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ABSTRACT

Integrity, security, and safety are desired properties of database systems destined for use in critical
applications. These properties are desirable because they determine a system’s credibility. Howev-
er, demonstrating that a system does, in fact, preserve these properties when implemented is a dif-
ficult task. The difficulty depends on the complexity of the associated design. We explore
architectural paradigms that have been demonstrated to reduce system complexity and, thus, re-
duce the cost associated with certifying that the above properties are present in the final implemen-
tation.

The approach is based on the tenet that the design is divided into multiple layers. The critical func-
tions and data make up the bottom layer, where the requirements for integrity, security, and safety
are most rigid. Certification is dependent on the use of formal methods to specify and analyze the
system. Appropriate formal methods are required to support certification that multiple properties
are present in the final implementation. These methods must assure a rigid mapping from the top-
level specification down through the implementation details. Application of a layered architecture
reduces the scope of the design that must be formally specified and analyzed.

This paper describes a generic, layered architecture and a formal model for specification and anal-
ysis of complex systems that require rigid integrity, security, and safety properties.

1. INTRODUCTION AND BACKGROUND

The following database example is used throughout this paper to illustrate the points being dis-
cussed. The database supports a Battle Management/Command, Communications, and Control
(BM/C?) element of a ballistic missile defense system. To support requirements for graceful deg-
radation and devolution, the system is duplicated and dispersed geographically (for this example,
at three separate locations). Each BM/C3 subelement has collocated sensors. Thus communication
is required to ensure that data are replicated among the three elements. This system is designed to
destroy valid threats and only valid threats. Because of the nature of this system, it requires a mul-
tilevel, secure database (i.e., top secret, secret, confidential, and unclassified), with ultra-high in-
tegrity and safety constraints. The database component requires certification with respect to critical
functionality, security, and safety. Such certification is quite expensive and is exacerbated by the
complexity of the system.
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This paper describes a paradigm for complexity reduction that will reduce the effort associated with
system analysis and certification (i.e., quality assurance). The approach is based on developing a

simple, understandable, and composable set of models and a mapping between them and an archi-
tecture.

QUALITY ASSURANCE AND CERTIFICATION

The following conceptual statement describes the requirements of such a critical database:

... provide typical database functions (i.e., create, read/modify, and delete) without
compromise of secure information and in support of critical functions. No data
must be corrupted nor lost.

This statement consists of two types of requirements: functional and design. The functional re-
quirements (e.g., to create) can be divided into subfunctions. The design requirements (i.e., to not
compromise secure information, implying a degree of protection as high as reasonably attainable)
permeate the entire system design; that is, they include both critical properties (e.g., security or
safety) and operational properties (e.g., being able to operate under hostile environmental condi-
tions). In the approach to the hierarchical design described here, each layer is analyzed for com-
pleteness with respect to functionality. Design requirements (e.g., a multilevel security policy) are
either ascribed to a capability external to the database or to the underlying system resources.

Designers of critical systems strive for a high degree of assurance that their systems manifest crit-
ical functions and properties. However, the requirements for critical database systems (i.e., integ-
rity, security, and safety) often conflict. For example, a secure system responds to an anomaly by
degrading gracefully and taking no action, whereas a safety system continues to perform its intend-
ed function. :

ARCHITECTURAL DISCUSSIONS

Figure 1 depicts a generic three-layer/schema architecture (see Elmasri and Navathe 1994). The
goal of such an architecture is to separate the user applications (e.g., BM/C3 applications) and the
physical database. Layer I, the internal layer, describes the physical storage structure of the data-
base and is characterized by an internal schema. Layer I, the conceptual layer, describes the data-
base from a community of users and is characterized by the conceptual schema. Layer III, the
external or view layer, compartmentalizes the database to a particular view or user and hides the
remainder. Layer I1I is characterized by an external schema or user views.

In addition, Figure 1 depicts the separation properties required for a multilevel secure database ap-
plication (such as the BM/C3 element of a ballistic missile defense system). The implication of this
depiction is that multiple views exist, each associated with a classification. The security policy
states that there shall be no (a finite, small probability of) exchange of information from a higher
classification to a lower (no write down) and that a lower classification may not read information
from a higher level.
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FIGURE 1. The Three-Layer/Schema Architecture

A request specified at the external layer is transformed or mapped into a request on the conceptual
layer/schema. The conceptual request is then transformed/mapped for processing over the internal
layer. The response at the internal layer goes through the reverse of this process to provide a re-
sponse to the user’s external view.

Thus a function (e.g., create) exists as a thread from the outer layer into the inner layer. This thread
represents the functional devolution from the external layer in toward the inner layer. That is, for a
user to create an entity or object, each layer must interface with the successive layers to effect cre-
ation at the lowest layer. To satisfy the requirements for multilevel security, an enforcement mech-
anism becomes part of each schema to ensure separation of data. The critical functions are
composed of the innermost layer and these enforcement mechanisms.

Specifically, design criteria (e.g., security, safety, or integrity) permeate all functions and layers of
the architecture. That is, to ensure that one compartment or view is separate from all others, mech-
anisms must be built into each schema/layer to enforce separation. Certification of these mecha-
nisms must ensure that security, safety, and integrity are maintained throughout the design
structure.

Certification and the analysis associated with the certification/accreditation process is complicated




by the requirement for a distributed capability. The remainder of this paper will strive to demon-
strate the composition of critical design and functional requirements in a common model to facil-
itate certification of a critical, distributed database.

2. MODEL FOR COMPOSITION OF CRITICAL PROPERTIES

Figure 2 depicts a generic architecture for our example of a critical systems design (i.e., the BM/
C3 element of a ballistic missile defense system). This figure is commonly referred to as an “onion”
diagram because, as components fail, the layers are peeled off, and the system gracefully degrades
from full functionality to less capability while maintaining the ability to provide critical function-
ality.

For example, Figure 2 depicts a generic architecture for the BM/C3 database system example. The
intent of this diagram is to show layering and data separation/compartmentalization (e.g, sensing,
planning, and execution data). The concentric rings represent the layers described for the three-lay-
er/schema architecture, and the inner circle depicts the critical computer/network resources re-
quired to support a multilevel, distributed system. Such a system depends on a trusted computer
base at each location and on secure channels between locations for data transfer. The following dis-
cussion uses the secure channel as the basis for describing an architectural model that permits com-
position of critical functional and design requirements in a framework amenable to the certification
process.

The design criteria for such a system are to:

. Maintain security (previously defined as “no write up, no read down” between secu-
rity levels/views),

. Perform critical functions for the BM/C? (i.e., destroy only valid threats by sensing
only valid threats, planning to target only valid threats, and execute targeting only on
valid threats), and

. Perform the critical functions and remain secure in the presence of any single point
of failure (a definition of the safety property).

To illustrate the proposed model in the context of the generic architecture, we focus on the message
passing subsystem (a subsystem of the trusted computer resources). This subsystem is essential to
establishing secure channels between the distributed subelements of the BM/C3 system. Thus the
message passing subsystem embodies critical functionality while also maintaining security and
safety properties.
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Our approach is based on Hoare’s theory [Hoare 1969] as described in the following outline:
. Build a decomposition tree for the functional system (we use flow net examples),

. Formally show that each level of the tree is an implementation of its parent in our
formal system [Chisholm 1997], and

. Show that the final layer is safe on the basis of a derived safety theorem.

We assert that a comparable demonstration for security (for the final layer) ensures a safe, secure,
distributed database system that embraces the integrity requirements and will withstand the certi-
fication/accreditation process.

Our design paradigm is central to the two concepts for complexity reduction: a function is decom-
posable and layered. Decomposition refers to the subdivision of a function into multiple subfunc-
tions until a least-reducible element is attained. A function (subfunction) establishes a layer, with
separation between each layer in accordance with a requirement to contain failures (a safety re-
quirement). The innermost layer is composed of the critical elements of a function. The trusted
computer resources support the database system and must be evaluated more rigorously than the
outer layers. We concentrate on one example of these resources, the message handling subsystem
(see Appendix A for more detail).

The development of the following model depends on two activities: developing flow net specifica-
tions and reasoning about these specifications. Flow nets are engineering tools that assist develop-
ers in visualizing the control and data flow of a design. Reasoning about flow nets involves
developing a clausal representation of the specification and computer-assisted analysis by using an
automated theorem-proving program developed by Argonne (OTTER). The analysis component
described here is based on Hoare’s (Hoare 1969; Floyd 1967) partial correctness model (extended
for flow net systems) and the formal semantics of the strongest postcondition (Gannod and
Cheng 1995; Dijkstra and Scholten 1990; Gries 1981).

For our example of the message passing subsystem, we wish to demonstrate that we have a “safe”
implementation. A safe implementation is described as one that accomplishes the functions of
send, transport, and receive in the presence of a single failure. The critical functions of the system
(e.g., create, read/modify, and delete for each of the three data compartments: sense, plan, and ex-
ecute) must comply with the critical properties of the system (i.e., security and safety). This implies
that the critical functions must operate while the system is secure at all levels (no write up, no read
down) and performs the critical, secure functions in the presence of a single failure (the safety prop-
erty). We describe this in the context of a critical resource (i.e., the messaging subsystem). Mes-
saging failures may be characterized as a “false,” “corrupted,” or “lost” message in the formal
model, as conceptually outlined in the appendix. Briefly, a false message is a message thatis in the
system, but has no origin. A corrupted message is one that has been altered by the system and is no
longer valid. Finally, a message may be lost by the system. The appendix is viewed as a specifica-
tion for a system that must ensure correct operation of the message subsystem and provide the for-
mal machinery for mapping from this conceptual description down to the implementation details
(only the conceptual details are contained in the appendix).




3. SUMMARY

The database design requires multiple levels of security (i.e., top secret, secret, confidential, and
unclassified). Data associated with these levels will be separated on the basis of the following par-
adigm: nothing is written from a more secure level to a less secure level, and nothing is read from
any level by a less secure level (no write up, no read down). Such a paradigm may be superimposed
on Figure 2, where the innermost layer is the most secure and security requirements lessen toward
the outer layers.

We propose a paradigm in which the functions of the database are layered and critical properties
(e.g., safety, security, and integrity) permeate all layers equally. Such a paradigm provides for a re-
duction in the complexity of critical functions and an associated reduction in the analytical burden
associated with accreditation. We describe an approach to design that demonstrably reduces the
scope for ensuing analysis in support of accreditation. This approach is based on a formal mapping
of requirements from the conceptual design to the implementation, with a rigid proof that the sys-
tem when implemented performs the critical functions while preserving critical properties. We il-
lustrate this paradigm with a description of a message passing subsystem that is essential to the
functionality of the example system. We assert that composition of critical properties is based on
first demonstrating that the design implements the requirements (integrity) by using a formalism
based on Hoare’s strongest postcondition. Subsequently, a theorem specifying the safety properties
is proven over the implementation. An additional theorem specifying security properties may be
proven over the implementation and composed with the safety and integrity proofs.
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APPENDIX A: MESSAGING SUBSYSTEM MODEL

This appendix describes our model for a message passing subsystem, which is a critical component
of the infrastructure supporting the three sublements of the BM/C? database system. We describe
this model at a level of detail that abstracts the functions for an unstructured network. Each subele-
ment site interfaces to the network through two buffers: a send buffer and a receive buffer. A site
places messages into its send buffer when they are ready for transmission to another location. The
network transports the messages to the destination, where they are placed in that location’s receive
buffer. Details of the movement of messages are unspecified at this level.

The following material describes a generic flow net specification, a flow net specification for a mes-
sage subsystem, and reasoning about the specification for the message subsystem.

A.I A GENERIC FLOW NET

Figure 3 depicts a generic flow net, consisting of three states (First_state, Second_state, and
Third_state) and two transitions (First_transition and Second_transition).

Associated with the First_state are two lists: [Precondition_structure, precondition_values] and
[Initial_state, initial_values]. These lists emulate the first element in a Hoare triple, namely, the pre-
condition.

Associated with the First_transition is an assignment statement, M_Asn(NOP, don_t_care). The in-
terpretation of this statement is as follows: M_Asn depicts an assignment statement where O or
more variables may be assigned new values. Additionally, this statement computes a postcondition,
based on the semantics of the assignment statement. (See the discussion on strongest postcondition
for a more formal treatment.)

The postcondition for First_transition is represented in a flow net as a token. Thus, the postcondi-
tion of one transition becomes the precondition of the subsequent transition. Again, the semantics
are tied to the Hoare theory. The Second_transition is similar to the first, except that the assignment
becomes one of multiple assignments to multiple variables: Ident_var_1 and Ident_var_2. Note that
the notation for a variable consists of a tuple, the first element being the identifier and the second
the assigned value.

The two lists represent pre/postconditions and local variables. The assignment function differs for
each list. For the pre/postcondition list, the values are appended to the list. This represents the se-
mantics of the assignment axiom (Hoare 1969). The treatment of the second list allows the values
associated with an identifier to be altered. Thus, the lists associated with the Second_state show the
effect of No Operation (NOP), and the lists associated with the Third_state show the effects of as-
signing values to two variables: specifically, the values are appended to the first list and inserted
into the second (if the values had previously been assigned, they would have changed). '

Flow nets represent functionality and correspond to the functional requirements in a specification.
Therefore, each transition can be further defined. Usually, further definition of transitions continues
until a least-reducible element is attained. In the following example, we present a flow net specifi-
catior. at a conceptual level, further define the transitions in separate flow nets, and present a final




{ [(Precondition_Structure,precondition_values),
- ' (Initial_State, initial_values)]}

_/

|_____First_transition M_Asn([NOP,don_t_care])

L

{[(Precondition_Structure,precondition_values),
ate | (Initial_State, initial_values)]}

=)
/

w

4

Seco

(

N
AN

Second_transition M_Asn([(Ident_var_1,first_var_val),
(Ident_var_2,second_var_val)])

{{(Ident_var_1,first_var_val),
(Ident_var_2,second_var_val),
(Precondition_Structure,precondition_values)],
[(Initial_State, initial_values),

(Ident_var_1 first_var_val),
(Ident_var_2,second_var_val)}}

~
-
5
o
(%)
i
0
el
o)

i

FIGURE 3. Generic Flow Net

representation that shows a low-level implementation as well as specific theorems associated with
safety properties.

A.Il FLOW NET SPECIFICATION OF A MESSAGE SUBSYSTEM

Figure 4 depicts an intermediate specification for a messaging subsystem. The specification pro-
cess consists of instantiating the generic file to details specific to the system under consideration.
Initially, a conceptual design for a system is described (e.g., the three layer/schema architecture).
The corresponding diagram is translated into a clausal representation and submitted to the OTTER
automated theorem-proving program for processing. When a proof is received, the conceptual
functions are decomposed into subfunctions. These subfunctions are then encoded in the language
of OTTER and reasoned about in the context of the Hoare formalism (see Chisholm 1997 for ex-
amples). The process continues until the design is complete. At this stage, we claim that the func-
tional hierarchy is complete. The next phase in the process is to show that the functional
implementation possesses the critical properties (e.g2., safety and security; integrity is manifest in
the formally derived hierarchy).

A.IIl REASONING ABOUT THE MESSAGE PASSING SPECIFICATION

For our example of the message passing subsystem, we wish to demonstrate that we have a “safe”
implementation. A safe implementation is described as one that accomplishes the functions of
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send, transport, and receive in the presence of a single failure. Messaging failures may be charac-
terized as a “false,” “corrupted,” or “lost” message.

The model of the messaging subsystem is presented in first-order predicate logic. An operating sys-
tem environment contains messages, threads, memory, and ports. Located in this environment are
senders, transporters, and receivers of messages (threads, memory, and ports are beyond the scope




of this model, and type enforcement has been omitted for simplicity). Objects are sent, transported,
and received. An object is in a send_buffer, receive_buffer, or the network. The environment is dis-
crete and can be defined as a set of “objects.”

. Object (x) -XiSan objeét.

. Message(x) - X isamessage.

. Send_Buffer (x,Send(y,z)) - Entity yis sending a message X, to z.

. Network (x, Transport (v, z)) - Message X is being transported y -> z.

. Receive Buffer (x,Receive(y,z)) - Message X, sent by y, is received by z

. LM(x,F(y,z)) - “Lost Message.” X is a message and it has been lost.

. FM(x,F(y,z)) - “False Message.” X is a not a message but is in the Send_Buffer,
Receive_Buffer, or network.

. CcM(x, F(y,z)) - “Corrupted Message.” x is a message that has been corrupted.

. Correct (x,F (v, z)) - Given locations y and z, the message is correct.
. T_r(x) - X is a valid message.

. -T_r(x) - X is not a valid message.
. T_e(x,F(y.z)) - Given inputy and z, to the O/S, x is a message.
. -T_e(x,F(y.z)) - Given input y and z, to the O/S x, is not a message.

hd Message_Sent (x,Send(y,z)) - X isa message, sent from y to Z.
. Message_Received(x,Receive(y,z)) -Xisa message, received at z from y.

. Message_Transport (x, Network (v, z)) - X i$ a message, sent from y to z and cur-
rently being transported by the network.

A “false message” is an object that exists in either the Send_Buffer, Receive_Buffer, or network
but is not a valid message.

Chisholm 1997 provides a detailed description of this model and its manipulation via the OTTER
automated theorem-proving program.

A.IV SUMMARY

This appendix provides a brief introduction to flow nets, a flow net description for a message pass-
ing subsystem, and an example of the manipulation of flow net specifications by using the OTTER
automated theorem-proving software. This discussion is presented in the context of using such
mechanisms for the specification and verification of critical system properties. The effort associat-
ed with such analysis is time-consuming, and design paradigms that reduce complexity, (i.e., as de-
picted by the “onion” diagram) are essential for such analyses.




