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Electron-phonon interactions are inelastic scattering processes in high-energy electron diffraction, and are responsible
for thermal diffuse scattering (TDS). The atomic thermal vibrations introduce a small lime-dependent perturbation to
the crystal potential,

5AV(r) = H [v](r-R(h)-r(l)-u(51)) - vi(r-R(h)-r(l))], (1)
h 1 l

where u(j?) is the displacement of the l lh atom (at position r(l)) within the h& unit cell (position R(h)) from its
equilibrium position,

u(\) = [OWNmi] W 1 1 [l/cOjl/2] e(I | ?) exp{iq-(R(h) + r(l))} [a+f ?) + a(?)]; (2)
q j J J J

v'i is the potential of the 1th atom; N is the total number of primitive unit cells in the crystal; mi is the mass of the 1th

atom; a+ and a are defined as the creation and annihilation operators of a phonon with wave vector q, frequency &>j(q)
and polarization vector e; and j indicates different phonon modes in the acoustic and optical branches. The interaction
Hamillonian for creating a phonon of momentum q and frequency ojj(q) is1

H'(r,q,oo) = <N(q,<B)+l| [-eAV(r)] |N(q,co)>
= - i e (2JI)3 1 1 A](C0j(q)) e(l I J)-(g-q) Vtfg-q) exp(i(q-g)r) exp(iqr(l)), (3)

where Ai(«0j(q)) = [H(N(q,co) + l)/2coj(q)miN)]1/2 and N(q,G)j) = l/[exp(KcOj/kBT) -1]. (4)
Since the life time of phonons (10"13 s) is much longer than the interaction time (10~16 to I0~15 s for 100 keV) of fast
electrons with a thin crystal, it is unnecessary to consider the time-dependent inelastic-state decay processes in electron
scattering. Hence, the inelastic TDS wave Vj generated by a single phonon (q, co) excitation is determined by2

(V2 - U0(r)+ K 2 ) ¥ T - (2o<o/e)H'(r)¥o, (5)

where ^ o is the elastically scattered wave determined by the Schrodinger equation that can be solved using the

multislice method, and an = me/)i2. Under the small angle approximation, the solution of Eq. (5) at the exit face

(z = d) of a thin crystal is3 ^tCb.q.d) - (aoAz/e) I H'(b,zn) Y(b,q,zn). (6)

where Y(b.q.z) s Vo(r,0)f—° 4'o(b,z=d,q); b = (x, y); and the summation of n is over all the crystal slices of
dz

equal thickness Az.

The TDS diffraction pattern: The TDS diffraction pattern is formed by the incoherent summation of all the TDS
electrons after exciting different phonon modes (q, top,

lT(T)= [VC/(2TC)3] I J z d q I^Td.q.d)!2 , (7)

where Vc is the volume of the crystal; x = (TX,TV.) is a 2-D reciprocal space vector; and the integration of q is restricted
to the first Brillouin zone (BZ). Neglecting the phase correlations of different Bragg spots gs and the TDS waves
generated at different depth z, one finally obtains,

lT(t) = C o Z S J { B i ( j , x ) | [ e ( l | ] ) T ] V i ( T ) | 2 } ® { S |Y(T,qo,zn)l2}, (8)
II 1 J J g

\ \ dq z IAI((0;(T))I2 if Tx and t y fall within the first Brillouin zone (BZ);
j l i where Bi(j,x)3^ BZ (9)
c §« { 0 otherwise;
1= 5 Co = (27t)3Vc(aoAz/Sc)

2; Sc is the area of the unit cell cross-section in the x-y plane; qo is the mean momentum transfer
| ° 8 of the electrons in TDS; and ® indicates a 2-D convolution operation. In Eq. (8), the terms purely relaled to lattice

dynamics are included in the first {•••} bracket. The terms purely related to the electron dynamical scattering appear in
the second {•••} bracket. Therefore, dynamical diffraction effect docs not affect the shapes of TDS streaks but docs
affect their intensities.



, loi h
A 2-D lattice vibrat ion model: For phonon excitations, since q, = KrW2E = 0. the 'IDS NIUM
generated by the phonon modes with u . \e vectors parallel to the diffraction plane. These acouMu m o d e , loi huh
10 tends 10 zero when q approaches zero, are mainlv generated h\ the atomic vibrations within the plane perpendicular
to the incident beam direction H = jhkl] near a main crvstal /one axis. This is actually a 2-D laituc vih;a!,o:i model.
The main comrihuiions lo the IDS streaks are from i)ie acoustic branches; optical branches conirihuie orlv .: J;iiu-v
background. Tlius llic TDS streaks can be predicted by examining the terms in the first {.. ) bracket in !u|. ^ •. and is

.),(T). (10)

where co.(T) is the dispersion surface of the acoustic branches, and is determined by the 2-D atomic interactions of the
nearest neighbors falling in the same (hkh plane. The TDS streaks are defined by the TX-T_>, lines satisfying w : i - d.
For a monatomic b.c.c. crystal oriented in [001 J. if only the interactions with the atoms Iccaied at =:i{,' iOi'i and
±ao(010) arc considered, one has

(C0i.:)2= (4/M) [(F+G)sin-(qx,>a (i/2) + (F-G) sin2(q_v,xa()/2)], (11)
where ao is die lattice constant, and F and G are the atomic force constants. Fn the central force approximation i F = G I.
so that

STDS-(l/lsin(Txao/2)l)+ l/lsiiK^ao/I)!}. (12)
Thus sharp TDS streaks should appear along TX = 0 ([100]) and iy = 0 ([010]) directions (sec Fig. 1). The <1 ]()>
streaks would appear in the pattern if Uie phonon modes created by the vibrationa] coupling of the atoms located at
(000) and 3Q/2{ 111) were strongly excited. The absence of the <110> streaks in Fig. 1 therefore supports the validity
of the simplified 2-D model discussed above. In practice, the (F-G) term in Eq. (11) determines the streak sharpness
and width. Therefore, the observed finite width of TDS streaks is mainly the result of non-central interaction forces.
This 2-D model can systematically interpret the directions and sharpness of ihe TDS streaks observed in the diffraction
patterns near the [001], [111] and [110] zone axes of Mo (b.c.c.), Au and Al (f.c.c), and Si (diamond cubic). If B is
far from main zone axes, ihe contributions of optical branches may become important.

In practice, TDS streaks arc located on the lines satisfying T»ri = 0, i.e., along the T = B X r\ - [(kLj-lK]), (lH;-hL]),
(bKj-kHj)] direction in reciprocal space, where rj = (Hja i .KjaoXias ) is ilic relative position of the first nearest
neighbors in the 2-D plane, and a;s arc crystal lattice constants.3 This is a general rule for predicting TDS streaks
without any numerical calculations, and is analogue lo the g»b = 0 rule for determining dislocation Burgers vectors in
diffraction contrast imaging. The TDS streaks predicted by this rule fit most ihe observations of Ni3Al, AhSc , NiAl
and FC3AI intcrmctalics.

The TDS T E M image: The HREM image formed by the TDS electrons in a TEM can also be derived from Eq. (6),

I T (b )= (XG2(b)IY(b,0 ,z n ) |2}8lF O B(b) l 2 , (13)
n

where the generation function of TDS is
2 | Vv,(r-R(h)-r(!))| : ) ; (14)

where ai2 = j d(0 p(o>) A]2(w) is the atomic mean square vibration amplitude; p(co) is the phonon density of states;

and FOB is the inverse Fourier transform of the objective lens contrast transfer function. This formulation is equivalent
to incoherent imaging theory. The image resolution may be higher than that formed purely by elastically scattered
electrons, but the "inclined incidence effect" (i.e., a small off-axis correction of momentum transfer q to incident wave
vector K in the clastic wave calculation) of phonon scattering may distort the image. The phase coupling of vibrating
atoms docs not affect the calculations for images but docs affect diffraction patterns. Thus ihc image simulations can
be carried out based on the Einstein model if the correct vibration amplitude for each atom is used.

It can be proved from Eqs. (3) and (6) that ihc semi-classical approach utilizing a "frozen" lattice model for TDS is
equivalent lo the result of inelastic quantum scattering theory (Eq. (8)) if kgT «tfcoand ihc "inclined incidence effect"
is negligible. The former condition is satisfied if the temperature is not much higher than room temperature.4
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