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ABSTRACT

A reconfigurable control scheme is proposed which,
unlike a preprogrammed one, uses stochastic automata to learn
the current operating status of the environment (i.e., the
plant, controller, and communication network) by dynamically
monitoring the system performance and then switching to the
appropriate controller on the basis of these observations. The
potential applicability of this reconfigurable control scheme to
.electric power plants is being investigated. The plant under
iconsideration is the Experimental Breeder Reactor (EBR-II) at
Ithe Argonne National Laboratory site in Idaho. The
[distributed control system is emulated on a ring network
jwhere the individual subsystems are hosted as follows: (i) the
ireconfigurable control modules are located in one of the
.•network modules calied Muliijunction Controller, (ii) the
(learning modules are resident in a VAX 11/785 mainframe
[computer, and (iii) a detailed model of the plant under control
is executed in the same mainframe. This configuration is a
true representation of the network-based control system in the
sense that it operates in real time and is capable of interacting
with the actual plant.

jl. INTRODUCTION

Complex processes require integration of a large number
of subsystem and controller modules. This results in complex
large-scale design, operation, and maintenance problems. In a
dynamic system with widely varying operating conditions, the
control and decision functions need to be reconfigured during
plant operations over its full range. Furthermore, plant
equipment failures and associated malfunctions must be dealt
with by taking into account prescribed safety and/or
emergency operating procedures. Thus, plant automation to
adapt to actual operations for normal is well as under
unanticipated conditions is desirable. To continually monitor
the system performance, the concept of learning automata
[1,2] can be applied. The individual learning modules could be
pans of the integrated control and decision-making system
which dynamically responds to changes in the plant
conditions. The learning agent reconfigures the system by
switching to the controller that is most likely to achieve the
desired performance. The strategy of reconfigurable control is
time-dependent in the sense that an action is selected from a
bank of pre-designed controllers at each sampling instant
[3.4]. Failure to activate the appropriate control action would
degrade the plant performance and safety. This situation may
arise due to circumstances such as wrong identification of the
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plant operating condition due to noise, imprecise knowledge
of the plant, and inadequacy of the controller itself.
Therefore, the reconfigurable control system should also
possess the capability to deal with uncertainties and function
in a stochastic setting.

A learning automaton interacts with its environment and
enables the control system to dynamically update actions
based on environmental changes. Specifically, the automaton
first chooses a particular action from the finite set of actions
offered by the environment; the automaton is then penalized
or rewarded by the environment which influences the choice
of future action. In the present context, a specific action
corresponds to one of the several controllers, and the
automaton learcs which is the most appropriate controller for
a given plant condition. The fundamental principles of
learning automata are explained in detail by Narendra and
Thatachar [1,2].

2. SYSTEM DESCRIPTION

A deaerating feedwater heater, equipped with a water
level controller and a pressure controller, has been chosen to
investigate the feasibility of a reconfigurable control system
based on learning automata to deal with power plant
operations. Besides removing entrained air from the feedwater
supply system, a deaerating heater provides an inventory of
water for the main feedwater pump(s). A power plant
deaerator is elevated relative to the feedwaier pump inlet to
provide a net positive suction head (NPSH). Due to this
physical separation, the effects of changes in pressure and
temperature in the deaerator water do not appear at the pump
immediately but are separated by a transport delay.
Specifically, pressure waves travel at the speed of sound
through water while changes in water temperature are
transported at a speed proportional to the feedwater flow rate.
The interconnecting pipe is short enough to neglect pressure
delays but long enough for the temperature delays to be
significant for plant design and operation. These differences
in transmission of events may diminish NPSH during
transients. A severe loss of NPSH could ruin the feedwater
pump due to cavitation possibly within a minute.

To avoid any such potential damage of the feedwater
pump, both deaerator pressure and its decay rate must be
controlled. The deaerator pressure is normally maintained by
the flow of high quality steam bled from the main turbine
into the deaerator while the water level is regulated by
adjusting the flow of condensate water from the low pressure
feedwater train. If the steam inlet flow is abruptly reduced,
the deaerator pressure would rapidly decay which may cause
cavitation st the feedwater pump.

A rapid pressure decay can be arrested by reducing the
flow of the relatively cool condensate into the deaerator. At
the same time, the water level in the deaerator must not drop
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below a rninimum limit to ensure that the feedwaier pump
dots not run dry. During malfunctions the reconfigurabJe
control system must decide which action should be taken to
manipulate the condensate water valve, i.e., whether to
adjust the condensate flow to maintain (he water level in the
deaerator tank or to prevent the pressure decay as much as
possible.

The low pressure feedwaier healing system of the
Experimental Breeder Reactor (EBR-11) at the Argonne
National Laboratory site in Idaho has been chosen to
demonstrate (via simulation experiments) the efficacy of
reconfigurable control based on learning automata. Figure I
shows the components of the simulated plant including: (i) the
condensate pump which receives low pressure water from the
condenser, (ii) an indirect-contact heater; (iii) the deaerator,
the steam inlet valve, and the control valve to adjust
condensate flow into the deaerator, and (iv) the deaerator
level and pressure controllers that individually manipulate the
condensate flow control valve. As indicated in Figure 1, the
controller #1 manipulates the condensate flow control valve to
maintain the deaerator water level, L(I). As an alternative to
the controller wl, the controller #2 was made available for
the learning system to maintain pressure, P(t), also by
manipulating the condensate flow control valve. (The (wo
controllers are not allowed to act simultaneously on the
condensate flow valve.) Both controllers are designed using
the single-input single-output proportional-integral algorithm.
The proportional gain and reset time of the controllers *I and
#2 were determined on the basis of a simplified model of the
deaerator. Although more advanced algorithms are likely to
improve the system dynamic performance, these simple
controllers facilitate a clear understanding of the operations of
the learning mechanism.

Figure 1. Schematic Diagram of the Simulated Deaerator
System

3. RECONFIGURABLE CONTROL SCHEME

The concept of a reconfigurable control scheme that is
capable of adjusting itself to chnnges in plant operating
conditions has been introduced in [6]. !ts application is
illustrated on the deaerator system in Figure 1 by switching
from one controller to the other. The operation of the
reconfigunble control system can be divided in the following
four steps: (1) identification of the plant operating condition,
(2) evaluation of the current control performance, (3)
updating of the individual controllers" performance based on
current and previous plant responses, and (4) selection of a
specific control law from the set of available ones. To
integrate these tasks, a certain degree of intelligence is
required. To this effect, learning behavior is incorporated in
the reconfiguration scheme, and stochastic automata are

specifically chosen because (he plant is likely to undergo
unstructured disturbances.

3.1. Structure of the Reconfiguralilr Controller

The simulated system consists of the plant, e.g., the deaerator
as shown in Figure 1, and the recun/igurable cuntrollei which,
in turn, is composed of two main components, the bane
controller module and the master module as shown in Figure
2. Each of these modules are divided into submodules which
are interconnected to satisfy both control and learning
guidelines.
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Figure 2. Schematic Maotam of t ie Recontgurable Control System

3.1.1. Basic Controller Module

In Figure 2, u (t) corresponds to the action (of one and only
one of the two controllers) that manipulates the condensate
flow control valve. The control switching is based on the
action selection signal o(k)e{l,—,r) where r is the number
of available actions. (Note: r>2 in this example.),|Thus, cr(k)
unequivocally selects a single controller at the k sampling
instant (i.e., u (t)«u.(k), i»l or 2) to a;t on the condensate
valve. Upon selecting a u.(k), a(k) places the remaining
controllers) in tracking mode to accomodate bumpless tranfer.

3.1.2 Master Module

Based on pred-fined .esponse criteria, the master
module generates the acton selection signal o(k) that will
select the controller expected to perform better than the other
controllers for the given plant conditions. The master module
incorporates learning mechanisms to gain sufficient knowledge
for identification of the correct controller. In this design, the
master module is composed of the three submodult.. (i)
Performance evaluator (PE), (ii) Learning agent (LA), and
(iii) Control action generator (CAG), as shown in Figure 3.
Depending on the current plant operating mode, the mister
module updates the set point of the selected controller and
feeds this information to the basic controller module.

3.1.2.1. Performance Evaluator

On the basis of the measured plant response, the
performance evaluator 'PE) interprets the current
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performance of the selected controller as V<k)E(-I.O,l). if the
performance criterion is satisfied, a reward condition is
indicated by setting V<k)*O; otherwise, a penalty condition
lKk)«! is imposed. An inaction condition V(k)*-I is asserted
if the PE cannot arrive at a conclusion about the controller's
performance. Three different decision logic are used for
generating V<k) where the resulting performance indices are
denoted by V>.S(-1,0,1), i= 1.2,3 as shown in Figure 4. The
measurement History (including the current values) of pressure
P and level L is used for computing V>(, the pressure decay
rate for •&.,, and temperatures of both the condensate and the
feedwater'flows for
ii.'s follows.

, . A brief description of each oS these
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Index tf. bases its control preformance evaluation by
identifying the plant operational zone of tt each sampling
instant. Specifically, the entire deaerator operating regime is
partitioned into mutually exclusive but exhaustive zones such
that the plant occupies exactly one of these zones at any
instant of time. This performance decision is also made
dependent on the history of the level and the pressure
measurements. The idea is to evaluate the performances of
both controllers on the basis of the current operating
condition and predicted plant dynamics. Thus, if a process
variable (e.g., level or pressure) experiences recovery while
the other one is degrading, there is a potential of switching of
controllers. •

Jndex 1>. is intended to reduce the pressure decay rate
so that the potential problem of cavitation at the feedwater
pump can be avoided. To this effect, a weighted average,
«P(k), of the pressure decay rate is obtained as follows

V P ( k - j ) w ( j ) ] / T
(

-II
j - 0

where the difference operator V is defined as Vf(k) :« f(k)-
f(k-l), the weight wfj) is appropriately chosen (a possible
choice is w(j)« (j+O"^. «nd the number n of past values of

pressure readings over which the weighted average is taken is
inversely relaied to the sampling interval T. Then, 5P(k) is
compared with an a priori specified maximum pressure decay
rate, SP , which is a function of the feedwater flow. If
fP(k)>SJJna*, the pressure controller is the recommended
action. m a x

Index V, bases the controller performance evaluation on
the condensate and feedwater flow temperatures, T and
T , respectively. Since T < T [ w under normal
circumstances, a reduction of the°conaensate flow into Ihe
deaerator would be appropriate for mitigating the pressure
loss, even though it may be contrary to maintaining the water
level. However, whenever T >T_ ,, the pressure controller
may not be the correct choice. u>e rationale is that level
control, under these circumstances, would increase both level
and pressure by augmenting the condensate flow. This
temperature-dependent criterion is implemented by setting v̂ \
to J if the pressure controller is active and T >T_ ,;
otherwise, \t>, is set to 0. m

3

At each sampling instant k, the signal V is heuristically
generated as a combination of V>,. V<2 and V3 as follows.
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The signal VW is an input to both the learning agent and the
control action generator. If the performance evaluator cannot
make a decision on the current controller's performance
during a given sampling period k (i.e., V<k)=-1), the learning
mechanism is "frozen"; that is, the automaton states are held
constant, and any switching from one controller to another is
inhibited. On the other hand, if the performance evaluator
does make a decision (i.e., tfk)>0 or 1), thin not only the
learning automaton states are updated but also V(k) serves as
the forcing function in the automaton difference equations.

3.1.2.2. Learning Aeent

The learning agent (LA) is essentially implemented using the
concept of stochastic automata. The LA, at the sampling
instant k, proposes a specific controller for the (k+l)st
sampling period. The inputs to the LA are the decisive
response of the PE, i.e., ii(k) being 0 or 1. and o(k) from the
control action generator serves as the identity of the current
controller. The output o ' (k+l ) of the LA is only a proposed
choice for controller selection because the final decision,
o(k+l), is made by the control action generator.

3.1.2.3. Control Action Generator

The control action generator (CAG) shown in Figure 5
decides which one of the available controllers should act upc>:
the plant. The CAG governs switchings from or.s controller to
another based on the plant response. Any switching is
performed in s bumpless manner. When PE fails to arrive at a
decision, i.e. V<k)--1, such switching is inhibited during the
k sampling period. To reduce erratic control transitions, the
CAG uses a procedure based on sequential testing to suppress
the spurious fluctuations in the action cr'(k). These
fluctuations may occur due to measurement noise, plant
disturbances, and modeling uncertainties of the reinforcement
scheme.

The CAG also "contrains the control selection process of
the master module. The decision a'(It), proposed by the LA,
may violate plant specifications because the LA is completely
unaware of the plant operational constraints. Whenever any
such constraint is violated, the proposed action a ' is
overridden by the CAG according to certain rules, and the
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next "best" choice is accepted as the action a for controller
selection.

4. SIMULATION EXPERIMENTS AND RESULTS

The performance of the reconfigurable control scheme,
described above, has beer, evaluated via interactive simulation
using the Modular Modeling System (MMS) [7] and the
Advanced Continuous Simulation Language (ACSL) [8]. The
Discrete Linear Reward Penalty scheme (DLRp) [9] was
chosen as the reinforcement scheme in the learning agent with
the number of steps being equal to 6.

Figure 6 shows the architecture of this microprocessor
based control for simulation experiments. The Network 90
distributed process control system [5] was used to implement
the reconfigurable scheme. The simulated plant (running on
the VAX mainframe) calculates the feedwater flow based on
the inlet steam flow, condensate flow, deaerator level,
pressure, and condensate and feed water temperatures. Using
these values, a program which emulates the master module
(running also on the VAX) evaluates the performance of the
currently active controller and then decides which controller
should be selected at the sample. Both the current plant
conditions and the decision (i.e., the action signal a(k) and set
points of the two controllers) of the master module are
communicated to the multifunction controller of the Bailey
system through a RS-232C serial line. The multifunction
controller then takes the simulated plant condition and the
Master Module's commands to implement the control
functions. The actuator command (i.e., position of the
condensate valve) is then calculated and transmitted to the1

VAX so that the new plant conditions can be simulated.
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Figure 6. SimuMion of the DMribuied Control System

One of the various scenarios thit were simulated to test
the reconfigurable controller, is abrupt changes h. the steam
inlet flow into the deaerator as shown in Table I.

Time 1Range in
* of samples

0
11 -

111 -
16) -
311 -
451 -

- 10
- 100
- 160
-310
-450
-500

Steam Flow
in percent

80
30
50
75
85

100
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The responses of the pressure P(t) and level L(t) are presented
in Figures 7 and 8, respectively, for .comparison of the
original (i.e., without learning) and the reconfigurable
schemes.

• Original Control Scheme

- Reconfiourable Control Scheme

100 200 300 400
Tune in Units ol the Sampling Period (- 4 sec)

Figure 7. Dexmtor Pressure Tmnsfents

Original Control Scheme

Reconfigurable Control Scheme

100 2O0 300 «0O 500
Tnw in Units ol the Sampling Period ( - 4 tec)

Figure 8. Draeralor Level Transients

As mentioned earlier, the response of the deaerator
•during a loss of steam flow is expected to br » reduction in
pressure to the point that the plant must be shutdown to
prevent damage to the feedwater pumps due to lack of
available suction head. With the normal level controller still
in operation, the flow of relatively cool condensate is
increased to makeup for the loss in mass flow from the steam.
However, this control action to maintain level at the set point
aggravates the pressure decay as seen at the beginning of
transients in Figure 7. Under these circumstances, switching
to the alternate pressure controller would reduce the flow of



copl cgndensate so thst the deaerator pressure can be
maintained while allowing the level to drop as seen in Figure
8. The learning system, instead of having a preplanned
schedule, decides the appropriate control action by monitori-i;
of the process variables.

It is seen in Figures 7 and 8 lhat switching IO the
pressure controller from the level controller arrests the
pressure decay at the expense of letting the level drop. Under
the level controller in the original scheme, the pressure
continues to fall. The reconfigurable scheme arrests the
pressure decay within c30 samples and does not allow P(t) to
drop below 90 psig whereas, in the original scheme, the
pressure continues to decay until the steam flow is partially
restored at at 110th sample when P(t) has dropped to =65
psig.

The reconfigurable scheme causes switching between the
two controllers. Although the controllers are appropriately
interlinked to ensure these switchings to be bumpless, this
phenomenon is a source of potential instability in the actual
plant which is prone to noise and disturbances. Whenever a
switching from the pressure controller to the level controller
takes place, the condensate flow is increased from a small to
an almost maximum to quickly restore the level. These
variations in operating conditions occur due to the reverse
effects that the two controllers exert over the plant. More
sophisticated algorithms and a larger number of alternative
control actions would potentially reduce the frequency of
switchings and thereby improve the performance of the
reconfigurable scheme. For example, an advanced
multivariable control law such as LQG [10,11] or one using
the fuzzy logic [12] would simultaneously minimize errors in
the critical process variables so that the level is more
effectively recuperated while maintaining the pressure within
the safety ranges.

5. SUMMARY AND CONCLUSIONS

A reconfigurable control scheme is proposed which,
unlike a preprogrammed one, uses stochastic automata to learn
the current operating status of the plant by dynamically
monitoring the system performance and then switching to the
appropriate controller on the basis of the observed
performance. The potential applicability of this reconfigurable
control scheme to electric power plants has been investigated.
A deaerating feedwater heater, equipped with a water level
controller and a pressure controller, has been chosen to study
the feasibility of reconfigurable control in power plant
operations. Simulation experiments have been conducted on
the basis of a model of the Experimental Breeder Reactor
(EBR-II) at the Argonne National Laboratory site in Idaho.
The results show that the reconfigurable control scheme is
capable of providing a sufficient margin for the net positive
suction head at the feedwater pumps under loss of steam flow
into the deaerator. Under similar circumstances, the existing
controller in the deaerator would be incapable of maintaining
the pressure and its decay rate within the safe margins, and
thereby force the plant operator to take additional measures to
protect the feedwater pumps. The learning agent in the
reconfigurable controller of the deaerator is capable of nking
a correct action in the (unusual) event of the condensate
water being warmer than the feed water. This example shows
how the control system can learn to react to unanticipated
circumstamces which could be difficult for human operators
to handle within time constraints.

Incorporation of learning capabilities within the
reconfigurable control scheme is promising for unanticipated
and uncertain plant conditions for which preprogrammed
control algorithms are apparently difficult to formulate. Both
the performance evaluator and the set of alternative
controllers are critical for the reconfigurable control scheme,
and may rely on a combination of analytical and heuristic

techniques While the general structure of the performance
evaluator is specifically dependent on the given application,
the individual control algorithms are more likely to be
formulated by taking advantage of the existing model-based
and rule-based design methodologies.
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