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We consider a class of problems, notably double ionization, which require
accurate descriptions of correlation in both the initial and final states. Methods
are presented for representing correlated wavefunctions on a basis spline lattice,
and for calculating bound-continuum transition probabilities.

I. Introduction: problems and approaches

Double photoionization

hv + He —> e + e + He+ +
(1)

has long been recognized as the prototype of corre-
lated atomic processes, in that it is obviously for-
bidden in a truly independent particle description.
Thus it has become the test bench for theoreti-
cal methods which attempt to go beyond indepen-
dent particle approximations. Interest has inten-
sified with the advent of experiments which replace
the photon by a fast projectile, in particular a highly
charged ion. We shall give a preliminary report on a
new approach to these problems, which we expect to
improve on previous theories in two respects. First,
the initial and final states are calculated in a con-
sistent framework, and secondly, the angular and
energy distributions of the outgoing electrons are
extracted.

Let us briefly review the difficulties in the way
of calculating the cross section of a process such
as (1). If the photon or projectile is described by
perturbation theory, we have to evaluate a matrix
element

Mfi=<*f\D\*i> (2)

where «l\ is the initial (bound) state, Vj the final
(continuum) state and I? is a dipole matrix element,
say

£> = 21+22. (3)

More generally, D would be a sum of rather com-
plicated multipoles, but the principle is unaltered.
At this level of approximation, only the final state
wavefunction ¥/ poses any difficulties. If the exci-
tation mechanism is a slow collision, final state and

post-collision effects enter to make the calculation
formidably more difficult.

The leading difficulty in constructing ¥/ for
particles with Coulomb interactions at large dis-
tances has long been that of specifying the asymp-
totic boundary conditions. Much progress has re-
cently been made on the boundary conditions llZ,
but other problems remain. Most variational or R-
matrix prescriptions foi calculating the short-range
part of a scattering wavefunction with two unbound
particles suffer from divergences, traceable to the
free-particle Green function. Thus a complete cal-
culation of ^f is some distance in the future. How-
ever the matrix element M/< should be calculable
without a complete knowledge of ¥ / , particularly
in the asymptotic region. Successful descriptions of
bound-continuum processes have been carried out
by many authors using bound state techniques to
describe the short-range part of $ / . The idea in a
rigorous form dates from Ref. 3, and it has of course
been applied in numerous papers since then *.

II. Schrodinger equation for the three-body
problem

Since we wish to consider methods which have
the possibility of converging to an accurate solu-
tion, we shall represent the dependence on the in-
ternuclear distance explicitly, rather than through
configuration interaction. In this section we present
the analysis needed for an accurate numerical rep-
resentation of a two-electron wavefunction of given
orbital angular momentum, spin and parity.

Consider two electrons moving in the field of an
infinitely heavy nucleus of charge C. If the electrons
have position vectors r ^ r j , the (non relativistic)
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Hamiltonian is given by

(4)

cos i?) * and i? is thewhere r i 2 = (rj + r\ - 2
angle between r\ and r j .

The exact nonrelativistic wavefunction for a
state of total spin 5 and total orbital angular mo-
mentum L can be expanded as follows,

(5)*>-*)

where 0 is a spin eigenfunction, and yLML(t, ?) a r e

the usual coupled spherical harmonics. The switch
TO = 0, 1 dictates the overall parity: II = (-l)L+m.
Then it is straightforward to derive a set of coupled
equations satisfied by the functions tpi, whose ar-
guments are the three "dynamical" variables T\,T2,

and i?,

. L + w - I) - E\i>t -

The diagonal Hamiltonian has the obvious form

-11} , (7)
= T[rx] + T[r2] •

.(* + !) ,

where -2T[r] = d2/dr2 and

The coupling terms are given by

,,, z{.i)(d) i a
(9)

for j = 1,2 . General formulae for the coefficients
Z as polynomials in cos i? have been obtained from
angular momentum theory. In addition to these
equations, the functions ipt possess symmetries un-
der interchange of rj and r2, depending on S,L and
w. The analysis can be applied to three particles of
arbitrary mass, if the coordinates are appropriately
redefined.

III. Discretization on a lattice

We choose to represent the equations (6) on
a discrete lattice of points in 7*1,^,1? space by
means of the Basis Spline Collocation technique.
This method has been applied with success to the
Schrodinger and Dirac equations in three cartesian
coordinates in the context of ion-atom collisions,
so its extension to a similar equation in another
three-dimensional space is a natural one. The ear-
lier Finite Element method was extensively applied
to two electron systems, using the time dependent
wavepacket approach 5 . Since the theory of the BSC
method has been described in several papers G, we
only state the underlying postulates and final work-
ing equations here, for completeness.

In a collocation method, an operator equation
L[il>] = 0 is discretixed by expanding *l>(x) in a
finite basis Uk(x),k = 1,...,K, where the coeffi-
cients are determined by setting £[£3^fci*fc] = 0 at
N collocation points £„, a — 1 , . . . , N. In practice
each function is localized around a small subset of
these points, and the coefficients i>k are eliminated
in favour of the values of the solution il>a at the
points £„. The resulting equations have the struc-
ture of finite difference algorithms, while drawing
upon the full power of modern functional methods.
We choose localized piecewise continuous polyno-
mials, known as basis splines, as overall the most
powerful and flexible interpolating functions yet de-
vised.

The solutions of (6) are thus expanded in prod-
ucts of splines,

ijk

and the collocation principle is applied as described
to obtain the equations satisfied by the vector of
i>t(ri<ti r20> $y) on the collocation lattice. Opera-
tors become matrices in this space. The potential
energy, and indeed any local function of ri,r2,tf, is
diagonal in the indices a,/3,7. Each term in the ki-
netic energy is a sparse block matrix, e.g. T[ri] has
the structure t,,,ni6fjjii6y,y'. This extreme sparse-
ness gives the collocation method an advantage, par-
ticularly in three dimensions, over other formula-
tions, such as that of Galerkin. We want the Hamil-
tonian to be sparse, since we do not wish to store its
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full matrix representation. Rather, all algorithms
are broken down into canonical operations of the
form: matrix x vector —• vector, where the ma-
trix need only be represented implicitly by its non
zero blocks.

Before proceding to the subject of linear op-
erator methods, some technical aspects of the col-
location methods are worthy of comment. As im-
plied by (10), different bases are used for the radial
and angular coordinates. To obtain accurate wave-
functions, these bases must satisfy precise boundary
conditions which accommodate the cusp conditions
at the nucleus, and when the two electrons are close
together. The radial functions u,(r) ~ r — Cr2,
in the metric of (7). Thus we arrange that U{ is a
polynomial in r, = 0 at the origin. Near $ = 0, the
expansion V> ~ a + 6i? + • • • fits the two-body cusp:
ip ~ c(l + ^12), while near T? = IT, the correct
expansion is ̂ < ~ a' + b'(ir - t?)2. These conditions
are satisfied if twjt(̂ ) is a polynomial in the variable
t? as opposed to cos i9, and ̂  0 at 1? = 0, IT.

Finally, we note that the collocation represen-
tation of the Hamiltonian is usually not self-adjoint,
i.e. the kinetic energy matrices are not symmetric.
They do satisfy the more general criterion of factor-
izing into a product T = S - 1 T of Hermitian matri-
ces, S being positive definite, a sufficient condition
to ensure that the spectrum of T is real. A practi-
cal consequence is that normal and adjoint solutions
must always be carried along together, e.g.

(H -E)9 = 0, (HT - £ ) * = 0, (11)

where norms and inner products always have the
form * r *P . Intuitively one may think of the adjoint
vector as carrying a quadrature weight.

IV. Linear operator methods

To obtain the initial and final states in (2), we
use linear algebraic techniques taken over from the
ion-atom problem with little modification 6'7. We
shall use the customary notation of quantum me-
chanics, provided it is understood that operators
are matrices, kets are vectors and bras are vectors
in adjoint space. Bound state solutions are calcu-
lated by damped relaxation methods. The solution
of (H - En)$n = 0 is calculated by iterating

(12)

where E =< H > and V = X(l + T/fx)'1- In prac-
tice we construct an approximate V separable in the
spaces of ri, r2,1?. The constants A, fi can always be
chosen to guarantee rapid convergence. If excited
states are required, one enforces orthogonality to
all lower-lying states by projecting at each iteration.
Indeed any desired constraint can be incorporated
in this method, a notable example being Feshbach
projection to calculate autoionizing states. Suppose
toq are the bound states of the one body Hamiltonian
embedded in (7), e.g. that of He+. The Feshbach
projection operators are

(13)

If we project out the la state, by enforcing Pi,$ =
0, we can use (12) to calculate autoionizing states,
e.g. He{2s2).

Turning now to the calculation of (2), we shall
reformulate the problem slightly. Let Af/j = M\(E)
where / is a continuum state of energy E, distin-
guished by other quantum numbers A. Then

(14)D*< = 12 [dE
x *

Bound state contributions to (14) are omitted for
clarity; we note that they are easy to calculate ex-
plicitly and subtract out. Now we introduce the
Gaussian filter operator,

]
(15)

so normalized that J F2dE = 1. Applying this oper-
ator to (15), elementary quantum mechanics shows
that

<X{E,A)\X(E,A)> =

where

(16)

(17)

For reasonably small values of A, we can write sim-
ply
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The filter considered here is a functional of the full
Hamiltonian: any other operator could replace H,
leading to projections on a different spectrum. If
the individual A terms could not be disentangled,
this would not be a very interesting result: the sum
is usually dominated by single ionization leaving the
ion in its ground state. Fortunately we can do bet-
ter, but it is necessary to look more closely at the
properties of x-

For an E > 0, (7) defines a normalizable
wavepacket of spatial extent a ~ E1?2/A. Thus
for small A (such that a < r,, the size of a bound
state), x can be represented over most of space by
its asymptotic form

(19)

where wq are bound states of the ion as before, and
Xc is a superposition of true doubly ionized states.
Thus if \g = PgXi in 'he notation of (13),

>= (20)

the contribution from single ionization, leaving the
ion in state q. The term xc in (19) is obviously
given by l\(l - P7)x. whence

(21)

the true double ionization contribution.
We emphasize that these calculations are valid

for a lattice larger that a bound atom, though finite.
We also recall that the spline basis can represent
continuum states on such a lattice very well. Our
procedure should be contrasted with the incorrect
one of projecting (14) before filtering, i.e. calcu-
lating FPqD$i instead of PqFD$i. Since Pq is a
functional of the independent electron part of the
Hamiltonian, it does not commute with F. This is
an aspect of the well recognized fact 8 that projec-
tion from a configuration interaction representation
by itself cannot distinguish single from double ion-
ization. In summary, projection as in (20) is valid
because the Gaussian filter picks out the asymptotic
region. In particular, (20) does not contain contri-
butions from autoionizing states. The filter plays a

role in lattice calculations analogous to that of the
Green function in Hilbert space.

We have finally to deconvolute different contri-
butions to the double ionization contained in the
wavepacket |xc|2- The analysis of a wavepacket
of two unbound electrons was discussed in Ref. 5.
Let us express |xd 2 in the hyperspherical coordi-
nate system R,a,d, where r t = ft cos a, r2 sin a.
Consider the probability in a cone defined by a0 —
AQ/2 < a < a0 + Aa/2, i90 - Ai?/2 < 1? <
i?o + Ai?/2, and 0 < R < Rmax. If the electrons
are only weakly interacting in most of the space,
this probability (divided by AaAi?) is the ampli-
tude associated with the two-electron state a,hT9,)',
in other words, the electrons are ejected at a rel-
ative angle 1? and with energies E\,E2 such that
E1/E2 — tan2 au. The proof of this result from
scattering theory is rather lengthy, and our remarks
here arc only intended as a heuristic justification.

V. Numerical calculations

The numerical implementation of (17) was de-
scribed in detail in Ref. 9. There we evaluated
the Gaussian by a splitting technique: letting Z =
(E - H)2/A2 we write exp(-Z) = [exp{-Z/M))M,
where M is sufficiently large that exp(—Z/M) can
be expanded in a Taylor series. Though effective,
this is a very slow procedure, so we have replaced
the Gaussian by a rational function

F =
-At

(22)

where Af is the normalizing factor. The operator
in (22) is inverted by a damped relaxation method,
similar to (12): to solve (1 + Z/M)£ = TJ we iterate

(23)

Notice that T> is squared to cancel H2 in Z. Our
revised procedure is hundreds of times faster than
the old.

The methods outlined in Section IV are novel,
but fortunately they can be tested thoroughly. The
use of the filter to extract matrix elements (16) has
been applied to a variety of soluble single channel
problems 9. We have carried out similar tests for
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the multichannel cases of interest here. A crucial
issue is the validity of the projection technique un-
derlying (19)-(21). If the postulate (19) is valid the
calculated amplitudes should be independent of A,
which they are to a good approximation. We can
also check sum rules, such as

fJ dE Y, \Mx(E)\2 = < *,|£>2|*. > . (24)
A

In general our calculated total amplitudes for double
ionization and single ionization with simultaneous
excitation are in accord with earlier accurate calcu-
lations 1OlU, and results will be presented elsewhere.
The differential amplitudes for double ejection show
strong correlations between the two electrons as pre-
dicted by the Wannier theory 1>5, and these corre-
lations persist to energies well above threshold.

VI . Conclusions and prospects

We have presented a unified description of scat-
tering processes involving electronic correlation in
both bound and continuum states. Many other pro-
cesses can be treated by the same methods. A sim-
ple example is provided by double excitation, usu-
ally leading to an autoionizing state

Z + He Z* + (25)

where Z stands for any fast projectile, and the final
state of Helium is labelled by two single electron or-
bital designations q,q' (e.g. 2a, 2p). The quantum
numbers of the final state in (24) including its al-
lignment can be determined experimentally. Theo-
retical interest focusses on the competition between
single and multiple step mechanisms 12.

Another class of problems involves the decay of
autoionizing states in external fields. As before, we
require bound-continuum matrix elements,

VX{E) =< 9X{E)\H -E + D\4>
qg. (26)

where D is the operator of the external field. The
autoionizing state $ g ? ' is calculated by projection,
and the continuum state ^ \ (E) describes the out-
going electrons. The angular distribution of these
electrons is of great experimental interest 13, but
has been difficult to predict because of its extreme
sensitivity to correlation in the wavefunctions.

Time dependent processes can also be ad-
dressed, insofar as they can properly be described by
a limited number of angular momentum eigenstales.
A problem of pedagogical interest is to monitor the
decay of autoionizing states in time, a process which
remains intuitively mysterious, in spite of its long
history.
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