
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nate in the two cases.
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We only preview here some representative cases of the local theory

analysis for high-frequency drift modes in EBT boundary layers. A detailed

parametric survey of the stability properties of these modes in EBT will be

presented elsewhere.

C. HIGH FREQUENCY DRIFT MODE (NONLOCAL ANALYSIS)

In the local analysis just presented, we have restricted our considera-

tion to the region of the boundary layer where the stabilizing vB resonance

would be greatest, i.e., where vB vn was most negative. In reality, drift

modes have a radial extent in the boundary layer and see different values of

vB. Indeed,, they are resident in the diamagnetic well. To obtain a more

realistic estimate of the effect of this diamagnetic well in drift modes, we

must use nonlocal theory.

By standard methods we derive the nonlocal dispersion equation,

X D 1 )
2 * ̂  [- 2 5f + (1 - 2 C 1

2) 2 (c^

a ^ / j_ &
\ » / ec 3aec | [2 9x2y

s 2 + [ i + c , z ( c , :

where c^ = (w - k v^^J/k v.. In writing (19) we have taken the ions to

be unmagnetu'ed and hences have restricted our nonlocal analysis to the lower-

hybrid drift mode.
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To proceed, we choose some representative profiles for the density

and field profiles in the EBT boundary layer,

n(x, = no [i + * 2 v y ( * / * a , (20)

B(x) = 80 f l - gA sech2 ^ ~ \ • (21)

These profiles and their logarithmic derivatives are illustrated in Figure

5. The maximum in dunn/dx suggests a preferred localization point for lower-

hybrid drift eigenmodes within the boundary layer. In Figure 6 we illustrate

a sequence of eigenmodes ("radial") within the boundary layer for a reference
T

case of B = constant, -^ = 10, and —• = 1. The unit of distance is x. =
wce Ti L

v./u) . = p (T./T ) . It is clear that the eigenmodes span a significant

portion of the boundary layer - typically the mode width is~40 x. ~ p..

In addition, the growth rate of the higher order modes is not much different

from the fundamental. In Figure 7 we repeat the calculation for a lower

density case, w /u> = 1, which is more representative of EBT. Interest-

ingly, we see that the density dependence of *D comes in to play in localizing
ft modes in this case with the result that the eigenmodes are located to the

inside of (1/n dn/dx) .
max

In a nonlocal analysis, many of the effects of interest are coupled

by the equilibrium requirements and it is often difficult to focus on a single

effect. For examples there are two different effects if we introduce a dia-

magnetic well into the calculation illustrated in Figure 5. First we increase

the growth rate because reducing the magnetic field strength increases the

diamagnetic current (if 1/n 3n/3x is held constant). Secondly, we introduce
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n(x)

dx

B(x)

Figure 5. Model profiles of density and magnetic
field for the EBT boundary layer.
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VB, the stabilizing effects of which being our focus of attention. There-

fore, to isolate this second effect we show the effect of a diamagnetic well

on the eigenmode illustrated in Figure 5a in two stages. In Figure 8 the well

depth is increased but vB effects are artificially suppressed. We thus see

an increase of the growth rate as $» increases. In Figure 9 we also include

the vB effects and see that the eigenmode is distorted (because vB effects

operate differently depending on the sign of vB vn) and that the increase in

growth rate is relatively smaller. In Figure 10, we isolate this stabilizing

effect by showing the difference between the local theory maximum growth rate

(calculated at ^ |£
n dx max

) and the nonlocal maximum growth rates for the cases

illustrated in Figure 8 and Figure 9.

In essence, the magnetic field gradients associated with the diamag-

netic well in the EBT boundary layer are stabilizing on the lower-hybrid-drift

mode but (as might be expected) not as much so as a local analysis would indi-

cate. These results represent a first step toward understanding global profile

effects on high frequency drift modes in EBT-like boundary layers. Quantitative

results, valid for existing or proposed EBT devices, will require careful para-

metric surveys of stability properties which we defer to later work.
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IV. WHISTLER INSTABILITY OF THE RELATIVISTIC ELECTRON ANNULUS

In the course of a detailed study of energy loss processes from the

hot electron annulus in EBT, we have concluded that although the ring temper-

atures are of the same order as deduced from classical loss processes (Coulomb

drag and synchrotron radiation), the scaling of ring energy with magnetic

field is not consistent.

Among possible loss processes is the scattering of electrons onto

unconfined orbits by the fluctuating fields of various stabilities. In

particular, because of the anisotrcpy of the ring, whistler instabilities

must be considered a strong possible loss mechanism.

It has previously been shown that cold plasma background and the

effect of a relativistic spread in cyclotron frequency can be influential

in suppressing whistlers. We note (nonrelativistically) that in frequency

range

<kJlvl!)cold * « ' \ e K (kHvll>hot • (22)

an instability driven by the annulus persists, despite the cold background.

The dispersion equation, modified for rclativistic effects is as

follows:

"d f . V 2 "ce
ui-
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0 —oo
k M c

[ 3f 3f -i

(UY-kHc P||)—%+ (k,ic P||)-A
3PX aP|l J

(23)

where y - f*l + P± + P(| 1 and A is the relative fraction of hot electrons.

We examine here the distribution,

fQ = [4ne exp(l/e) K2 (1/e)] (f^

exp |-

p
with e = Tj/m c , and L is a Bessel function.

Note that this relativistic distribution function has been chosen to

reduce to the relativistic Maxwellian in the isotropic limit Tj_ = TI( , and

to the bi-Maxwellian in the limit T x ̂  T|| , e << m e . This distribution is

appealing because of its limiting properties, but is not necessarily charac-

teristic of the EBT ring. The character of the ring distribution is a subject

of active research.

We have calculated the whistler growth rates numerically, with results

shown in Figures 11 and 12. The instability persists relativistically, and

V
2

the growth rates become substantial for T x > m e .
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Figure 11. Growth rates for the relativistic
whistler versus energy.
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Electron-Cyclotron Resonant Heated Electron Distribution Functions*

Y. Matsuda, W. M. Nevins, and R. H. Cohen

Lawrence Livennore National Laboratory, University of California

Livermore, California 94550

ABSTRACT

Recent studies at- Lawrence Livermore National Laboratory (LLNL) with a

bounce-averaged Fokker-Planck code indicate that the energetic electron tail

formed by electron-cyclotron resonant heating (ECRH) at the second harmonic is

not Maxwellian. We present the results of our bounce-averaged Fokker-Planck

code along with some simple analytic models of hot-electron distribution

functions.

*Work performed under the auspices of the U.S. Department of Energy by the

Lawrence Livermore National Laboratory under Contract Number W-7405-ENG-48.
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I. INTRODUCTION

Populations of energetic, highly anisotropic electrons have been created

in many experiments ~ by electron-cyclotron resonant heating (ECRH) at the

second harmonic. AT LLNL we intend to maintain such a population with ECRH at

the second harmonic in the thermal-barrier cell of the Tandem Mirror

A

Experiment-Upgrade (TMX-U) and Mirror Fusion Test Pacility-B (MFTF-B)

experiments.

The stability of these hot electrons is one of our major concerns. We

are particularly interested in high-frequency (u) £ JJ } electron

instabilities. Stability to these modes depends on the form of the electron

distribution function. Guest and Sigmar have studied these modes

extensively, using various functional forms to me 1 the hot-electron

distributions. Hence, any effort to improve upon t. tr previous work requires

a more realistic model of the hot-electron distribution function.
7-9In Sec. II we describe a bounce-averaged Fokker-Planck code that we

have developed to study the evolution of the electron distribution function

under the influence of both ECRH and binary collisions. Although we are

primarily interested in mirror experiments, we believe that such a code would

be a useful tool for studying the hot-electron distribution function in both

the Elmo Bumpy Torus (EBT) and Nagoyo Bumpy Torus (NBT) devices.

The steady-state electron distribution function obtained from the

bounce-averaged Fokker-Planck code is discussed in Sec. III. We find that

this distribution departs significantly from a Maxwellian.

The high-energy tail on the electron distribution function falls off as

f ~ E~ , where E is the kinetic energy. A simple theoretical model that

explains this falloff at high energies, and other features of the

Fokker-Planck electron distribution is presented in Sec. IV.
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II. THE BOUNCE-AVERAGED FOKKER-PLANCK CODE

A bounce-averaged Fokker-Planck code solves for the distribution

7-9
function along a single magnetic field line. Bounce-averaged formalism

assumes that the bounce frequency of a trapped particleuT is large compared

to both the collision frequency v , and the heating rate resulting from
c

interaction with the applied microwaves v f. Within this limit the

distribution function depends only on «?(the particle energy) and u(the

magnetic moment).

Our present code assumes that the plasma is confined in a symmetric

magnetic mirror. The distribution function can then be written as a function

of vQ and 6Q, where vQ and 9n are the values of a particle's speed and

pitch angle when it passes the midplane of the mirror cell. Bernstein and
Q

Baxter have presented a comprehensive treatment of the bounce-averaged

formalism, including both binary collisions and ECRH. Our code is based on

this formalism.

The basic model is shown schematically in Fig. 1. The magnetic field B

nas a minimum at z = 0 and a parabolic variation; i.e., B = B. (1 + Rz /L ),

where R is the mirror ratio. In general, there can also be an ambipolar

potential. In this talk we will only consider runs in which this potential

vanishes.

The passing particles only transit the system once in a time OJ~ —

short compared to the time-scale of collisions (v~ ) or ECSH

(v f) . Hence, the passing-particle distribution function may be

specified as a boundary condition. Although the bounce-averaged Fokker-Planck

code does not evolve the passing-particle distribution function, collisions

between trapped and passing particles are important. These collisions are

retained in our code.
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We consider the situation in which the microwave frequency to is slightly

greater than twice the electron-cyclotron frequency at z = 0, 0 (0). In

this case there is a second harmonic resonance near the bottom of the magnetic

well, where w = 2 ^ c e ( z 2 ) '
 a n d a f i r s t harmonic resonance further up the

magnetic well, where w = f^gfz^ (see Fig. 1).

In this talk we restrict our attention to perpendicular incidence of the

microwave heating field (i.e., k = 0). The trapped particles then experience

a jump in their instantaneous perpendicular velocity each time they pass

through a resonance on their bounce orbit. When these jumps are small and

uncorrelated, the action of ECRH on the trapped particle distribution can be

described by a diffusion operator.

Because the bounce orbits of some particles never reach the resonant

points z and z , these particles do not strongly interact with the

heating field. Figure 2 shows phase space at the magnetic-field minimum.

Particles that lie above the line labeled "second harmonic" (region III) turn

before they reach the second harmonic resonance point z,. Hence, that part

of the electron distribution function in region III evolves only due to

collisions.

Particles that lie above the fundamental line turn before they reach the

fundamental resonance point z^, so that particles that lie in region II

interact only with the second harmonic resonance. Those particles that lie

between the fundamental line and the loss cone boundary (region I) interact

with both the fundamental and second harmonic resonances.

It is necessary to provide a boundary condition in solving the

Fokker-Planck equation in the trapped region of phase space. The value of the

distribution function f at the loss boundary is determined by the distribution

of passing particles. At QQ = TT/2 we require regularity of the distribution
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function. The problem is closed by specifying the behavior of f at large

velocity. We have chosen to set f = 0 along the arc vn = v
u max

Although this boundary condition was originally chosen for convenience,

we note that it models an important effect that is not otherwise taken into

account by our code: namely, the nonadiabatic scattering of high-energy

electrons as they pass the magnetic field minimum. At very high energies

electrons will be rapidly scattered in pitch angle. In mirror machines these

electrons soon enter the loss cone and are lost out the end, while in EBT's

they scatter onto an unconfined drift orbit and are lost to the wall. We find

that this loss mechanism is very important in the power balance of the hot

electrons.

III. ECRH DISTRIBUTION FUNCTIONS

Our bounce-averaged code follows the evolution of the electron

distribution function in time. Initially, the loss cone is filled by a cold

(T = 17 eV) plasma stream wil-^ a density N = 1 0 cm" at the mirror

throat, while the trapped region is empty. The temperature and density of

this cold stream is kept constant throughout the run. This scenario is

motivated by the experimental plan in TMX-U, where the hot-electron plasma in

the end cells will be built up from a stream of cold plasma that flows from

the center cell into the end cells. However, this stream of cold electrons

may be viewed as a model for the cold population of electrons created by

ionization of neutral gas in EB'T and other experiments ' in which hot

electron plasmas have been created.

The parameters for the computer runs that we discuss in this section

were chosen to model the Symmetric Tandem Mirror (STM) experiment at TRW,

Inc. The magnetic field parameters are B = 1.75 kG, R = 3, and L = 35 cm;
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the effects of finite @ depression are not included. The microwave frequency

is 10 GHz and the electric field of the right-hand, circularly polarized

component is taken to be 10 V/cm. Early in these computer runs we saw a

buildup of energetic electrons from the cold-electron population in the loss

cone. After less than one second, a steady state is reached. He say that a

steady state has been attained when (1/n) 3n/3t, (1/E) 3E/3t < 0.1 s~ .

Figure 3 shows a contour plot of the steady-state electron distribution

function obtained when only the diffusion due to the fundamental resonance is

retained. The contours are spaced logarithmically; i.e., the value of the

distribution function decreases by a factor of 0.58 as you move from one

contour to the next.

The fundamental resonance line delimits regions in which the behavior at

the distribution function is very different. Below fchis line in region I,

where both ECRH and collisions act on the distribution function, there are

strong variations of the distribution function with pitch angle. Above the

fundamental resonance line, where the distribution function evolves only due

to collisions, the variation of the distribution function with 8. is much

weaker.

We can understand the shape of these contours by noting that as

particles are heated by the rf comp nent, the perpendicular velocity of their

resonant point along the magnetic field increases. This tends to move their

turning point in towards the resonant point. In (v , v ) space the
i0 "0

particle is drawn along a hyperbola,

X " fa**" " ') "h
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that asymptotes to the fundamental resonance line. As a first approximation,

the diffusion due to the ECRH tends to flatten the distribution function along

each of the family of hyperbolas defined by Bq. (1). Strong variations in f

occur as you move from one hyperbola to the next. At large vQ, small

variations in pitch angle move you rapidly from one hyperbola to another.

Hence, we expect strong gradients of the distribution function in pitch angle

below the fundamental resonance line.

Above the fundamental resonance line only binary collisions affect the

distribution function. If we were to ignore diag and retain only pitch-angle

scattering, then the contours would be segments of arcs centered at v. = 0.

For energetic electrons the drag and pitch-angle scattering terms are of the

same order. Hence, when drag is included (as it was in our computer runs) we

expect the contours to be drawn down somewhat from these arcs like those

contours in the region above the fundamental resonance line of Figure 3.

We also considered the combined effect of fundamental and second

harmonic heating. Figure 4 shows a contour plot of the electron distribution

function when the diffusion from both the first and second harmonic resonances

is included. In this run we chose the perpendicular wave number k. = 4 cm

Three regions of plane phase space are delimited by the fundamental and second

harmonic resonance lines. Below the fundamental resonance line (i.e.,

region I), the distribution function has strong gradients in pitch angle.

This behavior is similar to that seen in Fig. 3.

Between the first and second harmonic lines (i.e., region II), the

contours of constant phase space density tend to follow the characteristics of

the second-harmonic diffusion operation. These characteristics are the

hyperbolas
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'K --« •

In the region above the second-harmonic resonance line, the evolution of

the distribution function is due to collision. We would expect the

steady-state distribution to vary only weakly with pitch angle in region III.

For the parameters of this computer run, the collision frequency is very small

for electrons in the tail of the distribution function (T i l , 5 s at v. =
c 0

10 cm/s). Hence, the electron distribution function has not yet reached a

steady state in the region above the second-harmonic resonance line.

Figure 4 is instructive because it ill' ̂trates the patterns of flow in

phase space. The strong gradients of the distribution function in pitch angle

near, but slightly above, the second-harmonic resonance line indicate that

there is a flux of high-energy electrons into the region above this resonance

line. Hence, energetic electrons are first spun up along the diffusion

characteristics below the second-harmonic resonance line. Most are lost out

the boundary at v. = v , i.e., lost due to nonadiabatic scattering.

Some energetic electrons pitch-angle scatter into the region above the

second-harmonic resonant line where collisions with low-energy electrons

slowly drag them down in energy.

Figure 5 shows a plot of the electron distribution vs energy along the

second-harmonic resonance line. We have used a log-log scale so that straight

lines correspond to power laws. On such log-log scales Maxwellians have

downward curvature at all energies.

i t low energies (E <, 100 eV) the distribution function is well fit by a

Maxwellian with a temperature of about 30 eV. At intermediate energies

(100 eV < E < 5 keV) there is a marked departure from a Maxwellian. In this
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energy range the distribution function falls off as E~ ' . Other

Fokker-Planck runs indicate that this falloff is characteristic of first

harmonic heating. At higher energies (E > 5 keV) we see a tail that falls off

as E" ' , In the next section we show how much of this behavior can be

understood from a relatively simple theoretical model.

IV. THEORETICAL CONSIDERATIONS

An important first step in developing a theory to describe the ECRH

distribution function is to determine the relative magnitudes of the rf and

collisional diffusion in each region of phase space. The collisional

diffusion decreases with energy, while the rf diffusion is either

approximately independent of energy (at the fundamental), or else is an

increasing function of the particle energy (at the second harmonic). Hence,

the microwave heating always dominates collisions at high energies.

We can estimate the energy at which microwave heating begins to dominate

collisional effects by first equating heating rate V f(E) to the collision

frequency v (E) and then solving for E. The rate at which microwave heating

increases a particle's energy can be estimated as

where D is the rf diffusion coefficient. These coefficients have been

9
calculated, for example, by Bernstein and Baxter.

In region I of phase space fundamental heating is competing with

binary collisions. We have found that the fundamental heating will

dominate pitch angle scattering out of region I for energies greater than
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10 I r ,1 keV (4)/ "l

W
where A6 is the angle between the fundamental resonance line and the loss

cone, £ is the amplitude of the heating field in V/cm, B is the magnitude

of the magnetic field in kG, and n. is the cold electron density in units

of 10 /cm . For the parameters of our runs, we find E.. ~ 0.1 keV.

At energies greater than Ew the electrons she-'Id "run away" to form a

high-energy tail on the distribution function. In Pig. 5 we see significant

departures from a cold Maxwellian at energies above E...

In region II of phase space, only second harmonic heating is competing

with collisions. Particles in region II do not see the fundamental resonance

so the second harmonic diffusion does not compete with first harmonic

diffusion in region II. This is an important point since first harmonic

diffusion is much larger (for nonrelativistic particles), and it would mask

the effects of second harmonic heating if it were present in region II. We

find that second harmonic heating dominates collisional drag for energies

greater than

E2 -70 I 2 ) keV (5)

Inserting parameters appropriate to our computer runs, we find E ~ 10 keV.

Turning back to Fig. 5, we see that there is a pronounced break in the slope

of the distribution function in the neighborhood of E_. In fact, we find

that f ~ E~ 3 / 2 for E1 < E ^,E2 and f ~ E~
5/6 for E2 < E < E m a x = 1/2 ^

At very high energies we can make a good approximation by ignoring

collisional effects in calculating the form of the distribution function. The
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steady-state distribution functions are then determined by the one-dimensional

equation

i- •£- v, D s 2- f = 0 , (6)
v^ 3v, 1 3v,

where v. is the perpendicular velocity at the resonant point, and 0 is the rf

diffusion coefficient. The solution to Eq. (6) that obeys the boundary

condition f(v ) = 0 ismax

/
dv,

1 (7)V1 D (V

We noted previously that particles that are strongly heated by the

microwaves tend to turn near their resonant point. In this region of phase

space, D(v ) is proportional to v^ ' for second harmonic heating.

Hence, we find

(8)

or

I E5/6 ~ gS/6 I
\ max/

Note that this theoretical model is in excellent agreement with the result of

the Fokker-Planck code in the interval E2 < B < Emax (see Pig. 5).

We attempted a similar calculation involving f i r s t harmonic heating in

an effort to explain the variations of the distribution function with E in the
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interval E.. < E < E_. The agreement between the calculation [which

yielded f(E) ~ E+1/3J and the Fokker-Planck run was poor. We attribute this

to pitch-angle scattering, which is able to compete with first harmonic

heating in a narrow boundary layer near the first-harmonic resonance line.

When this is the case, it is necessary to solve a two-dimensional problem (in

v and 6O in order to determine the variation of f with E in the range

E^ < E < E2. This work is in progress.

V. SUMMARY

We have found a bounce-averaged Fokker-Planck code to be a useful tool

in studying the electron distribution functions produced by ECRH. Although we

have focused primarily on mirror-confined electrons in our work, we believe

that a bounce-averaged Fokker-Planck code would be very useful in studying the

electron distributions in Bumpy Tori as well. Such a code would be useful in

analyzing both the stability and the power balance of the hot electron rings.

We have begun a theoretical study of the ECRH distribution function. We

now understand many features of the electron distribution functions that have

been obtained numerically. More work is needed to understand the variation of

the electron distribution function in the intermediate energy range where

first harmonic heating dominates. This work is in progress.

In addition, new effects must be added to our model, including

relativistic electron dynamics, finite parallel wave numbers, finite 3, and

variations in the ambipolar potential along the magnetic field. These effects

will be included in a new Fokker-Planck code that is currently being developed.
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v||0 (X 1010cm/s)

Fig. 3. Steady-state distribution function (fundamental heating only)

3 1 r
I I i

Second harmonic
resonance

Fundamental
resonance

v||Q (X 1010cm/s)

Fig. 4. Steady-state distribution function (fundamental and second harnonic

heating).
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Fig. 5. Variation of distribution function with energy. 8 = 1.425 is the

second harmonic resonance line (see Fig. 4).
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Abstract

The dynamical tensor pressure equilibria of a bumpy cylinder are

investigated numerically by using the two-dimensional magnetohydro-

dynamic (MHD) equation. An isotropic bulk plasma pressure and an ani-

sotropic hot electron pressure are assumed. The nonlinear evolution of

two-dimensional MHD equation are studied, revealing that the hot electron

annuli play an important rols in the equilibria of bumpy cylinder. Using

the numerical equilibrium solutions, several stability criteria are also

studied for a class of MHD instabilities. The attainable beta value of

the bulk plasma that is derived from the equilibrium point of view seems

to be somewhat smaller than that predicted by the stability analysis of

the rigid annu'.us model.
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Considerable attention has been paid recently to the bumpy torus

confinement system. While a closed-line torus with isotropic pressure

and monotonically increasing ̂ d2/B is always unstable to interchange

modes1, the diamagnetic current associated with hot electron annuli

transforms the bumpy torus into a local average minimum-B configurations,

in which these modes are stabilized. The anisotropic nature of the hot

electron annulus, the localized high-e region, the closed magnetic field

lines, and the mirror symmetry should all be incorporated into a realistic

model of the bumpy torus equilibrium.

Since the bumpy torus s not toroidally symmetric, the equilibria

are, in general, three-dimensional. For large aspect ratio, however, the

configuration may be approximated by its infinite aspect-ratio limit,

namely, the straight bumpy cylinder. Many sufficient conditions for

general mirror equilibria have been discussed first by Grad2 and several

authors3'4'5. Numerical studies of typical 2-D bumpy cylinder6'7 and

typical 3-D bumpy torus8 equilibria have been done in the guiding-

center formulation including the anisotropic hot electron population in

the equilibrium force balance. Recently, analytic toroidal equilibria

of bumpy torus configurations have been calculated by Freidberg9 based

on an asymptotic expansion in the amplitude of the bumpiness.

In the present study, we consider the dynamical effects of hot

electron annulus on the bumpy torus equilibria using MHD equations with

isotropic bulk plasma and anisotropic hot electron pressures. Two-

dimensional equilibria are obtained that are applied to study the sta-

bility criteria against the MHD instabilities discussed in Refs. 4 and

5.
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The basic MHD equation relevant to the present problem is dis-

cussed in Figure 1, where an artificial viscosity term <£, artificial

damping term vv, and also diffusion term Dv2p are introduced to control

the behavior of the numerical scheme employed. Here, all quantities

are normalized. The model equations are solved numerically in cylin-

drical coordinates. Here we restrict ourselves to the e-symmetric

system, which allows one to study a reduced domain as shown in Figure 2.

The geometry characterizes the EBT and NBT experiments with the z-

dimension equal to b0 and the r-dimension equal to a. The hot electron

annulus is approximately Ar wide and Az long located at the position

(rj, z=0). The present boundary conditions are shown in Figure 3. We

assume the periodicity in z and impose periodic boundary conditions at

z = -bo/2 and z = bo/2. On the radial boundaries, r = 0 and r = 1, we

impose fixed boundary conditions, i.e. at r = 1, and at r = 0 we impose

a mirror boundary condition.

The pressure components are shown in Figure 4. The first term in

these expressions describes the bulk plasma, and the second one describes

the hot electrons. For the sealer pressure term, we can change the pres-

sure profile for the bulk plasma by changing the factor a. To simulate

the annular hot electron plasma, we use the initial pressure distribution

for hot electron annulus model, which has been discussed in Refs. 3-5.

The MHD equations (see, Figure 1} are solved as an initial value problem

by a modified two step Lax-Wendroff method under the boundary conditions

(Figure 3). An initial solution of MHD equations as an initial value

for numerical calculations is discussed in Figure 5. For numerical pur-

poses, we decompose the flux funrMon into * = if» + rp. , where * is
S i n 6
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Normalized MHD Equation

*%-$. (vp)+D'2p

^ ^ JxfiU

where

6-S/IBI ; n=o

3=vxB , P^PJ.I+(P,.-PJ.)66

$=u?"2v : Artificial Viscosity Term

vv : Artificial Damping Term
P/PO ^ p

P/(B /2u )• p
9 9

S/Ba * 5

Figure 1. Normalized MHD equation
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Configuration

• Cylindrical Coordinate

e-Symmetry

Domain :
b(
2

b(
2

* Hot Electron Ring : ir Wide and n Long

Figure 2. Configuration and coordinate
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Boundary Conditions

Z-direction : Periodic Boundary

!JL - bo
* 2 ~ J2~

R-direction

At R=a : Fixed Boundary

<Ka/Z) independent of time

At R=o : Mirror Type Boundary

Vr(o,z)=VQ(o,z)=Br(OyZ)=B9(o,z)

3 r r=o~ 3 r 'r=o"3r r = o 3 r r=o

3Bz, 3 j z ,

r=0 r=0

Figure 3. Boundary conditions
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Pressure Distribution

* z

_J

AZ

J.
/ t

z1 ' 0)

, o)

To4(Tl+f2}

Bc-|B(rp -f-)

Pn=P+AP,.

where for given PQ and S

Figure 4. Pressure model for bulk and hot electron plasmas
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Flux Function *

-C-f ff o, 1 |f)

' arlr ar; r 3 2 2
y 0>

produced by external coils

due to hot electron current

<Fin=bl(rlr) /z cos(krlr){sln(kr2r)+b2cos(krlr)>cos(kzz)

where

r-r-r2

Figure 5. Initial solutions
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related to external fields and ^ n is due to hot electron currents.

Then, we can determine a magnetic geometry relevant to EBT/NBT machines

by adjusting coefficients a1# a2, bj and b2 in i|»e and i|»̂ n. How to deter-

mine these coefficients is discussed in Figure 6. Now we have four typi-

cal parameters, namely, the mirror ratio R , the current ratio R between

the negative and positive values of the dipole current in the hot annul us

regions the parameter ( B ™ )
m i n characterizing the minimum-B configuration

created due to hot electrons, and the parameter a2 representing the magni-

tude of the magnetic field. For given those parameters, we can determine

the coefficients ax, a2, b1 and b2. The equilibrium solution is defined

on an r-z mesh. The number of spatial mesh coordinate units are (r,z) =

(34,34) or (66,66) including the fixed boundaries.

The parameters used in the calculations are shown in Figure 7. We

study several cases in which we change the maximum value of bulk plasma

pressure p0 over the range of 0.01 (e_ss2%) - 0.1 (e <*20/&)s and the para-

meter S in Figure 4 over the range of 0.5 ^ 2.0, where we defined 6 =

2 and eh = 2pph/B|. For the case of a = 20 cm and BQ = IT under the

present parameters, we obtain ax = -0.138, a2 = 0.0, b1 = -0.144, and

b2 = 0.279. The domain and magnetic geometry are also Illustrated in

Figure 7.

An example of the calculation is shown in Figures 8 and 9. Here,

the initial beta values of the bulk plasma and the hot electron annulus

are about \% and 25% at the center, respectively. An equilibrium

state in this case is defined after the time step t = 10.24, namely,

about ten times the Alfven transit time. Figure 8 gives contour levels

of the flux ij> and indicates clearly the local minimum in B created by
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How to determine Coefficients a , , a2> b\ and b2

ext _ I !Ze Rext_l
r ~ r 3z ' Dz ~r

Rin 1 3*in Rin_lBr ="r 5z * Bz ~r

0 ° I i "I i 3 7 Z

ext
B7 '

Mirror Ratio : R™= -*-B|xt(o,o)

br(BJn)rain/kr2

Current Ratio :

R jK c =

J9(kr2r=f)

R r c v c ic 3 *r
b 9 - c

2

: given

«c a n d a2 "~* a p a 2 ' b l a n d b2

Figure 6. Determination of coefficients a , a , b and b .
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Parameters

r l

0.65

R c

-0.9

Ar

0.3

PO

0.01
_ 1*•* * 1

(2%)
~(2O*)

AZ

0

S

0.

2

.5

1-

.0

2

0

bo

.6

D

.003

R

1.

u

0.

TT)

9

1

0

0

o2

.0

V

.10

(B

-0
"V.-0

0

irumin
z
.2

.3

n

.0

For AQ=20cm BQ=1T

1.3 T
z

•69T
52 em

20 cm-

mitt

6emj—

1.95T

-> r

ap-0.138

a2=0.0

b2=0.279

=-0.

Figure 7. Parameters used in the numerical calculation. The domain and
magnetic geometry are also shown.
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Mod-B & Flux

Figure 8. Mod-B and level contours of flux $ are shown, which indicate
the local minimum in B created by the diamagnetic current of
the onnulus. ?>, - 25% and 8 = 1%.
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P-PflRRLLEL P-PERPENOICULRR

mtua.aaaao HRX.O.i3iua

Figure 9. Parallel and perpendicular pressure contours In r-z plane at
equilibrium. 0. - Z5Z and 6 * 1%.h p
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the diamagnetic current of the hot electrons. The magnetic gradients

are increased in the vicinity of the hot electron annuius, but the

curvature is hardly changed. Figure 9 shows the parallel and perpendi-

cular pressure contours. Both the parallel and perpendicular pressures

are shifted a little inward from the initial position and the axial

length and the radial width of the perpendicular pressure distribution

are larger than those of the parallel pressure distribution. The

radial profiles of mod-B, current, parallel and perpendicular pressures

at the midplane are shown in Figure 10 for several values of hot electron

annul us beta &., namely, 15.6%, 20.OX, and 29.0%, which are defined at

the equilibrium state. The local magnetic wells at the annulus region

become deeper and broader as the annulus beta 6h is increased. Next we

studied the equilibria for high bulk plasma beta. Consequently, it turns

out that the hot electron annulus may be shifted inside or outside de-

pending on the pressure profiles and value of BD/Bi.. Here we used the

factor characterizing the bulk plasma pressure profile a = 1.2. However,

we will use a = 0.2 when we investigate the stability criterion later.

The relationship between beta values of the bulk and the hot electron

annulus are plotted in Figure 11 for several equilibria in which the

hot electron annulus are located at r = 0.600, 0.625, and 0.65. We

obtain an equilibrium at r = 0.65, resulting in B/g, =» 0.3 at this

position.

We next consider the influence of the hot electron annulus on

the bulk plasma stability. Studies of bulk stability limitations are

developed in two approaches: rigid ring models6'10 and interacting

ring models11'12. The rigid ring models show that the linear improve-
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MOO-B CURRENT

0.3 •

0.6

0.3

0.20

o.ooLc-

Figure 10. Radial profiles of mod-B, current, parallel and perpendicular
pressures in midplane at equilibrium are shown for several
values of the annulus beta, 6 = 15.6% (I), 20.0% (II), and
29.0% (III) at the equilibrium.
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-O'

„_• rt 0.650

,O r» 0.625

# r-0.600

4

15 20 25 30

Figure 11. Relationship between the bulk and the annulus beta values are
plotted for several equilibria in which the annuli at equili-
brium are located at r = 0.600, 0.625, and 0.650.
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ment in attainable a values with 6. . However, the interacting ring models

predict that this tendency is not present at higher values of &h-

We study the role of high-B hot electron annulus in maintaining the

stability of the bulk plasma against a class of MHD instabilities using

the stability criteria (see, Figure 12), which have been discussed in

Refs. 3-5). D. Spong has summarized these criteria for flute modes and

pressure driven ballooning modes in Ref. 13. The self-dug well of the

annulus could stabilize over interchanges most of the ring region,

however, at the outer edge, some of line-tying would be necessary if

the plasma pressure extended beyond the edge of the magnetic well. In

contrast to this type of mode, pressure-driven ballooning modes distort

and stretch the magnetic field lines. Then, the stability criterion for

this mode involves only curvature, which is not effectively modified by

finite beta. Consequently, it is more difficult to satisfy than the

criterion for flute modes.

Some results on the stability criteria for flute and ballooning

modes are shown in Figure 13. We chose a = 0.2 in the bulk plasma

pressure model (see, Figure 4). In this case, the bulk plasma pressure

profile is flat more than that for a = 1.2. We used the numerical equi-

librium solutions when we carry out the field line integration in the

stability criteria. The results, which are stable against flute and

ballooning modes (0), stable for flute modes but unstable for ballooning

modes ( A ) , and unstable against both flute and ballooning modes (*), are

plotted in this figure. The results by Van Dan and Lee (Ref. 12) is

also illustrated for comparison. These results indicate the situation

of stability of bumpy torus mentioned above, but the results presented
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STABILITY CRITERIA

1. Rosenbluth - Longmire

< 3P, ,
+ 3? 3i^> -

2. Generalized Interchange

< 0

3Pi 2

3 p i <Tijr~>

+ > + j— ± 0

3. Localized Perturbations
3Pa. 2

< 3P, , B (ij
> + < __> £ Q

3* 3<f» TB

where
' I f 6i

Figure 12. Stability criteria against a class of MHD instabilities such
as flute and ballooning modes.
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15

10

O : Stable [ , U.,e

ballooning
^ : Stable flute

Unstable ballooning

* Unstable [ J l u / ,e

ballooning

Van Dam— Lee

0
10 15

Figure 13. Results on stability criteria for flute and ballooning modes.
Stable against flute and ballooning modes (0), stable for
flute mode but unstable for ballooning mode (A), and unstable
against flute and ballooning modes (*). For comparison, the
result by Van Dam and Lee is also plotted.
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here would be altered a little by more improved numerical calculations,

the geometry and profile effects such as the variations on the length

and width of the hot electron annulus, different pressure profiles, etc.
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KINETIC STABILITY ANALYSES IN A BUMPY CYLINDER*

R. R. Dominguez
General Atomic Company,

San Diego, California 92138

and

H. L. Berk
Institute for Fusion Studies,

Austin, Texas 78712

ABSTRACT

Recent interest in the ELMO Bumpy Torus (EBT) has prompted a number of

stability analyses of both the hot electron rings*»2 and the toroidal

plasma.^»* Typically these works employ the local approximation, neglecting

radial eigenmode structure and ballooning effects to perform the stability

analysis• In the present work we develop a fully kinetic formalism for per-

forming nonlocal stability analyses in a bumpy cylinder. We show that the

Vlasov-Maxwell integral equations (with one ignorable coordinate) are self-

adjoint and hence amenable to analysis using numerical techniques developed

for self-adjoint systems of equations. The representation we obtain for the

kernel of the Vlasov-Maxwell equations is a differential operator of arbi-

trarily high order. This form leads to a manifestly self-adjoint system of

differential equations for long wavelength modes.

*Work supported by Department of Energy,
Contract DE-AT03-76ET51011.
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1. INTRODUCTION

Recent kinetic stability analyses of EBT have typically neglected radial

structure and finite length effects. Several methods have been proposed

during the workshop to study nonlocal effects, including the generalized SW

formulation and the "bumpiless" EBT Z-pinch model.

A different method for analyzing linear stability, including nonlocal

effects increasingly used in plasma physics, is a variational formulation of

Maxwell's equations.

The variational method obtains second order accuracy in the eigenvalues

with only first order accuracy in the trial eigenvectors.

The ingredients necessary for a variational formulation satisfying these

conditions are:

(i) self-adjoint kernel, and

(ii) prescription for choosing trial adjoint eigenvector.

Recent applications of the variational technique in the literature do not

always satisfy these criteria—the quadratic form is not stationary and

eigenvalues not guaranteed to be second order accurate.
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Here we consider self-adjoint structure and the variational formulation

of the Vlasov-Maxwell equations in the case of equilibria with one and two

nonignorable coordinates. The principle results are:

(i) definition of generalized self-adjointness and relation between

eigenvectors and adjoint eigenvectors, and

(ii) construction of integral operator kernel (including full kinetic

effects) in the form of a manifestly self-adjoint differential

operator of arbitrarily high order.

The kinetic Vlasov-Maxwell equations in a bumpy cylinder follow from (i) and

(ii).



252

2. SELF-ADJOINTNESS AND THE VARIATIONAL METHOD

We consider equilibria N(x), T(x), and B(x), where x is a one- or two-

dimensional vector. The linearized Vlasov-Maxwell equations are of the fora

I J dx' Lae(x,x',(o) <|>e(x') = 0 , (la)

with the adjoint system of equations

These results follow from the functional

dx dx' <(>+(x) L^x.x'.u) ^g(x') = 0 , (2)

when variations of Eq. (2) are performed with respect to <f>+ and <f>,

respectively.

The variational method seeks to minimize the functional <4>|L|$>< We choose

trial functions

(3)
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which determine the tr ia l eigenvalue wQ by <<J>o|L(wo) | $o> » 0. For self-

adjoint L, i . e . , <ij>|L|i(i> =» <f|L|((i>, the frequency shift i s second order

«u> - „ - • - - « ' . < ' • ] ' : ' ' • > . + 0 U 3 ) (4)

The condition <<(>|L|iJ>> = <i|»|L|if>> translates into the definition of generalized

self-adjolntness

where

+1 ignorable coordinate

-1 nonignorable coordinate

Microscopic symmetry under simultaneous time-reversal/parity transforma-

tion is sufficient (although perhaps not necessary) to insure the generalized

self-adjointness of the Vlasov-Maxwell equations.
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3. CONJUGATE TRAJECTORIES

Generalized self-adjointness follows from important symmetry of particle

orbits. Consider the single particle Lagrangian:

L = ̂  mv2 + 1 v . Ao - q«0 (6)

Transformation which leaves L invariant •• same equations of motion in

new coordinateso

Simultaneous time-reversal/parity transformations which leave L in-

variant define equivalent orbits—known as conjugate trajectories.

Examples of conjugate trajectories:

(i) One-dimensional field: Bo = Be(r)8 + Bz(r)z.

Conjugate trajectories: ( T Q + <5r+( t) ,v+( t) ) and

[£o + 6r~(-t),v(-t)].

<5r"(-t) = 6r+(t), <S6"(-t) = -68+(t), Sz'(-t) = -6z+(t).

(ii) Two-dimensional field (bumpy cylinder): BQ = Br(r,z)r + B2(r,z)z.

Conjugate trajectories: (r* + 6r+(t),v+(t)) and

<5r+(t)s 66~(-t) = -66+(t), 6z~(-t) = 5z+(c)

v+(t), vg( t) = v+ +, v(
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The equivalence of conjugate trajectories is used to "symmetrize" the

kernel of the Vlasov-Maxwell equations and obtain the self-adjointness

property.
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4. ELECTROSTATIC KERNEL

First we illustrate results using the simpler Poisson equation for the

two-dimensional perturbed potential

•(x,t) - $(r,z) exp i(te - ut) . (7)

The Poisson integral equation is

/ dp'I^p.p') + LpCp.p'.u)] •(p') - 0 , (8)

P - (r,z) and

L_ - r *2 + ( * * + *

x 6(r - r') 6(z - z') , (9)

and

The plasma response is

Lp(p,p',u) - I 4irq| / dvo / ro dro dzo

(10)
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with In(p,p') - [Pn(p)]* Pn<P#>« "n " n<uc> + 1<Q>> a n d <"«:> " average

gyrofrequency

P+(p) - I / iV «[p - po - Sp(t')] exp[l[£<T">] i

and JJQCT) = u)nT + 4 6 O ( T ) . Lp is not manifestly self-adjoint. Self-

ad jointness follows when we note that conjugate particles have the same

constants of motion £,PQ.

Grouping the response of conjugate particles,

Pn(p')

and using the relation between conjugate trajectories

Hence,

p.p') -\ {[PJ<P>]J<P>]* P(

and we have the result

Lp(p,p',a>) - Lp(p',p,(u) . (15)
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5. ELECTROMAGNETIC KERNEL

We choose a gauge where $ = 0,

A(x,t) = + A2(p)8 + A3(p)z] exp i(A6 - at) , (16)

with p_ = (r,z). The Vlasov-Maxwell equations are of the form

Z f dp' [LvaB(p,p',aj) + Lpa6(p,p',oj)] Ap(p') = 0 . (17)

The kernel is now more complicated, e.g.,

L.v (18)

where

(rr')X/

r' 3r

1_ _
3r 3z

3 3 u)2

3z 3z c2 s c2

1/2
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L2 = — + I
«2 c2 /

"Ir

+ r r ' (rr')
_ 1 / 2

L3 =

3z"

-11

+ U
7 9 '

_P_s ( r r '
kS C '

11/2 +

3r 3r'
(rr') 1/2

with u2 = 4irq2 N /m .
ps s s s
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The plasma response Is

zo I
n

-V"1L - - I --! / dvo / ro dro dz
-F s cz

, (19)

vhere conjugate trajectories are used to obtain i^,

.P') = [ma(pln>]* OB(P'In) + ajao(pln) [mB(p* In)]* og , (20)

with 0o - +1 (a - 2), -1 (a - 1,3), and0 o

2<Pln) - i / dt' V(T') «[P - PO - 6p(t')] exp[iaQ(T')] . (21)
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6. SUMMARY OF THE RESULTS IN THE BUMPY CYLINDER

Vlasov-Maxwell equations

/ dp' L(p,p',u>) • A(p') = 0 .

L is self-adjoint

Adjoint eigenvector:

A+(p) = aoAa(p) .

The generalized self-adjoint structure in two dimensions (with full kinetic

effects) is different from the two-dimensional tokamak response (see Tsang^

or Frieman etal.*) which is not self-adjoint.
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7. APPLICATIONS OF THE FORMALISM

(i) Minimize the functional

/ dx dx' A+(x) . L(X,X',OJ) • A(x')

using the trial function A and prescription for A+»

(ii) Express L as a differential operator, converting from integral to

differential equations of arbitrary order. This is useful only if

natural truncation of the order is available.
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8. DIFFERENTIAL OPERATOR FORM

Transformation of L to a differential form proceeds as follows: we use

identities

exp(aJL) f(p) = f(p + a) ,

/ dg g(p) exp(a -j-) f(p) = / dp f(p) exp(- j- a)

(22)

3

and apply to the vector functions m(p|n) [Eq. (21)]. After partial integra-

tions, integration over the 6 function is trivial and, schematically,

/ dx Lp . A -<• / dvo I <exp(- _ . 5p) v exp(ifin)>
n.s _

x <exp(-inn) v exp(6p • ̂ )> A( p) , (23)

with p = (r,z).

The factors <exp[-(3/3p) . 5p] v exp(i«n)> must be expandable for this

form to be useful. Two cases:

(ii) .2. . 6p « 1 but a_ is finite
3p
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In these cases, differential equations for long wavelength modes may be

obtained. Examples of interest include:

(1) "bumpiless" one-dimensional mode of EBT (VanDam et al.), and

(11) a tuo-dinensional bumpy cylinder.
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BALLOONING STABILITY IN TOROIDAL DEVICES

Shoichi Yoshikawa
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ABSTRACT

The marginal stability condition of ballooning

instabilities for toroidal confinement devices is

derived for low critical stability £ (3 < 10%). The

stability condition derived here should be applicable

to EBT and multipoles as well as tokamaks and

stellarators. For EBT and multipoles a more compact

expression for the stability condition is possible

and is given here in the appendix.
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The MHD, finite 6 ballooning instability is expected to

limit the maximum B in toroidal devices (tokamaks, stellerators,

and EBT) as well as tandem mirrors. Thus it may behoove us

to refine the critical 0 criterion which was first pointed

out in the 1960's by a number of authors. ~ The usual way

to determine the critical value is taking advantage of the

fact that the growth rate, s, squared, is real in the MHD

approximation. Hence the problem is reduced to solving for

marginal stahility condition,

where w (&) is the local interchange growth rate, v is the
O A

Alfven wave speed and I is taken parallel to B. In actual

experimental situations, this simplification is somewhat modi-

fied as the magnetic field strength, B, is usually a function
of £. But what will be described here presumably improves

2
the usual assumption that w (£) is expanded in Fourier series

and retained to the first term, thus transforming Ea. (1) into

Mathieu's equation.

We shall impose periodic boundary condition such that

*(S-+L) = 6 U ) . And introduce a new' variable

6 = 2v i . (2)
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Then Eq. (1) may be r e w r i t t e n as

+ f(9)H = 0 (3)

Y E 2 fj (4)

(L/2TT) 2

•r0 = | d6f(6) (5)

•'o

A= if.d8
R(9)

> 0 (7)

Here R is defined as

1 _ dftnB2 . di|--/dn (8)
R 2dn i d\|j/dn \

where n is the normal component to constant pressure surface

and often (but not necessarily always) coincides with the

(quasi) magnetic surface. The difficulty which arises in many

devices is that we cannot keep 1/R such that d(inp)/dn • R is

negative everywhere.



268

The function f is nondimensional and <f2> is taken

usually between 0.5 ^ 2. It is not too difficult to impose

one particular value for <f2> but sometimes it is advantageous

to define <f2> at our discretion.

(i) Method of low B approximation.

The equation (3) can be solved rather easily by numerical

methods. But often it is convenient to have an analytical

solution available. Here we try that. We order coefficients

of Eq. (3) as yf(6) ^ 0(e), yh ^ 0(e2). Usually h is ^ 1/10

whereas f(8) ^ 1, so this ordering is not inconsistent.

Finally, y % 32/h as we see later, so if 3 < 0.1, y is considered

to be small.

Then to the zeroth order we obtain

To the next order

This is integrated once to yield

de
f(G)de + C H YF(6) + C (11)
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satisfies the boundary condition in view of Eq. (5)

Integrating once more

= Y / der(Q) + ce + c. . (12)
x Ja

The constant C., may be absorbed by <t> • The constant C must

be chosen to satisfy the boundary condition that is

I,2TIc = " 27 / de F(e) H " fa G(2il) • {13)

We defined

•6

F(0) = / f(6)d6, F(2TT) = 0 (14)
>0

e
G(6) = | F(8)de (15)

Thus

- J;G(2TI)J (16)

To the next order

(17)
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Integrating once

ai
d9fG(e) - -

G(2T.) f

'~ Jo
f(6)6de .(18)

C_ is necessary to satisfy the boundary condition for <}>_, but

the necessity of satisfying the boundary condition for Eq. (18)

brings out the $ . Since at 0 = 0, d<K/d9 = C9, it follows that

2Tth

271 271

d6fG(6) -
G ( 2 T T )

2TT f < e ) e d e = 0 .

The first term in the bracket gives [note F(2TI) = 0]

i
2TJ

defG = FG

2TT » r 2TT

- /G'Fde = - / F2

0 J JO
de

Also

•2r

f(e)ede = F • e Fd6 = -G(2TT)

(19)

(20)

(21)

Hence

Y =
2nh

2n

F2d9 - ^ - |

(22)

Schwartz's inequality assures the positiveness of the divisor

except for the trivial case (f= 0).
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T h u s

2 a R c

( L / 2 T T ) * J r 2TT

/ F2dG - i-(G(27T))2

Jo 27T

B is the critical 6 for f = cos 6 and I is the correction
CO

factor for other functional forms of f(6).

(ii) Some Examples

Let us calculate some simple examples. Assuming h is

small from Fq (6' ar.J le'itinn 1/R('<) = (1/R ) cosO where R is

P P
the minimum field curvature radius, we get R = R . Also

y c p
1 = 1 because G(2~) = 0 . So we get

2a 'R
6 = .. , P . h = :• (24)

(L/2TT ) 2 co

as is expected.

Take

f (9) = 1 , 0 < 0 < Ti ,

f (9) = -1 , v < 6 < 2TT . (25)

Again, R = |R |. The calcuation yields

L
2 71

F2d9 = \ v3 (26)

r f
,{2v) = I d 6 • 6 + /

JQ J -a

2v

(2TT - e ) d e = 7T2 . ( 2 7 )
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Thus,

*'& or e = £0co. (28)

If

f ~ a, 0 < e < 9 1 , (29)

f - -6 , d1< d < 2-n , (30)

such that

o6 1 = (2n - 6 1 )6 . (31)

Then after rather tedious, but straightforward calculations

we g e t (by e q u a t i n g 6 = 1, t h u s Rc =

(2TT -
(32)

6
n "(2TT - 6 ) ^ ' ( 3 3 )

^c (L/2TI) 2 " (2TT -
x

Thus, 3c could be smaller than the ordinary eigenvalue of

Mathieu's equation.

If f = f (9) = cosN6 where N is an integer, we get

F = i sine . ( 3 4 )

Thus, we arrive at I = N 2. In other words,

(35>



273

That is even in systems such as Octupole or EBT, the connec-

tion length is determined by one period of bad-good curvature.

(iii) Comparison with wave mechanical solution.

The usual method to solve eigenvalues could, of course,

be used. Let us take the case of Eq. (25) slightly modified

so that

J * S 6 < 2 T T=1, 0 < 8 < -J y
£(el=-1' ! < » < ¥ •

The starting point is Eq. (32) . We define

Y 2 = (1 - h)y . (37)

Then in the domain I where f (.6) = 1, we have

1/2
<j> = C^cos h y1 6 . (38)

In domain II where f(6) = -1, we have

1/2
4> = C 2 cos Y 2 (TI - 9). (39)

T< 377
The connection at 8 = •=• and -=- requires

Y^/2tan h y1/2 \ = vY2 tan y1/2 \ . (40)

The above equation can be solved for arbitrary Y numerically.

In the small Y limit we obtain
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ft il 2 _ ^ , ]jj_ 2
2 Y! " 24Yi ~ 2 Y

2 24 Y
2 (41)

or

•n 3

hit = yjjd + h2) . (42)

Thus we get

aR ,

f * 2h ' P (1 I hM ' (43)

This is to be compared with Eq. (28) (hz << 1).

We conclude that Eq. C23) is probably accurate enough for

estimating critical 3 in normal situations.
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APPENDIX

CLOSED FIELD LINE DEVICES

In the case of floating multipoles or EBT, the geometry

is very simple, so that a more formal set of equations can

be utilized. In these devices, closed field lines <p $L- = const
i B

form the magnetic surfaces, ii. And we can choose another

orthogonal coordinate, x a s BdJt and the third coordinate

ViJ> x Vx is an ignorable coordinate.

Starting with a two fluid theory, using the usual assumptions

among which |k.p.| << 1 where k, is the wave vector perpendicular

to S, and p. is the ion Larmor radius, we arrive at

O *O

where n is the unperturbed density, n is perturbed density,

subscript n in vi- means $i- . V^/JV^I, kT = kT + kT isa n e i
- * •

assumed constant, B is the magnitude of B, K is the density

gradient as defined (V£nn ) with subscript n having the same

meaning as (Vg-2) , M is the mass of ions and S2 is the growth

rate in the limit of |kfo. i<< i.

Since only S' appears, S" is real in Eq. (1A). Thus at

marginal state the last term of Eq. (1A) can be made 0. Since

B is a function of I, \p, where I is the coordinate in the

direction of B, Eq. (1A) will be written as
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or

_ 'd 1 3n , o
B FT I 71 + d?"

Since the field lines are closed, it follows that

dX = Xo
 tt 2 I i , (4A)

where £1. is the total net current (in coils) enclosed by the

closed field lines.

We define fJ-r ̂ 2|, as

h &
Since ip and x a r e orthogonal, the change of the order of

operations involving x and <JJ is permitted. Then Eq. (5A)

implies

Thus, Eq. (3A) is reduced to
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Again, ordering three terms of Eq. (7A) as 1, f-2, c, we

arr ive a t the c r i t i c a l dP /dty as

d P o

'A

with P C\p ) = 0 a t ij; = \p . Note in a j)d£/B s tab le plasma

where

( 9 A )

J(X) = f H(x)dx. (10A)

If |dP /dx| is larger than given in (8A), the plasma is

unstahle. Thus, in marginal stability cases

P = / L(i|>)d<j> (11A)
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EFFECT OF BETA LIMITS ON REACTOR PERFORMANCE IN EBT

N. A. Uckan and D. A. Spong
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ABSTRACT

Theoretical models indicate limits on core beta ranging from a few

percent to 10-20% depending on the models and/or assumptions. Some of

the parameters that enter into these beta limits are: the ratio of the

ring radial scale length to the average radius of curvature, e =

the ratio of the cold to the hot plasma density, fp = n i d/
n
h t

ratios of the hot electron drift frequency to the ion cyclotron fre-

quency, <u,,/u) ., and to the drift Alfven frequency wJh/^V.; the ratio

of the ring electron temperature to the core ion temperature, T /T.;

the ring beta 3n; etc.

Because of uncertainties in extrapolating results of simplified

models to a reactor plasma, the above parameters that influence the

ata limits cannot be determined accurately at the present time. Also,

reasonable changes within the models and/or assumptions are seen to

affect the core beta limits by almost an order of magnitude. Hence,

at the present, these limits cannot be used as a rigid (and reliable)

requirement for ELMO Bumpy Torus (EBT) reactor engineering considera-

tions. However, sensitivity studies can be carried out to determine

the boundaries of the operating regime and to demonstrate the effects

of various modes, assumptions, and models on reactor performance (Q

value). First the modes believed to limit the core B and ring plasma

performance are discussed, and the simplifications and/or assumptions

involved in deriving these limits are highlighted. Then, the impli-

cations of these limits for a reactor are given.
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1. INTRODUCTION

In the ELMO Bumpy Torus (EBT), there are two principal plasma com-

ponents: toroidal core plasma, where the fusion reactions occur, and hot

electron rings, which are essential to the stability of the overall con-

figuration. The stability requirements of ring and core plasmas are

closely coupled, and their interaction defines stable operating regimes

of both plasmas and determines core 3 limits [1-3]. The economic via-

bility of an EBT reactor improves significantly if the average core beta

<3 > exceeds ^10% and an average "minimum-B" stabilization requires

The role of high 8, hot electron rings in maintaining the stability

of the toroidal plasma against flute and interchange modes may be seen

from Fig. 1 and the simple stability criterion given below [1]:

<p' + YPU'/UHU' - p' t dH/B3) > 0 , (1)

where U = $ dfc/B and ' = d/dij/. For stability, Eq. (1) must be satisfied

on each flux surface i|/. In Fig. 1, typical profiles of f dH/B, the mag-

netic field B, and the pressures (core and ring) are given as a function

of the radius at the midplane. Equation (1) indicates that in the central

plasma region, stability is attained if either p' = 0 or p'U > -ypU';

i.e., pressure gradients may be stably supported up to some critical

slope. At the inside of the plasma edge, where p' < 0 and U' > 0 and in-

creasing, somewhat larger pressure gradients can be tolerated because (see

Fig. 1) U' (inside edge) > U' (central region). Finally, at the outer

edge where p •*• 0, p' < 0, and U' < 0, stability is possible if )p'| <

|U'|/# d£/B3. Thus, the electron ring modifies the B field and f dfc/B in

such a way as to stably support plasma pressure gradients in the regions

in which they are largest. The stability threshold is then related to

the critical value of ring beta required to make U' < 0, where U" may be

written as

U* = - § d£(</r + 3B/3<|/)/B2 < 0 (2)
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Fig. 1 Typical profiles of U = / d£/B, the magnetic field B, and the
pressures (core and rings) are given as a function of radius
at the midplane. Rings modify f dil/B and B to support pressure
gradients in regions where they are largest.
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for stability. Considering the regions of positive and negative curvature

tc for field lines and using the appropriate scale lengths, one then finds

the necessary value of ring beta to reverse the gradients is to be given

as follows [1]:

(Wcrit " c

where A = ring scalp length and R = magnetic radius of curvature (mid-

plane) . This ring beta (B . 'v 5-15%) agrees with the experimental

observation of the transition to the quiescent mode of operation (C-T

transition [5]).

Both magnetohydrodynamic (MHD) models [1] (derived from modified

energy principle) and kinetic models in slab geometry [2-3] show that

the core plasma is stabilized only if the ring beta exceeds the critical

value given by Eq. (3) that is required to produce a distinct local mini-

mum in B. At higher values of ring beta, the earlier decoupled MHD calcu-

lations [1] indicated stable core betas to be as high as the ring beta

(B ^ 30-40%). Coupled kinetic calculations [2-3], on the other hand,

indicate a saturation in core beta to values near 0(3 . )• The various
crit

aspects of the EBT stability were treated at this workshop, and readers

should refer to other papers for details [6].

In the present experiments, the core 3 is limited to 0 < 0.5%
core -

because of transport and heating considerations (small size as well)

rather than stability, whereas (3 % 10-40% is routinely attained

and the stabilization of a low 3 plasma by the hot electron rings

has been amply demonstrated [5]. Experimental confirmation of high

3 predictions is not possible at the present time. However, the

next planned device, the EBT Proof-of-Principle (EBT-P) experiment,

is expected to have 3 values on the order of a few percent that

could be able to test some of the predictions.

In this paper, we will briefly discuss the results of coupled

core-ring stability calculations, the stability of the hot electron rings,

and the implications of these stability limits for a reactor.
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2. COUPLFD CORE-RING STABILITY LIMITS

Stability problems often fall into two categories, macrostability

and microstability. In EBT, these distinctions are somewhat compli-

cated by the requirement of a kinetic treatment for traditional macro-

scopic modes (interchange, for example) because the requirements for

MHD are not satisfied for the hot electron rings. This also results

in a given class of modes being called different names by different

authors in the literature.

At present, EBT stability calculations have indicated the existence

of three mo-Jes which can limit the core B, core density, and ring density;

these are the core interchange, the compressional Alfven wave stability,

and the hot electron interchange [6-8]. For simplicity, these are often

treated as separate modes and will be considered as such in the following.

However, calculations in slab geometry which take all three modes into

account indicate that [9-10] in certain parameter ranges two of these

modes can become coupled, resulting in lower stability boundaries than

would be found by considering each mode separately [8]. Such coupling

requires further examination in the reactor case.

2.1 Core interchange and MHD ballooning modes

These are low frequency modes and are identified as the modes

responsible for the quiescent mode of operation (C-T transition [5]).

These modes are driven by curvature in the magnetic field and by the

core pressure gradients. The stability boundary of these modes is

sensitive to the hot electron distribution function. They are stable

if [2-31

6 r ing E *R > 4 A / < V ' <4a>

3 core = 3* ~ a e / ( 1 + e i } » ( 4 b )

where a ^ 2-4, depending on the hot electron distribution function, e =

A/Rc is the ring radial scale length divided by the radius of curvature

within the ring length, and 6, is the perpendicular component of the hot
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electron pressure (beta). The first inequality [Eq. (4a), which is the

same as Eq. (3)] is the requirement that the hot electrons form a mag-

netic well, and the second inequality is the fundamental S> limitation

in that well, which is normally in the 5-15% level for a reactor.

The estimate given by Eq. (4b) is based on a slab model that neglects

variations along the field lines. Such variations have been taken into

account in a generalized energy principle [11] derived for low frequency

modes (UJ << w,, , to.,). Preliminary estimates of the beta limit from the
dh *h

energy principle indicate values in the same range as Eq. (4b). However,

by taking into account details of the equilibrium fields and modifica-

tions introduced in R by supplementary field shaping [i.e., aspect ratio

enhancement (ARE) and symmetrizing (SYM)] coils [12], it may be possible

to optimize the 8^ limit to higher values than would be predicted by the

simplified local slab theory.

2.2 Compressional Alfven mode

The compressional Alfven mode places a limitation on the core plasma

density [8-10]. This does not appear to be a severe problem for either

present-day or reactor-like devices provided the mode is sufficiently

localized to the ring region. For radial wavelengths on the same order

as the ring thickness (k A > 1), a local slab model predicts [8] for

stability

where kf = k2 + k2; k = 2n/A with n = 1, 2, ... ; kQ = m/a with m = 1, 2,
i. r o L o p

... and a the plasma radius; V. is the Alfven velocity; A = 2A/f3D is the
P A D R

finite 6 ring VB scale length; and to = kflV (= u ) is the VB hot electron
Jts o is a n

drift frequency.

2.3 Hot electron interchange mode

The hot electron interchange mode results in a lower limit on the

ratio ncoi^
nYlot (= ncore^nrine^' T h i s m o d e i s s t a b l e i n t h e local slab

model [8] if



287

It is conjectured in Refs. [8-10] that this mode could exist near the T-M

transition in EBT [5], especially when its coupling with the compressional

Alfven mode is taken into account. For a reactor, this mode will result

in an upper limit on the hot electron beta (B D), but this should be in

excess of what is required to reverse the magnetic field gradient and

create a well.

2.4 Coupling of various modes

The importance of core-ring interaction has led to slab models which

take into account nonadiabatic terms (̂ u/u,, ) and ion cyclotron harmonics
dh

(to,, ^ u) .) in order to treat the coupling of various modes discussed
dh ci

earlier [9-101. The inclusion of 0(u/u< , ) terms shows results with de-
an

pendence on T^. /T (= T /T ) and a slightly lower 3 limit. The

inclusion of ion cyclotron terms results in coupling of compressional

Alfven waves to interchange modes with higher permissible core £* and

core density limits [10].
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3. STABILITY OF HOT ELECTRON RINGS

As has been observed in earlier electron cyclotron heating (ECH)

experiments in simple mirrors [13], the rings themselves may be subject

to various macroscopic and microscopic instabilities.

One or the more fundamental electron ring stability limits is the

mirror instability, which may be related to a loss of equilibrium. Con-

ditions for the stabilization of thij mode (driven by pressure anisotropy

p. >> p..) relate to properties of the ECH process, particularly the effec-

tive (mirror) ratio at the resonant magnetic field. In both theory and

experiment [13], if \es/\in > 1.2, then T^T,, [̂  <B r e s/B m l n -I)"
1] can

be kept below a certain threshold and the plasma is relatively free of

the instability. In addition, a class of MHD instabilities occurs; these

are flute interchanges at fairly low values of ring beta and finite beta

ballooning modes. Interchange modes have been examined using both guiding

center theory [14] and Vlasov-Maxwell kinetic models [15]. These show

that the modes could be stabilized by the self-dug well, provided 3 D >

15% [14], and by the presence of sufficient cold plasma density [15].

At sufficiently high ring beta, ballooning modes are also energetically

possible, but kinetic treatments of these instabilities have indicated

that they may be significantly stabilized by the large drift frequency

of the hot electrons relative to the ion cyclotron frequency [4] and by

the presence of cold plasma [16].

Most of the possible ring microinstabilities are driven by the aniso-

tropic nature of the ring distribution function. Such modes could potenti-

ally have an adverse effect on ring power balance. However, it has been

experimentally observed that nearly classical ring energy losses are ob-

tained if off-resonant heating is applied [17]. An example is the Whistler

instability, which is an electromagnetic mode. A relativistic analysis

[18] of this instability indicates that sufficient relativistic spread in

the electron cyclotron frequency results in resonant particles in the

high energy tail contributing damping rather than growth. Such insta-

bilities could be suppressed by building up the tail density of hot

electrons to some critical level. A recent study [19] indicates a similar
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damping effect; however, the instability persists if T̂ /T,, is large

enough. A second type of microinstability is the Timofeev half-harmonic

modes. These are electrostatic modes and are commonly seen in ELMO but

not in EBT. The modes are stabilized if T., /T. is sufficiently large (i.e.,

if T.| /T^ > 1/6) [20]. In the experiments this is attained by added off-

resonant heating [17].
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4. DISCUSSION OF THE RESULTS AND THEIR IMPLICATIONS FOR A REACTOR

As discussed in the previous sections, the theoretical models have

indicated the existence of several modes that can limit the performance

of the ring and core plasmas. All of these analyses predict a stable

finite beta operating regime with reasonable and self-consistent para-

meters. However, predicted limits on core beta range from B^ ^ few per-

cent to 6* > 10-20% for reasonable but different parameters and/or

assumptions within the same model. Some of the parameters that enter

into these beta limits are a, e = A/R , A / R , f = n ,,/n, ., u /to .,
c B c R cola not ah ci

ai ,,/kV., T /T., &„, etc. Some of these parameters change significantly
an A R i R

in going from present-day experiments to reactor-like devices. Because

of uncertainties in extrapolating results of simplified models to a re-

actor plasma, dependence of stability limits on the above parameters can-

not be determined accurately at the present time. In the following, we

will show the sensitivity of the reactor Q value to some of these uncer-

tainties. It should be pointed out that it is not clear what the non-

linear consequences of the various instabilities will be and it is not

clear that the system has to be stable against all of the possible modes.

The core interchange is one of the most serious modes that will

limit the core 0, with two key parameters a and e determining this limit;

core plasma is stable if g^ < ae [see Eq. (4b)]. Depending on the hot

electron distribution function and details of the equilibrium fields, a

varies from 2 to 6. An accurate determination of e = A/R in a reactor
c

requires knowledge of the ring thickness A and the radius of curvature

R , both of which are difficult to extrapolate at the present time. Using

scaling data from the present experiments, e * 10~2 - 5 x 10~2 is likely

in a reactor. In the experiments, the hot electron rings form at the

location of the second harmonic ((0^20) ) resonance with a radial half-

width A of a few hot electron gyroradii p [13]. For ring temperatures

characteristic of past, present, and near-term ECH experiments (Tn < 1.5
R ~

MeV), drag losses dominate [13] and ring energies are limited by non-

adiabatic particle behavior, obeying p R/A« 'v 5-6 x 10~
2 scaling [21].

In a reactor, the ring temperature (T >_ 2 MeV) is expected to be in a

radiation dominated regime, and ring energies will be limited by radiation

cooling.
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Defining a reactor Q value that is roughly the ratio of the fusion

power produced (P , ̂  32BI+) to the ring sustaining power (P <v R BJ ̂
th yK K K

f~182B^) and taking into account the appropriate conversion efficiencies,
R "k K
the overall Q_ (Q , . ) value can be given as [13,22]

E electric

QE - 7 . 7 x 1 0 1 8 f R ( V p / R D T A j

= 4 x 10 1 8 • fR • r
1 • < a v >DT ' k2 ' G ( Y > e* ) ' ( 7 )

where V^ and VD are the toroidal and ring plasma volumes (V /V - 1.3/e

for a system with a mirror ratio of ̂ 2-2.3), B* ̂  n^T^/B2 is the toroidal

core plasma beta near the vicinity of the ring (which enters in the sta-

bility calculations), k = n / % - T"/TA is the profile factor, 3 ̂  ri T/B2 ̂

8j.k?/2 is the volume average core beta, y is the relativistic factor, and

G ( Y , 3 A ) is given by

= [Y//Y
2 - 1 + 1.3 x ltr^Y2 - DT^/B*]" 1 . (8)

Figure 2 shows the variation of Q^/f- with the ring temperature for
H. K

the possible range of uncertainty levels involved in e and a. As pointed

out earlier, the stability of hot electron rings requires an appreciable

cold electron density component near the vicinity of the rings and the

value of fR in a reactor is 0(10
1-102). This leads to Q values ranging

from as low as few (^2-5) to ̂ 50 depending on the uncertainties in ring

scale lengths (Fig. 2a) and B* limits (Fig. 2b). It can be seen from Fig.

2 that at low temperatures (T < 1.5 MeV), where drag losses dominate,

Q_ indicates an almost inverse linear dependence to ring scale lengths
Hi

for fixed a (basically dependence on ring volume and not on core beta

3 A ) . At high ring temperatures (TR >> 1 MeV), there is an almost linear

dependence of Q on BA for fixed scale lengths.

As pointed out, the compressional Alfven mode does not appear to be

a severe problem for a reactor and imposed core density limitations are

in excess of what is needed in a reactor. However, the hot electron

drift mode, which is stable (see Refs [4,16]) if
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Fig. 2 Variation of overall reactor Q£ value (for given f_ = n -IJ^U J
with ring temperature indicates (a) an almost inverse linear °
dependence to ring scale lengths for fixed a at low ring tem-
peratures (TR < 1.5 MeV, QE ^ 1/e ̂  I/ring volume) that is

basically due to change in ring volume and (b) an almost linear
dependence on a or 3̂ (= ae) for fixed scale lengths at high
ring temperatures. The value of fn in a reactor is
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a),, > to . and n ,,/n, . > 1 , (9)
dh - ci cold not

or the hot electron Interchange, which is stable (see Ref. [8]) if Eq.

(6) is satisfied or, alternatively,

requires careful analysis and trade-off. In a reactor, achieving the

first inequality in Eq. (9) will require either very energetic 0(>10

MeV) electrons or very small A, i.e., very small e. Similar conclusions

can be drawn from Eq. (10); however, the picture is somewhat complicated

because of the involvement of various mode numbers (kg/k.). In both

cases there is a trade-off between the hotter electrons, which cause

severe radiation losses, and smaller e (smaller A), which lowers the

3A limit. This trade-off can be seen from Fig. 2.

ACKNOWLEDGMENTS

The authors would like to thank J. W. Van Dam, C. L. Hedrick, and

H. L. Berk for many helpful discussions.



294

REFERENCES

1. D. B. Nelson, C. L. Hedrick, Nucl. Fusion _19_ (1979) 283.

2. J. W. Van Dam, Y. C. Lee, Stability Analysis of a Hot Electron

EBT Plasma, EBT Ring Physics: Proa, of the Workshop (N. A. Uckan,

Ed.), Oak Ridge National Laboratory CONF-791228 (1980) 471-489.

3. D. B. Nelson, Phys. Fluids 2JJ (1980) 1850.

4. G. E. Guest, C. L. Hedrick, and D. B. Nelson, Phys. Fluids ,L8_

(1975) 871.

5. R. A. Dandl, et al., Plasma Physics and Controlled Nuclear Fusion

Research 1978} Vol. _2_ (1979) 365; R. A. Dandl, et al., Plasma

Physics and Controlled Nuclear Fusion Research 1974, Vol. 2̂  (1975)

141.

6. See papers in this proceedings.

7. D. A. Spong, Review of Recent EBT Coupled Ring Core Stability

Theory, in this proceedings.

8. J. W. Van Dam, et al., Radially-Dependent Stability Theory for

EBT; D. A. Spong, et al., Numerical Solutions of the EBT Radial

Eigenmode Problem, in this proceedings.

9. D. A. Spong, A. M. El-Nadi, The Interchange Mode in Three-Species

Bumpy Torus Plasmas, Bull. Am. Phys. Soc. _25_ (1980) 964.

10. K. T. Tsang, C. Z. Cheng, Stability of Hot Electron Plasma in

the ELMO Bumpy Torus; C. Z. Cheng, K. T. Tsang, Analytical

Theory of Interchange and Compressional Alfven Instabilities in

EBT in this proceedings.

11. J. W. Van Dam. M. N. Rosenbluth, Y. C. Lee, A Generalized Kinetic

Energy Principle, IFS Report #12 (1981).

12. L. W. Owen, N. A. Uckan, EBT Reactor Magnetics and Particle Con-

finement, J. Fusion Energy (to be published).

13. N. A. Uckan, Ed., EBT Ring Physics: Proc. of the Workshop, Oak

Ridge National Laboratory CONF-791228 (1980).

14. G. E. Guest, C. L. Hedrick, D. B. Nelson, Oak Ridge National

Laboratory Rep. ORNL-TM-4077 (1972).

15. H. L. Berk, Phys. Fluids 1£ (1976) 1255.



295

16. R. R. Dominguez, H. L. Berk, Phys. Fluids 2\ (1978) 827;

R. R. Dominguez, Flute Interchange Stability in a Hot Electron

Plasma, in Ref. [13], pp. 383-407.

17. R. A. Dandl, et al., in Plasma Physios and Controlled Nuclear

Fusion Research, Vol. _2 (1969) 435; Plasma Physios and Con-

trolled Nuclear Fusion Research, Vol. 2_ (1972) 607; R. A. Dandl,

Review of Ring Experiments, in Ref. [13], pp. 31-57.

18. C. L. Hedrick, Suppression of the Whistler Instability by

Relativistic Effects, Oak Ridge National Laboratory Rep.

ORNL-4688 (1971) 6-9.

19. N. T. Gladd, et al., Microstability of EBT Boundary, in this pro-

ceedings.

20. G. E. Guest, D. J. Sigmar, Nucl. Fusion 11, (1971) 151.

21. N. A. Uckan, Adiabatic Energy Limit in ECH Hot Electron Plasmas

(unpublished).

22. N. A. Uckan, Physics Issues of an EBT Reactor, IAEA Proc. Symposium

on Physios Problems of Fusion Reactors (to be published).



297

AUTHOR INDEX

I. Alexeff, 83

D. E. Baldwin, 1

L. Bighel, 75

H. L. Berk, 1, 97, 115, 249

C. Z. Cheng, 141, 161

R. H. Cohen, 211

R. R. Dominguez, 249

N. T. Gladd, 181

H. Grad, 1

G. E. Guest, 15

S. Hamasaki, 181

G. R. haste, 63, 75

C. L. Hedrick, 1

S. Ishiguro, 229

T. Kamimura, 229

A. Komor i, 75

N. A. Krall, 1, 181

Y. Matsuda, 211

D. B. Nelson, 281

W. M. Nevins, 211

T. Onigo, 229

M. N. Rosenbluth, 97, 115

H. Sanuki, 229

M. Saylors, 83

J. L. Sperling, 181

D. A. Spong, 1, 33, 97, 115, 281

K. T. Tsang, 141, 161

N. A. Uckan, 1, 63, 281

J. W. Van Dam, 97, 115

S. Yoshikawa, 265



299

ATTENDANCE LIST

EBT STABILITY THEORY WORKSHOP

May 13-14, 1981

Oak Ridge, Tennessee

I. Alexeff
Dept. of Electrical Engineering
University of Tennessee
Knoxville, TN 37916

W. B. Ard, Bldg. 107
McDonnell Douglas Astronautics Co.
P. 0. Box 516
St. Louis, MO 63166

F. W. Eaity
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

D. E. Baldwin, L-630
Lawrence Livermore National Lab.
P. 0. Box 5511
Livermore, CA 94550

D. B. Batchelor
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37830

H. L. Berk
Institute of Fusion Studies
University of Texas at Austin
Austin, TX 78712

L. A. Berry
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37830

L. Bighel
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

S. K. Borowski
The University of Michigan
Dapt. of Nuclear Engineering
Cooley Bldg., North Campus
Ar.n Arbor, MI 48105

J. D. Callen
Univers-lty rf Wisconsin
Nuclear Engineering Department
Madison, WI 53706

R. B. Campbell
TRW, Incorporated
One Space Park, Bldg. #1
Redondo Beach, CA 90273

B. A. Carreras
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

C. Z. Cheng
Princeton Plasma Physics Lab.
P. 0. Box 451
Princeton, NJ 08544

M. Clark, Jr.
Combustion Engineering, Inc.
1000 Prospect Hill Road
Windsor, CT 06095

J. A. Cobble
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

R. J. Colchin
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

K. A. Connor
Rensselaer Polytechnic Institute
ECSE Department
Troy, NY 12181

W. A. Cooper
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37830



300

R. L. Copeland
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

E. C. Crume, Jr.
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37830

W. A. Davis
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

R. R. Dominguez
General Atomic
P. O. Box 81608
San Diego, CA 92138

R. A. Dory
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

J. L. Dunlap
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

H. 0. Eason
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

W. R. Ellis
Office of Fusion Energy
Department of Energy
MS-256
Washington, DC 20545

M. E. Fenstermacher
University of Michigan
Dept. of Nuclear Engineering
Ann Arbor, MI 48105

H. H. Fleischmann
Cornell University
Department of Applied Physics
Ithaca, NY 14853

N. T. Gladd
JAYCOR
11011 Torreyana Road
San Diego, CA 92138

J. C. Glowienka
Oak Ridge National Laboratory
P. O. Box Y
Oak Ridge, TN 37830

R. C. Goldfinger
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

M. R. Gordinier
McDonnell Douglas Astronautics Co.
P. 0. Box 516
St. Louis, MO 63166

M. J. Gouge
Department of Energy
Oak Ridge Operations
Oak Ridge, TN 37830

H. Grad
Courant Institute
New York University
251 Mercer Street
New York, NY 10012

W. Grossmann
Courant Institute
New York University
251 Mercer Street
New York, NY 10012

G. E. Guest
Applied Microwave Plasma Concepts
2210 Encinitas Bldg., Suite F
Encinitas, CA 92024

G. A. Hallock
RPI/ORNL
P. 0. Box Y
Oak Ridge, TN 37830

G. R. Haste
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830



301

C. L. Hedrlck
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TO 37830

D. L. Hillis
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

J. T. Hogan
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

E. B. Hooper, Jr.
Lawrence Livermore National Lab.
P. 0. Box 5511
Livermore, CA 94550

W. A. Houlberg
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

H. Iguchi
Institute of Plasma Physics
Nagoya University
Nagoya 464, Japan

H. Ikegaoi
Institute of Plasma Physics
Nagoya University
Nagoya 464, Japan

E. F. Jaeger
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37830

R. E. Juhala
McDonnell Douglas Astronautics Co.
P. 0. Box 516
St. Louis, M0 63166

T. Kammash
University of Michigan
Dept. of Nuclear Engineering
Ann Arbor, MI 48105

R. J. Kashuba
McDonnell Douglas Astronautics Co.
P. 0. Box 516
St. Louis, M0 63166

N. A. Krall
JAYCOR
11011 Torreyana Road
San Diego, CA 92138

L. L. Lao
TRW, Incorporated
One Space Park
Redondo Beach, CA 90278

B. J. Leikind
UCLA
Physics Department
Los Angeles, CA 90024

J. B. McBride
Science Applications, Inc.
1200 Prospect St.
La Jolla, CA 92037

W. H. Miner
Science Applications, Inc.
1710 Goodridge Dr.
McLean, VA 22102

M. Mond
New York University
251 Mercer Street
New York, NY 10012

M. Murakami
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

D. B. Nelson
Office of Fusion Energy
Department of Energy
MS-256
Washington, DC 20545

W. M. Nevins
Lawrence Livermore National Lab.
P. 0. Box 5511
Livermore, CA 94550



302

L. W. Owen
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

Y. Pao
New York University
251 Mercer Street
New York, NY 10012

R. E. Price
Office of Fusion Energy
Department of Energy
Washington, DC 20545

R. K. Richards
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

J. R. Roth
University of Tennessee
Dept. of Electrical Engineering
Knoxville, TN 37916

M. J. Saltmarsh
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

H. Sanuki
Institute of Plasma Physics
Nagoya University
Nagoya 464, Japan

T. Shoji
Institute of Plasma Physics
Nagoya University
Nagoya 464, Japan

G. W. Shuy
UCLA
6291 Boelter Hall
Los Angeles, CA 90024

A. Simon
University of Rochester
MAS Department
Rochester, NY 14627

T. C. Simonen, L-441
Lawrence Livermore National Lab.
P. 0. Box 5511
Livermore, CA 94550

L. Solensten
RPI/ORNL
P. 0. Box Y
Oak Ridge, TN 37830

D. A. Spong
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

D. W. Swain
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

J. S, Tolliver
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

K. T. Tsang
Science Applications, Inc.
934 Pearl. Street, Suite A
Boulder, CO 80302

J, M. Turner
Office of Fusion Energy, ER-56
Department of Energy
Washington, DC 20545

N. A. Uckan
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

T. Uckan
Oak Ridge National Laboratory
P. 0. Box Y
Oak Ridge, TN 37830

C. M. Van Atta
Lawrence Livermore National Lab.
P. 0. Box 5511
Livermore, CA 94550



303

J. W. Van Dam
Institute of Fusion Studies
University of Texas
Austin, TX 78712

H. Weitzner
New York University
251 Mercer Street
New York, NY 10012

J. B. Wilgen
Oak Ridge National Laboratory
P.O. Box Y
Oak Ridge, TN 37830

J. T. Woo
Rensselaer Polytechnic Inst.
Troy, NY 12181

S. Yoshikawa
Princeton Plasma Physics Lab.
P. 0. Box 451
Princeton, NJ 08544



305

EBT STABILITY THEORY WORKSHOP

May 13-14, 1981
Holiday Inn, Oak Ridge, Tennessee

Sponsored By

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee

AGENDA

Wednesday, May 13, 1981

9:00 L. A. Berry: Welcome

9:15 Session A: Overview
N. A. Krall and N. A. Uckan, Chairmen

A.I G. E. Guest, "Rudimentary Theories of the Stability of
Microwave Heated Plasmas"

A.2 D. A. Spong, "Review of Recent EBT Coupled Ring-Core
Stability Theory"

A.3 N. A. Uckan and G. R. Haste, "Brief Survey of Experi-
mental Investigation of Instabilities in Microwave
Heated Plasmas"

11:00 Session B: Experimental Observations
W. B. Ard and H. Grad, Chairmen

B.I L. Bighel, G. Haste, and A. Komori, "Fluctuation Measure-
cents in EBT"

B.2 I. Alexeff and M. Saylors, "Hot-Electron Ring Stability
at The University of Tennessee"

12:00 LUNCH

1:00 Session C: Ring-Core Coupling, Low Frequency Modes
D. E. Baldwin and C. L. Hedrick, Chairmen

C.I J. W. Van Dam, H. L. Berk, M. N. Rosenbluth, and D. A.
Spong, "Eigenmode Stability Analysis for a Bumpy Torus"

C.2 D. A. Spong, J. W. Van Dam, H. -. Berk, and M. N.
Rosenbluth, "Numerical Solutions of the EBT Radial
Eigenmode Problem"

C.3 K. T. Tsang and C. Z. Cheng, "Stability of Hot Electron
Plasma in the ELMO Bumpy Torus"

C.4 C. Z. Cheng and K. T. Tsang, "Analytical Theory of Inter-
change and Compressional Alfven Stabilities in EBT"

2:45 BREAK



306

EBT STABILITY THEORY WORKSHOP AGENDA CONT'D.

Wednesday, May 13, 1981

3:00 Session D: High Frequency Modes
H. L. Berk and D. A. Spong, Chairmen

D.I N. T. Gladd, N. A. Krall, S. Hamasaki, and J. L.
Sperling, "Microstability of the EBT Boundary"

D.2 W. M. Nevins, R. H. Cohen, and Y. Matsuda, "ECRH Electron
Distribution Functions"

4:00 Session E: Equilibria and Calculational Formalism of
Stability
H. Grad and N. A. Krall, Chairmen

E.I H. Sanuki, T. Ogino, S. Ishiguro, and T. Kamimura,
"Numerical Analysis of Equilibrium and Stability in
Bumpy Cylinder"

E.2 R. R. Dominguez and H. L. Berk, "Kinetic Stability
Analyses in A Bumpy Cylinder"

E.3 Shoichi Yoshikawa, "Generalized Ballooning $ Criterion
for Closed Machines"

6:00-9:00 COOKOUT, CARBIDE PARK

Thursday, May 14, 1981

9:00 Session F: Reactor Implications
C. L. Hedrick, Chairman

F.I N. A. Uckan, D. A. Spong, and D. B. Nelson, "Effect of
Beta Limits on Reactor Performance in EBT"

9:30 Session 0: Open Forum
Panel: D. E. Baldwin, H. L. Berk, C. L. Hedrick, H. Grad,
N. A. Krall, D. A. Spong, and N. A. Uckan

11:30 Session S: Summaries by Chairmen

12:15 CLOSING

OU.S GCMHNMEN7 PRINTING OFFICE 1981-740-062/221


