
0__ ORNL/TM-12032

OAK RIDGE
NATIONAL
LABORATORY

A Fortran 90 Code for

Magnetohydrodynamics

Part !: Banded Convolution

,,, David W. Walker

.I,.. t,,

MANAGEDBY ' ,, ' " :"
MARTINMARIETTAENERGYSYSTEMS,INC.
FORTIlEUNITEDSTATES

__ DEPARTMENTOFENERGY
', Z ' rrqr " _l,I_r_p,

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractorsfrom the Office of Scientificand Techni-

cal Information,P.O. Box 62, Oak Ridge, TN 37831; prices availablefrom (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical InformationService, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield,VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government.Neither the United States Governmentnor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liabilityor responsibilityfor the accuracy, com- ,
pleteness, or usefulnessof any information,apparatus, product, or process dis-
closed, or represents that its use would not Infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer,or otherwise, does not necessarilyconsti-
tute or imply its endorsement,recommendation,or favoringby the UnitedStates
Government or any agency thereof. The views and opinions of authors
expressed hereindo not necessarilystate or reflect those of the United States
Governmentor any agency thereof.

ORNL/TM--12032

DE92 010362

Engineering Physics and Mathematics Division

, Mathematical Sciences Section

A FORTRAN 90 CODE FOR MAGNETOHYDRODYNAMICS
PART I' BANDED CONVOLUTION

David W, Walker

Mathematical Sciences Section

Oak Ridge National Laboratory
P.O. Box 2008, Bldg, 6012

Oak Ridge, TN 37831-6367

Date Published: March 1992

Research sponsored by the Office of Fusion Energy, U. S. Depart-

ment of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY

under Contract No. DE-ACO5-84OR21400 __'_1[_
|WUm mw- - _-

W

i Contents

1 Introduction... 1

2 Banded Convolution.................................... I

3 Fortran90 Implementation 5
4 Banded Convolutionon theCM-2 10

5 Conclusions... 15

6 Acknowledgements 16
7 References.. ,. 17

.i,

- III-

_l _lI ql 11 l ll_p l_ I l ll_ i _' '[_ l _'llll lll_ iii l_l Ill _lill'll_lll '_ lll_: i II l''l rrll l l: ql l(l [_l II ' 'll Irlllll[l lit11l, llrl l _1'llqii 1111 Ill I_ lr ' ll_ irl IIl ll_II _lll111'l111111111r_ll_lIpl lllrlllll 'l l_l l' II'_l

A FORTRAN 90 CODE FOR MAGNETOHYDRODYNAMICS

PART I: BANDED CONVOLUTION

David W. Walker

Abstract

This report describes progress in developing a Fortran 90 version of the KITE code

for studying plasma instabilities in Tokamaks. Iii particular, the evaluation of convolution

terms appearing in the numerical solution is discussed, and timing r_sults are presented

for runs performed on an 8k processor Connection Machine (CM-2). Estimates of the
performance on a full-size 64k CM-2 are given, and range between 100 and 200 Mflops.

The advantages of having a Fortran 90 version of the KITE code are stressed, and the

future use of such a code on the newly announced CM5 and Paragon computers, from

Thinking Machines Corporation and Intel, is considered.

-V-

1. Introduction
m,

This is ttle first in a series of reports describing progress towards a Fortran 90 implementation

of the KITE code, and similar spectral codes. The KITE code uses a magnetohydrodynamic

' (MHD) approach to study turbulence and transport in Tokamak plasmas, and has been used,
for example, in investigations of tearing mode turbulence [4], and the dynamo effect in reversed-

field pinch configurations [5]. A finite difference grid is used in the radial direction, and a Fourier

series expansion in the poloidal and toroidal directions. Details of the equations and algorithms

are given elsewhere ([3],[4]), and so will not be repeated here. The important point to note is
that the two major computational tasks are,

® The evaluation of 2-D convolutions at each radial grid point. These arise from the Fourier

representation of nonlinear terms in the governing PDEs.

• The solution of a block tridiagonal linear system for each mode included in the compu-

tation. These systems are due to implicit terms that arise in the radial discretization,

and, in the models run so far, the size of the blocks ranges from 1 to 7, depending on tile

complexity of tile model physics.

In this report we shall deal with the Fortran 90 implementation of tile 2-D convolutions. Subse-

quent reports will consider the solution of tile block tridiagonal systems, and the implementation

of a complete Fortran 90 version of the KITE code.

2. Banded Convolution

For the types of problem being studied only (m, n) modes within a narrow helicity band are of

. interest, as shown in Fig. 1 in which the crosses indicate which modes are actually included in

the computation. We shall refer to the convolutions performed as "banded convolutions".

An alternative approach to implementing spectral codes like KITE is to regard the problem
as a dense convolution and use fast Fourier transform methods. This method uses more memory

than the banded convolution method, but requires less data movement, and may be the best

approach on machines for which data movement is costly. In addition, direct convolution has

a smaller operation count than the FFT method only for a sufficiently narrow band of modes.

The FFT approach is being investigated by Kerbel [6] on the Connection Machine CM-2, for

which optimized FFT routines already exist.
In the Fortran 77 version of the KITE code the modes of interest are labeled g = 1,2,..., t_ma×.

Indirection arrays are initialized at the start of the KITE code to store which modal interactions

contribute to a given mode. Thus the convolution of two arrays G and H for mode t_= (m, n)

is written in terms of index arrays K_ and Kt as follows,

F(L_)= E St(_')'G(Ktg (_'))'It(K_(_))' for e=l,2,...,gmax (1)
t'ep(t)

where P(g) is the set of modes contributing to mode _, and St(g') is either -1, 0, or 1, depending
Sh

on what types of function the arrays being convolved represent. For clarity we shall assume

that St(e') = 1 for the rest of this report.
• Although Fortran 90 permits the use of vector subscripts to perform the indirect indexing in

Eq. (1), the use of such constructs generally results in inefficient code on advanced architecture

,_,,,=_,.... ,,,........Irl,,ip+....... ,,,,_,,_.... ,?,,,,_+,,_,,,qr ,,_M,r',,r, ",+"' _'i_......a,,' =l=' llll_IPIlll ' "II"IPll'll"'Ir'rllII"rl 'lr.... ili'Illq'IIIT...... raflql'llll "'

-2-

90 I _ I I I i . I i ,.I ... I II ..

80"-

0 : , l i I i' , l i"' I ' i i I-- ' "

0 10 20 30 40 50 60 70 80 90 100 110 120 130

m

Figure 1. (m, n) modes are indicated by crosses.

machines, since it inhibits vectorization, results in a high cache miss ratio, and/or requires
irregular interprocessor communication. In designing a Fortran 90 version of the KITE code

we, therefore, avoid the use of indirect indexing. As we shall see, indirect indexing is "overkill"
for the problem at hand since the problem does involve a certain regularity of structure. The

use of indirect indexing only makes sense in genuinely sparse or irregular problems.

The banded convolutions that are evaluated in the KITE code at each radial grid point are

actually of the form,

{ Fl(rn, n) + F2(m,n) for (ro, n) _ (0,0) E SF(m, n) = 0 for (m, n) = (0, O) (2)

where S is the set of modes used in the simulation, and,

M-1 nz(m')

Ft(ro, n) = E E [G(m',n').H(m'-m,n'-n)+G(m'-m,n'-n).II(m',n')]
m_-.m nl--n

rn-I n-1

I_(m,n) =: E E [G(m-m',n-n').H(m',n')-FG(m',n').H(m--m',n-n')]
m'=l n'--n. (rn')

(3)
.d

where n,(m') = max(1,nl(m')). In Eq. (3) we assume that the index n runs from ni(m) to

n2(m) for each m, and that G(m,n) = H(m,n) = 0 for (ro, n) not in S.
The Fortran 90 language is designed for the convenient and efficient manipulation of arrays

i. 'Pi " ft" Irl',Iv 'iPl'r' ii?,[, lilllli ,l,p _llili tilt ' qp ' i'l ii,' ,_iI ' '_rll' 'lq;l'r '" 'Itr'_'i I,, ,,rl ,, ,r, ,,i, riw ',_ 'iI',,,tl r, ,',,

I

I i _

!

-3- '_ _ '_,

, r

(see, for example, [1]). We, therefore, must reformulate the convolutii:,lt in Eq, (3) in terms of
,. elementwise operations between conformal arrays without any' indirect!indexing. With this aim

in mind, we next rewrite Fl(.m, n) as, i

a M-1 Ni-1

._,,...'n')H(m+,_',.')]Fl(m,n) = E _ [G(m+m',n+n/).H(m',n')+,.,,,, . n+
mt=O nt=O

M-1 Nt-1

= _ _ [a(._+m',.+.'+.,(m')),H(.4,.'+.l(m'))+ (4)
m_=O nt=O

G(m', n' + ni(ro')), n(m +m',n+ n'+ nl(rn'))]

where, i:

NI = max(n2(m) - nl (rr,)) + 1 (5)
t'n

" ' :, tt(m' n') = 0 forIn Eq. (4), nl(m I) has been added to the n' index because (.,,(m ,n:)= ,

nt < nl(m'). Reformulating the expression for F2(m, n) we have,

m-1 n-1

m'=l ni=ht(m,) ,

- _: [a(m',0),H(._-m',_)+C,'(._,-.,',.)._U(.4,0)]
m'EJ_(m) ,,,

M-1 NI-1 , '

. = _ Z [c_(,_-,_',_-.'- _,(m')).H(m',,:+..,_(.,,))+
ml=l n_=O

a(m',_'+ni(m'))._(m- m',,- ,,'-- ,_3(,+'))] (6)
• - _ [a(0,_').H(,_,,,-,')+a(m,,,._').H(0;,,')]

n'eX(m,n)

-2 _ [G(m',O).H(m-m',n)+G(mn/,n).H(m',O)]
m'eM(m)

-a(o, o). ft(m, n) - G(m, n) . H(O, O)

where we define the following index sets,

M(m) - {m' I (m',O)_ S and m' E(1,m--1>} , (7)
_V(m,,) = { n' I (o,n') E $ and n' E (1, n -,l ,,,.:(m)) '}

,,

where (x, y) denotes the set of integers in the range x to y, inclusive, I

For dense convolution of M x N arrays, ni(m) = 0 and N1 = IV s<:,',,_,,l(m) ','::(1,,:,,_....1),

and N'(m, n) = (1, n). For the types of banded convolutions that are o_° i_'_.._t'est.:_,_erc_,,'.4._hall
assume that the only mode for which either m or n is zero is the (9",0i r:iode, Und,,"_tt,his_,

assumption M(m) and .h/'(m, n) are empty sets for m,n > 1. The dls!:_.[_'_,t:Sio,_,of mc>des in

Fig. 1 is of this type. With this assumption we may write,
k ' '/

M-1 NI-1 ,,t', ,

F_(m,.) = _ _ [a(.,-.,',.-,,'-._(,.')),H(,,._',.'+,.,,it,.'l)+ ,
m_=l n ImO ,/"'m

a(,.',n'+.j(,.')),t:(,.,+-...,',,,,......,..,',,._I"'",.,)!. (_)

-4-

-G(0, 0). H(m,n)-G(m,n). H(0, 0)

Now we have transformed the banded convolution in Eq. (3) intoa dense convolution in

Eqs. (4) and (8), and we can further modify the convolution so that it involves only dense
arrays a.s follows,

M-I N_ -1

:,(._,.) = _ _ [.q(m.m',,_+.'+,,,(,,,)+,,,(,_').,_,(.,+._')).h(.:,n')+
fnl--O r_/=O

g(m', n') . h(m + m', n + n' + nl(m) + nl(m') - nl(m + m'))]
M-1 NI -1

s_(._,_) = _ _ [_(m-m',.-.'+,,_(m)-.,(m')-n_(,_,-._')).h(,_',,,')+
ml=l nl=O

g(m', n') . h(m- m', n- n' + ni(m)- nl(m')- ni (m- m'))]

-_(o,o). h(m,n)-g(m,n) .h(O,O) (0)

where,

g(m,n) = G(m,n + ni(m)), h(m,n) --- U(m,n + ni(m)) (10)

with similar relationships existing between fi and F1, and between f_. and F2. Finally, for

notational convenience, we introduce two offsets,

kl(m,m') = nl(m)+nl(m')-n1(m+m') (11)
I¢2(m, Trt I) = hl(tri) -- nl(Tr_') - ni(m- m I)

We also take into account the symmetry between g and h in the expressions for fl and f2, and
write the convolution as,

f}"'")(m,,O
f.t(m,n)-- f}g'h)(m,n)+f_h,g)(m,n) (12):_(m,n) = l_"h)(,_,n)+

form=l,...,M-l, andn= 1,...,N1- 1, where,

M-I Ni-1

y_':'Y)(m,n) - _ __, x(m+m',n+n' +kl(m,m')).y(m',n') (13)
rne=O nl=O

M-I N,-1

f_x'!/)(m,n) = E E ._(m-m',n-n' +k2(m,m')).y(m',n') (14)
mJ=l ni=0

-_(0,0),y(m,n)

Eqs, (13) and (14) recast the banded convolution in a form that may be readily implemented

in Fortran 90, lt is also possible to express Eqs, (13) and (14) in terms of matrix-vector products,
and this gives some insight into the Fortran 90 implementation. Thus, we write,

M-1

f_x'U)(m'n) = E Z+, m'(n) (15) .
rill--0

M-1

/_")(m,n) = _ Zg,m,(n)-_(0,0).y(m,n) (16) •
m l- 1

i_ m"'" I_a_

-5-

where,

Na-1

Z+,m'(n) = E X+, m'(n + n') . Ym,(n') (17)
,I t_/=O

NI-1

Z_,m,(n) = _ XTn,m,(n- n') . Vm,(n') (18)
rlt=O

i

and

X+m,(q) = x(m+m',q+kl(m,m')), Ym,(q)=y(m',q) (19)

XSn,m,(q) = x(m-m',q+k_(m,m')),

With this notation Z+,m, can be expressed as the product of a Hankel matrix, with zeros
below the minor diagonal, and a vector,

Z+(1) X+(1) ... X+(N,- 1) N1 Y(1)
--..

, , ., ,,* ' *

Z+(.N1- 1) X+(N1- 1) 0 ,,, O' Y(N1- 1)

(20)
where for notational clarity the subscripts on Z+, X +, X-_ and Y have been used to label the

matrices, rather than the matrix elements. Similarly, Zm, m, can be expressed ,as the product
" of a lower-triangular Toeplitz matrix and a vector,x o,oo

[]Z-(l) X-(l) ". ". ', V(1)

. ,.

. : ". X-(O) 0 Y(N1 1) m,Z-(N1- 1) m,m' X-(N1- 1) ... X-(l) X-(O) m,m' -
(21)

3. Fortran 90 Implementation

To clarify the basic structure of the Fortran 90 implementation of banded convolution we shall

first consider the simple case in which ht(m) = m. In this case kl(rn,,rn _) = k2(rn, m 0 = O,
and we have,

M-1 Ni-1

rT_/=0 r_/=O

M-1 Nt-I

= (23)
m_=l n_=0

From Eqs. (22) and (23) it clear that the Fortran 90 implementation of banded convolution
has a doubly-nested loop structure. On each pass through the loop the elementwise product of

lit

two matrices must be accumulated in a third result, matrix. On pass rn _,n _ through the loop

-6-

one of the productmatrlces has ali elements set toy(m',n'), In Fortran 90 such a matrix can
be generated using the SPREAD function, which broadcasts copies of a source array along a

specified dimension, In evaluating f}z'Y), the (m, n)th element of the second product matrix

is x(m + m I, n + ni), which can be generated at each pass through the loop by shifting copies
of the convolution array, z, using the Fortran 90 function EOSHIFT. To find f_'Y) we need

simply shift a copy of array x in the opposite direction. It should be noted that the use of the

function EOSHIFT ensures that the appropriate elements in the shifted product array get set

to zero, as required by the condition G(m,n) = H(m,n) = 0 for (ro, n) not iri S. Thus, the
Fortran 90 implementation of a dense, 2-D convolution can be written as shown in Fig. 2. In

an efficient implementation, the evaluation of f_:_'Y) and f_'Y) may be performed within the

same double loop in order to reduce the number of calls to the SPREAD function. For clarity

we have assumed in Fig. 2 that separate loops are used, mmask is a logical array that indicates
which modes are included in the simulation.

4

fl = 0,0

xsm = x

DO MPRIME=O,M-I

ysm = SPREAD (y(:,MPRIME,_:),DIM=2, NCOPIES=M)

xshift = xsm

DO NPRIME=O,NI-I

yspred = SPREAD (ysm(:,:,NPRIME),DIM=3, NCOPIES=NI)
WHERE (nmmask)

fl = fl + xshift*yspred
END WHERE

xshift = EOSHIFT (xshift, DIM=3, SHIFT=I)

END DO

xsm = EOSHIFT (xsm, DIM=2, SHIFT=I)

END DO

Figure 2(a), Fortran 90 code to find f_x'Y) for banded convolution when ni(m) "--m,

s

It should be noted that in Fig, 2 ali arrays are three-dimensional since we must evaluate a

convolution at each radial grid point,, Thus, the first array dimension corresponds to the radial

grid point index, j, and the second and third dimensions to the Fourier mode indices, m and
n, respectively. So, for example, an array x might be declared as follows;

PARAMETER _(JSTAR=I28,MSTAR=I28, NSTAR=I6)

REAL, DIMENSION(O:JSTAR-I,,O:MSTAR-I,,O:NSTAR-I):: x

.... tl'''_'' r, Irl

_

f2 = 0.0

xsm = EOSHIFT (x, DIM=2, SHIFT=-I)

DO MPRIME= I,M- I

ysm = SPREAD (y(:,MPRIME, :), DIM=2, NCOPIES=M)

xshift = xsm

DO NPKIME=O,NI-I

ysprod = SPREAD (ysm(:,:,NPKIME), DIM=3, NCOPIES=NI)

WHERE (mnmask)

f2 = f2 + xshift*yspred

END WHERE

xshift = EOSHIFT (xshif%, DIM=3p SHIFT=-1)

END DO

xsm = EDSHIFT (xsm, DIM=2, SHIFT=-I)

END DO

WHERE (mnmask)

f2 = f2 - y.SPREAD (SPREAD (x(:,O,O),DIM=2,NCOPIES=M),DIM=3,NCOPIES=NI)
END WHERE

w

Figure 2(b), Fortran 90 code to find f_z,v) for banded convolution when ni(m) = rn.

The algorithm for banded convolution shown irl Figs, 2(a) and (b) can also be interpreted

in terms of the matrix-vector representation of Eqs, (20) and (21), if these two equations are

rewritten as,

Z+(1),, = Y.,,(O) , + Y._,(1) X+(N1- 1)

X+(N1 1) m,m' 0Z+(N, - 1) ._,m, - -,,.,'

I X+(N_ - 1)

0
+.,.+ :t%,(N1- 1) , (24)

0
?'I'I,Tl'it

-8-

and,

[] [0lZ-(I) = Ym,(O) X-(l) + Ym,(1) X-(O)

m X-(N, 1) X-(N1 2)Z-(N1- 1) ,m, - m,m' - ,-,m'

0

+"'+ Ym,(N, - 1) : (25)
0

X-(O) ._...,

Each pass through the inner loop in Fig. 2(a) or (b) evaluates and accumulates one term

on the righthand side of Eq. (24) or (25). It is clear from Eqs. (24) and (25) how the call
+

to EOSHIFT in the inp_er loop shifts tile Xrm m, and X,_,m, vectors in the evaluation of the

vectors Z+,m, and Z_,m, , respectively.
Performing the banded convolution as prescribed by Eqs. (12)-(14) when the offsets kl and

k2 are nonzero is somewhat more difficult because we need to shift the x array by the appropriate

offset before entering the inner loop. Since the offsets may be positive or negative the Fortran

90 function CSHIFT must be used to shift the x array by the correct, offset in the outer loop,

and to rotate the array in the inner loop. CSHIFT performs these shifts periodically, and so

ensures that we don't "lose" values that are shifted off the end of an array when applying an

offset, but which must be rotated back into use in the inner loop. The use of C3HIFT places
the fodowing constraint on the dimensioning of arrays,

max (n2(m')-nl(m')-kl(m,m')) <N,
0<m'<M-m (26)

max (n2(m') - ni (m') + k2(m, m')) < N,
l<_m'<m

for all m, where N, corresponds to NSTARin the parameter statement above. A check must

be made at the start of the program to ensure that these conditions are satisfied. Since many

convolutions are performed in each time step, the overhead in performing this check will be

amortized over the computation.

In order to evaluate the offsets kl(m,m _) and k_(m, m') the SPREAD and EOSttIFT

functions must be applied to hl. The Fortran 90 code for performing banded convolution with

nonzero offsets is shown in Figs. 3(a) and (b).

1_ ' I# ' ' "_I _"....... irltr,,,......' ' 'Ji_rr]]'li'I ']'1'i "l '_tl,,1,,,, Irl,,ql' ' IIIl"ql"qilrlllllli "31'II"'I',I',qll,, 'al "ql/ '...... 'ql'il'_"' '"'h _1'_"',"'"_' 'P'oIlll" I1'" ,,, 'ill 'l'_l,,,lelIpllll,llll'lPlql',lll,' ,,,, 'lq_ll_llll'Irl1lT"ll_'lq'll_"r' I,q,_="l

fl = O.0

nlsh = ni

lshif = Imask

xsm = x

DO MPRIME=O,M-I

IF (LDOIT(MPRINE)) THEN

ysm = SPREAD (y(:,NPRINE,:), DIN=2, NCOPIES=N)

nlsp = SPREAD (nI(:,MPRIME,:), DIM=2, NCOPIES=M)

kl = 0

WHERE (ishif)

kl = nl+nlsp-nlsh

END WHERE

xshift = CSHIFT (xsm, DIM=3, SHIFT=kl)

DO NPR_ME=O,NI-I

yspred = SPREAD (ysm(:,:,NPRIME), DIN=3, NCOPIES=NI)

WHERE (mnmask)

fl = fl + xshift*yspred

END WHERE

xshift = CSHIFT (xshift, DIM=3, SHIFT=I)

END DO

, END IF

Ishif = EOSHIFT (Ishif, DIM=2, SHIFT=I)

nlsh = EOSHIFT (nlsh, DIM=2, SHIFT=I)

xsm = EOSHIFT (xsm, DIM=2, SHIFT=I)

END DO

Figure 3(a). Fortran 90 code to find f_'Y) for banded convolution

In Figs. 3(a) and (b) the one-dimensional logical array LDOIT is set to false if there are no

modes included in the simulation for a particular value of m, and is true otherwise, mmaask

is a logical array that indicates which modes are included in tile simulation. The logical array

].mask is the array LDOIT spread over the radial grid point index. The arrays LDOIT and lmask

are needed to handle cases in which no modes are included in the model for certain values of m

between 0 and M" 1. To ensure that sensible values are assigned to the offsets, kl and k2, the

array lmask must be shifted in the outer loop. The arrays kl, k2, lmask, lshif, nl, nlsp, and

,, nlsh are ali two-dimensional arrays that. are dimensioned the same as the lower 2 dimensions

of the three-dimensional arrays x, y, fl, f2, ysm, xsm, xshif, yspred, and mnmask.

!t

I
..... , ,,rr ,,r "IY''__' III' ' "_I _oI'"_I" ' 'JJJ'llI'"'JJ.....l'_p' '"Vl_ Ill'trrIIlljI,,_I ""NI 'II_II_ "_ '' ' RpS(I"rlIlllrllliilt1'

- 10-

f2 = 0.0

ishif = EOSHIFT (Imask, DIN=2, SHIFT=-I) b

nlsh = EOSHIFT (n1_ DIM=2, SHIFT=-I)

xsm = EOSHIFT (x, DIN=2, SHIFT=-I)

DO MPRIME=I,M-I

IF (LDOIT(MPRIHE))THEN

ysm = SPREAD (y(:,NPRIME,:), DIN=2, NCOPIES=M)

nlsp = SPREAD (nI(:,NPRINE,:). DIN=2, NCOPIES=M)

k2 = 0

WHERE (ishif)

k2 = nl-nlsp-nlsh

END WHERE

xshift = CSHIFT (xsm, DIM=3, SHIFT=k2)

DO NPRIME=O,NI-i

yspred = SPREAD (ysm(:,:,NPRIME), DIM=3, NCOPIES=NI)

WHERE (mnmask)

f2 = f2 + xshift*ysprsd

END WHERE

xshif% = CSHIFT (xshift, DIM=3, SHIFT=-1)

END DO

END IF

ishif = EOSHIFT (ishif, DIM=2, SHIFT='I)

nlsh = EOSHIFT (nlsh, DIM=2, SHIFT=-I)

xsm = EOSHIFT (xsm, DIM=2, SHIFT=-I)

END DO

WHERE (mnmask)

f2 = f2 - y.SPREAD (SPREAD (x(:,O,O),DIM=2,NCOPIES=M),DIM=3,NCOPIES=NI)

END WHERE

Figure 3(b). Fortran 90 code to find f_m) for banded convolution

4. Banded Convolution on the CM-2

When implementing tile Fortran 90 code for banded convolution oI1 the Connection Machine

CM-2 additional statements are used to indicate if and how arrays are to be distributed over

the processing elements. By default, each element of a distributed matrix is assigned to a

separate virtual processor (VP). However, by declaring one of the array dimensions to be a

serial dimension we can assign a vector of elements to each VI'. For example, the directive,

CMF$ LAYOUT x(,, :SERIAL)

indicates that the array x is decomposed over just its first two dimensions, so the VP set is a 2-D

II
ilrrq, '1 lr ' ' """ III le f. ii lill, , _ ,, m,,i rl , . ' ,,,r ,, 'r' " ' " " " '..... ' ' ' * r'l_ lie e, ,pill lr I1,1,, ,,lr',, e,,,,ip ,, liP,Ii,, ,. , ,,11i

-11-

array, with the VP at location (j, rn) containing the vector x(j,m,n) for n = O, 1,...,N. - 1.

- These directives are interpreted by the CM Fortran compiler, but are regarded as comment

lines by other compilers, so tile Connection Machine code can be compiled and run on any
other machine with a Fortran 90 compiler with no modifications to the code. More complel, c

" details of the layout of distributed arrays on the CM-2 are given in the CM Fort, ran Reference

Manual [8]. In Figs. 2 and 3, the variables in lower case reside on the Connection Machine,

while upper case variables reside on the front end computer.
The Fortran 90 code for banded convolution described in Sec. 3 was run on a CM-2 with

8192 processors for a number of different problem sizes. The problems considered were based

on the (m, n) modes shown in Fig. i, with the size of the problem being characterized by M,
the maximun value of m included in the computation. Values of M ranging from 70 to 127

were considered, corresponding to 333 to 783 modes. The number of radial grid points was

held constant at 98, and the maximum number of modes for any given m was N1 = 8. The 3-D

arrays were dimensioned as in Sec. 3, i,e., as 128 x 128 x 16 arrays, Two different data layouts

were investigated, In the first the data are distributed over ali three dimensions, so the VP

set is three-dimensional with each VP containing a single matrix element from each distributed

3-D matrix. In the second data layout considered the third dimension, corresponding to the n
index, is declared to be a serial dimension, as in the example LAYOUTdirective above. Thus,
the data are distributed over just the radial grid point and m indices, and the VP set has a

two-dimensional structure. The code in all cases was double precision (64 bits), and compiled

with optimization turned on by means of the -O compiler flag.

In order to optimize the banded convolution code an execution profile was obtained for the

M = 127 case (783 modes) by inserting calls to the CMF Fortran timing routines in the code.
,,t

Results for the code shown in Figs. 3(a) and (b), which will be referred to as "Version 1" of

the code, are given in the columns headed "V1-2D" and "V1-3D" of Table 1. The two cases

, correspond to distributing the data over two and three dimensions, respectively.

Loop Task V1-2D V1-3D V2-2D V2-3D

SPREAD 3.04 1.98 3.04 1.98

Outer CSItlFT 14.58 34.03 6.36 11.16

EOStIIFT 3.94 2.80 3.85 2.72

SPREAD 3.68 14.71 3.68 14.79

Inner Evaluate fl, f_ 4.56 4.56 4.56 4.56
CSItIFT 3.05 16.96 3.05 16.97

Table 1. CM times in seconds for major sections of the banded convolution code

The V1-2D and V1-3D execution profiles show that an appreciable amount of time is spent

on the CSHIFT calls in the outer loop, namely,

xshift = CSHIFT (xsm, DIM=3, SHIFT=kl)

. and,
xshift = CSHIFT (xsm, DIM=3, SHIFT=k2)

In the VI-2D code thesecallsaccountforover40% ofthe executiontime, These CSHIFT

" calls are expensive because the SHIFT argument is an array, and so for each value of m the

xsm array must be shifted by a different amount. Presumably each time this type of CSHIFT

12-

is called the maximum and minimum offsets in the array specifying the shift (kt or k2) must

be computed so the appropriate number of shifts can be performed. In a production run of the .,

KITE code many calls to the convolution routine are made, and in each call the following four

quantities remain unchanged;
b

kL(m ') = l_n (kl(m,m')), k_](m ') = max (kl(m,m'))-, (27)
=m2n(k2(m,m')), =)

so some of the overhead in tile outer loop calls to CSItlFT can be avoided by l)recomputing

these quantities and storing them iri one-dimensional arrays. Then, when evaluating f_"Y) in

the outer 10op, tile correct offset can be applied to the x array by first shifting it by k_(m') in

one direction, and then shifting it by kL(m ') in the other direction, using a WHERE construct

to assign the appropriate value to the array xshifl;. In Version 2 oi"the code, when computing

f_'Y), we replace the evaluation of kl and the call to CSHIFT in the outer loop by the code

section shown in Fig. 4. In the evaluation of f_'Y) a very similar code is used.

kl = nl + nlsp - nlsp

klsp = SPREAD (kl, DIM=3, NCOPIES=NSTAR)
xshift = xsm

DO K=I,KIU(MPRIME)

WHERE (klsp>O)

xshift = CSIIIFT(xshiftp DIM=3, SHIFT=I)

klsp = klsp - 1
END WHERE

END DO

DO K=I,-KIL(MPRIME)

WHERE (klsp<O)

xshift = CSHIFT (xshift, DIM=3, SHIFT=-I)

klsp = klsp + 1

END WHERE

END DO

Figure 4. Fortran 90 code to find xshift in the outer loop when evaluating f_*'u) in Version 2
of the code

Table 1 also gives execution profiles for Version 2 of the code. Comparing Versions 1 and

2 it is clear that by introducing the modification shown in Fig. 4 to eliminate overhead in the

outer loop calls to CSHIFT a significant improvement in perfor,_aance is achieved. However,

even in the best case (V2-2D) about 80% of the time is spent in moving data by calls to spread
and shift routines. Table 1 also shows that distributing the data over two dirnensions is faster

than over three dimensions. This is because calls that spread data over the n index dimension,

! rllll,r,,,,.... It¢11, ,1,' ,,,,,,r,,,111.... ,........., ,, ,,,wr_, ,ml, ',v"l'Ill..... , rl,ll,iql,_,11_,I rl' II[ll,:,!lll.... ', I,.......,'11"I1'lrH r,,,,,qrl,l ,11111¢I, _11..... , I, ,, Iliq, '' I" rq.... I1'

- 13-

or shift data in this direction, require communication between VPs in the 3-D case, whereas no

o communication is necessary in the 2-D case, It is interesting to note that the calls to SPREAD

and EOStIIFT in the outer loop, which move data along the m index dimension, actually run

a little faster in the 3-D case than in the 2-D case. This because the VP ratio is higher in

' the 3-D c_e, and so data must be communicated between fewer physical processors than in

the 2-D case, Although the 2-D data decomposition runs faster on an 8k-processor CM-2 for

the problem considered, the 3-D data decomposition should win out on larger machines as it

allows more parallelism to be exploited. There is little point in running the code on more than
16k processors with a 2-D data decomposition, as the VP ratio will be less than 1 and some

PEs will be idle. Itowever, for production runs of the KITE code much larger problems will be

considered, so a, 2-D decomposition may still be fastest, even on a 64k-processor CM-2,

In Table 2 timings of the banded convolution are given for a number of different problem

sizes. The modes included in tlm computation are as shown in Fig. 1, with problem size being

deterrnined by the value of M, the cutoff in the m index, Srr is the number of floating point

operations per radial grid point required to convolve two arrays in the original Fortran 77
version of the KITE code.

Problem Size Time in seconds (CM/elapsed)

M Modes S_7 V1-2D V1-3D V2-2D V2-3D

70 333 160524 17.22/1.7.22 41,36/41.36 11.67/11.68 31,16/31.16

80 407 243732 19.61/19.61 47.96/47,96 13.72/13.72 37.23/37.23

90 487 354204 22.09/22.09 54.22/54.22 15.76/15.76 42.50/42.50

, 100 567 489912 24.56/24.56 60.49/60.49 17.71/17.71 47,61/47.61

110 647 652440 27.04/27.04 66.61/66.61 19:75/19.75 52.90/52.99
120 727 842088 29.51/29.51 71.90/71.90 21.99/21.99 58.52/58,53'

- 127 783 991080 31,25/31.25 73.48/73.49 23,43/23,43 62.24/62.2,.

Table 2. Timing results on an 8k CM-2.

A measure of how effectively the CM-2 is being used is given by the ratio of the number of

floating point operations performed by the sequential code and the CM-2 code. This will be

referred to as the "utilization ratio", U, and is given by,

u= 7:. \,%o1

where J, x M, × N. is the declared size of the 3-D data arrays, and Soo = 3M2N_ is the number

of floating point operations per radial grid point for the Fortran 90 code. The factor of 3 arises

in the expression for 5'90 because f_,u) and f_'u) are evaluated within the same double loop,

which saves one multiplication. If separate loops were used the factor would be 4. In ali the

timing runs J, = 128, M, = 128, and N. = 16. A small value of U indicates that the compute

power of the CM-2 is not being used effectively. In Fig. 2 we plot the utilization rate and

" speed in Mflops for the problem sizes considered in Table 2 for the V2-2D version of the code.

The Mflops rates, M77 and M90, are comp-ted using the floating point operation count of the

, Fortran 77 and Fortran 90 codes, respectively. M77 can be used to compare the performance of

the Fortran 90 code on a computer such as the CM-2, with that oi' the original Fortran 77 code

" " " _lll_...... _...... _nl_,,' H,,,',I, . ,_r ,'r_ Iu,' III l_'ll_le.... ,r r'r_, ,n_ "*n,, lip '"qllJtnqn'_l'",lp 'lP " r_n_nlle'I_' nr'le_lnp]tl][IJO' q"'' ' "" t_l'l" II' Itl fIl'f" '"lllnl']_ 'I]ln'q "l*l_l'!lq 'q

- 14-

14 I I I I I I 14

4k

12- - 12

i.

10- 10

"8- 8 _.
o o

M_ '_

.o 6- -6

4 = U _ -4

2- _ -2

M77

0 t t i i t i "0
60 70 80 90 100 110 120 130

Maximum m

Figure 2, Utilization ratio and Mflops as a function of problem size for V2-2D

on some other machine, such as a workstation or vector supercomputer. The ratio of M77 for

runs using the Fortran 90 and Fortran 77 codes equals tile ratio of their respective execution

times. M90 gives the actual execution rate in Megaflops for the Fortran 90 code.

For the problems considered the utilization ratio is always below 12.5%, so that the per-
formance of the CM-2, as indicated by the Mflops rate, is rather poor, reaching only about

M77 = 4 and M90 = 13 Mflops for the largest problem considered. Tile low value of U is

due to the mismatch between the set of radial grid points and modes actually involved in the

computation, and the 3-D arrays used to store these quantities. In Fig. 3 we plot n - nl(rn)

against m to indicate which modes are involved in the M = 128 problern. In this plot the blank

area represents those array elements not actively involved in the computation at a particular

radial grid point, and thus gives a measure of }low much of the CM-2 is being wasted. The

fact that Nx/N, = 0.5 means that half the compute power of the CM-2 is wasted because
we are constrained to choose N, = 16 even though N1 = 8. This constraint comes from the

requirement that Eq. (26) be satisfied, and the fact that array dimensions on the CM-2 must

be an exact power of two. A more carefully designed algorithm may eliminate this constraint,

thereby halving the CM-2 execution times.

The expected performance in Mflops of the V2-2D code for a problem that fully utilizes the

CM-2 may be estimated as,
I.

M, na× = M--Z_= Moo (29)
U (J/J,)(M/M,)(N1/N,)

so extrapolating from the M = 128 case we get a value of Mm_x _ 34 Mflops for an 8k CM-2.

This drops to 17 Mflops if the N1/N, = 0.5 constraint applies. Scaling this up to a 64k CM-2,

1
. ' ',e lr........ I1' "'"' q.r ,r. n.llI . ,].r_ . Til ' _r,....... "' ,tgr, '111'" ,_ ,l_,n_r '_ '.l,lt,l'q' .i, .' 'lll_ "'l"'rq'leqtll I1['" '"'lr ,flOUt,rlr"rnl'n FF Or' r'l, IIHIIIIIIIP .

- 15-

15

, =

0 127

m

Figure 3, Schematic representation of active memory locations at a radial grid point.

we would expect a performance of about 136 Mflops for a problem that fully utilizes the CM-2,

or 272 Mflops if the N1/N, = 0.5 constraint can be eliminated without degrading performance.

It is worthwhile at this point to return to the question of whether direct convolution is faster

than convolution using FFTs. if tlm evaluation of each FFT butterfly requires 10 floating point

operations, and a real-to-complex FFT is used for the two forward and one inverse transforms

required, then the operation count per radial grid point is approximately,

. If M and N are required to be powers of 2 in the FFT version, i.e., M = N = M,, then the
FFT method will have a lower operation count than the direct method if,

log2 < 0.2N? (31)

Thus, if the width of the band is N1 = 4, and M = M,, tile direct method haz a lower operation

count if M, > 32. However, if N1 is 8 the direct method only wins if M, > 16384. Equation

(31) shows how the choice of best algorithm depends sensitively on the width of the band, with

the direct convolution method being appropriate only for very narrow bands of modes.

5. Conclusions

In comparing the performance of the Fortran 90 banded convolution code with the original

Fortran 77 version the following factors must be considered;

1. The movement of data by calls to the SPREAD, CSHIFT, and EOSHIFT functions in
the Fortran 90 code.

2. The ratio of the number of floating point operations per radial grid point for the Fortran ' '

77 and Fortran 90 codes. The original Fortran 77 code uses indirect indexing, which

. results in a lower operation count since the Fortran 90 code is constrained to compute

some modal interactions that are not required.

" 3. On some machines, such a.s the CM-2, grain size constraints may require array dimensions

to be powers of two in the Fortran 90 code.

..... ' '1'1' tj'It, ll , II '111'11]_I,, _,, ,,, ' lr I 'lH ' I'll "lr ,,,_r_,,,,,_=,,,,ip,fll,,,i ,_,, ,,, rl,il,,lll ,rI, ,, ,irl 'r', til' 'lll,_I Iii r,

.... ,il_ ,

- 16-

4, The e_bility of the codes to take advantage of advanced architectural features, such as
vect,oir and pipeline units, caching, and massive parallelism, ,_

On multiprocessor systems the spreading and shifting of data may, or may not, result in inter-

processor cornmunication, and tile efficiency with which these tasks are performed depends on '-

the hardwe_re, and the ability of the compiler to exploit it. On the CM-2 we have found it best

to decompose the data over just the radial grid point and m indices, and on the commercial

supercomputers currently available it is probably best to use as large a grain size as possible,

subject to the requirement that ali processing units have at le_Lst,some data on which to work.
This choice reflects the f_tct that data movement is expensive.

The direct convohltion method has a lower operation count than the f_t Fourier transform

approach only for a sufficiently narrow bo.nd. However, the FFT convolution method requires

more memory, and this may limit its usefulness on some machines.

On the CM-2 the requirement that array dimensions be powers of two significantly degrades

performance for the problems considered. This problem is exacerbated by the constraint on N,

imposed by Eq. (26). Future work will look at efficient ways of removing this constr_int, and

further tuning the code for the CM-2.

A major advantage of the Fortran 90 code is its ability to make efficient use of tile advanced
architectural features of modern supercomputers. The original Fortran 77 code made use of

indirect indexing to reduce the operation count and memory usage, however, this also inhibits
vectorization and results in tile inefficient use of cache. In the original code the loop over

radial grid points was made tile inner loop in order to increase the vector length, and improve

caching. In a recent MIMD Fortran 77 implementation of the KITE code ([2],[7]), the code
was parallelized by decomposing the data over just the radial grid point index. This approach

allowed the code to be ported to machines such as the Intel iPSC/860 hypercube with only few

modifications. In particular the indirect indexing was retahmd in tile MIMD code. ttowever,

since the data are distributed over the radial grid point index the vector length is reduced, so

that the pipeline units of the i860 cannot be exploited efficiently. The cache hit ratio is also
low. The Fortran 90 code would avoid these problems.

A second important advantage of the Fortran 90 code is its portability. To port the Fortran
90 banded convolution code to a new machine one just needs to specify how the data are

decomposed. On the CM-2 this is done by means of a LAYOUT directive, In the near future

we expect Fortran 90 compilers to become available on ali supercomputers, and their ability to

exploit these machines to steadily improve.

Although the performance of the banded convolution on the CM..2 was rather disappoint-

ing for tile problems considered, we believe it is important to develop a Fortran 90 version of
the KITE code, with a view to implementing it on the next generation of concurrent super-

computers. Potential target, machines include Thinking Machines Corporation's CM-5, Intel's

Paragon, and new machines from Kendall Square and Alliant. The portability of Fortran 90
codes, and their ability to exploit advanced architectural features, justify the effort required

to convert the KITE code from a Fortran 77 code using indirect indexing to an arr_y-oriented
Fortran 90 code.

6. Acknowledgements

The results reported in this work were obtained on the Connection Machine CM-2X at. Sandia

National Laboratories, Albuquerque, KM.

.... ,l!,ir i, II 17 ' II,-,,,,,_, ''Ii" " ' "" ':lq ' ' IW _q, ,r , IT,,, ' II' i'IM ',P'ilr ,,i ,,lqIlr , ,rl I

+,17-

" 7. References

• [1] W. S. Brainerd, C. Iii. Goldber+:_, and J. C, Adams. Programmers Guide to Fortran 90.

McGraw-Hill, 1990.

[2] B. A. Carreras, N. Dominguez, J. B. Drake, J. N. Leboeuf, L. A. Charlton, J. A. Holmes,
D. K. Lee, V. E. Lynch, and L. Garcia. Plasma turbulence calculations on supercomputers,

Int. J. Supercomputer Applications, 4:97--110, 1990.

[3] L. Garcia, H, R. Ittcks, B. A. Carreras, L. A. Charlton, and J. A. Holmes. 3d nonlinear

mhd calculations using implicit and explie]t time integration schemes. J, Comput. Phys,
65:253, 1986.

[4] H. It. Hicks, B. A. Carreras, J. A+ Holmes, D. K. Lee, and B. V. Waddell. 3d nonlinear

calculations of resistive tearing modes. J. Comput. Phys,, 44:46-69, 1981.

[5] J. A. Holmes, B, A. Carreras, P. It. Diamond, and V. E. Lynch. Nonlinear dynamics of
tearing modes in the reversed field pinch. Physics of Fluids, 31:1166, 1988.

[6] G. Kerbel. Privateco:mmunication, Summer 1991.

[7] V. E. Lynch. B. A. Carreras, J. B. Drake, and J. N. Leboeuf. Plasraa turbulence calculations

on the Intel iPSC/860 (RX) hypercube. Computing Systems in Engineering, 2:299-305,
I991.

[8] Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142-1264. CM Fortran

Reference Manual, Ju}ty 1991.

J'_T
I,+ II rlll, ++,I 'Pl,,_' ,1, "' IP ","P ii ,,,111 II ' 111' ,, , ,,, r, II ' I,, Pl ,r 'ml is ' " II IIIPIP_I r, ,, ,r ,I,1111111 ilqlq+r, ,"' ,_ lP+ i,l,t

19-

ORNL/TM.12032

INTERNAL DISTRIBUTION
qt

1, B. R, Appleton 19-23, R, F, Sincovec

2, C, Bottcher 24, G, M, Stocks

3, B, A, Carreras 25. M, lt. Strayer
4-5, T. S, Darland 26-30,' D, W, Walker

6, E. D'Azevedo 31-35, R, C. Ward

7, J, J, Dongarra 36, P, II, Worley

8, J, B, Drake 37, Central Research Library
9, T.H. Dunigan 38. ORNL Patent Office

10, II,, E, Flanery 39, K-25 Applied Technology Library

11, J, N, Leboeuf 40, Y-12 Technical Library
12, V, E, Lynch 41, Laboratory Records - RC

13. C. E, Oliver 42-43, Laboratory Records Department
14-18, S, A, Raby

EXTER,NAL DISTRIBUTION

44. Christopher R. Anderson, Department of Mathematics, University of California, Los An-

geles, CA 90024

" 45, David C. Bader, Atmospheric and Climate Research Oivision, Office of Ilealth and En-

vironmental Research, Office of Energy Research, ER-76, U.S. Department of Energy,
Washington, DC 20585

46, David II. Bailey, NASA Ames, Mail Stop 258-5, NASA Ames Research Center, Moffet

Field, CA 94035

47. Edward It, Barsis, Computer Science and Mathematics, P, O. Box 5800, Sandia National

Laboratory, Albuquerque, NM 87185

48, Colin Bennett, Department of Mathematics, University of South Carolina, Columbia, SC
29208

49. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex,
FRANCE

50, Marsha J, Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street, New

York, NY 10012

- 51. Mike Berry, Department of Computer Science, University of Tennessee, 107 Ayres tlall,

Knoxville, TN 37996-1301

" 52. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkoping, Swe-
den

' Irlllrr_l II,' 'p............. '_ 'r" lr _' 'lpIl_l'l"

- 20 -

53, John H, Bolstad, Lawrence Livermore National Laboratory_ L-16, P. O. Box 808, Liver-

more, CA 94550 ,

54. George Bourtanoff, Superconducting Super Collider Laboratory, 2550 Beckleyrneade Av-
enue) Suite 260, Dallas, TX 75237-3946

55. Ralph G. Brickner_ Los Alamos National Laboratory, Mail Stop B265, C-3j Los Alamos,
NM 87545

. 56. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences, Itarvard

: University, Cambridge, MA 02138!

57. Bill L. Buzbee, National Center for Atmospheric R.esearch, P. O. Box 3000, Boulder, CO
80307

w

58. Captain Edward A. Carmona, Parallel Computing Research Group, Phillips Laboratory,

Kirtland AFB, Albuquerque, NM 87117

59. John Cavallini, Acting Director, Scientific Computing StafF, Applied Mathernatical Sci-

ences_ Office of Energy Research, U.S. Department of Energy, Washington, I)C 20585

60. I-liang Chern, Mathematics and Computer Science Division, Argonne National Labora-
tory, 9700 South Cass Avenue, Argonne, IL 60439

61. Ray Cline_ Sandia National Laboratories, Livermore, CA 94550

62. Alexandre Chorin, Mathelnatics Department, Lawrence Berkeley Laboratory, Berkeley,
CA 94720

63. James Corones, Ames Laboratory, Iowa State University, Ames, IA 50011

64. Jean Cotd, gPN, 2121 Transcanada Highwayl Suite 508, Dorval, Quebec It9P 1J3, CANADA

65. John J. Dorning, Department of Nuclear Engineering Physics_ Thornton tIall, McCormick

Road, University of Virginia, Charlottesville, VA 22901

66. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, TN 37235

67. Iain S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Didcot, Oxen OXll 0QX,

England

68. John Dukowicz, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

69. I_ichard E. Ewing, Department of Mathematics, University of Wyoming, I,aramie, WY
82071

70. Ian Foster, Mathematics and Computer Science Division, Argonne National Laboratory,

9700 South Cass Avenue, Argonne, IL 60439

71. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syraclme, NY 13244-4100

72. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Ave. N, Suite 500, Seattle, WA

I 98119

]

I
I_ ii1_' I_ ' ,, I_,, ', iiii li irl' iiI Ii[i,iI_llll,, , r i_lrl,, _r til ii li I ,[i, , ,Ii _lll iq iq i _11 iiii, ii ii oPI, iii ,i, ,

- 21 -

73, Paul O, Frederickson, RIACS) MS 230-5, NASA Ames Research Center, Moffet Field, GA
94035li

74, Dennis B, Gannon, Computer Science Department, Indiana University, Bloomington, IN
47401

L

75, J. Alan George_ Vice Presider_t, Academic and Provost, Needles]lall, University of Wa..
terloo, Waterloo, Ontario, C/_tNADA N2L 3G1

,, 76, James Glimm, I)epa':i, naent of Mathematics, State University of New York, Stony Brook,
/., NY 11794

77. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

78. John Gustafson, 236 Wtlhehn, Ames Laboratory, Iowa State University, Ames, IA 50011

79, Phil Gresho, Lawrence Livermore National Laboratory, L-262, P, O. Box 808, Livermore,
CA 94550

80. William D. Gropp, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

81. Eric Grosse, hT&'r Bell Labs 2T-504, Murray tlill, NJ 07974

' 82. James J. Itack, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO
80307

" 83, Michael T. Heath, NCSA, University oflllinois, 4157 Beckman Institute, 405 North Mat, h-

ews Avenue, Urbana, IL 61801-2300

" 84. Michael Itenderson, Los Alamos National Laboratory, Group T-3, Los Alamos, NM 87545

85. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

86. Kirk Jordan Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-1214

87. Malvyn Kales, Cornell Theory Center, Engineering and Theory Center Bldg., Cornell

University, Ithaca, NY 14853-3901

88. Hans Kaper, Mathematics and Compute_' Science Division, Argonne National Laboratory,

9700 South Cass Avenue, Argonne, IL 60439

89. Alan II. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

90. Kem leth Kennedy, Department oi' Computer Science, Rice University, P. O. Box 1892,
llouston, Texas 77001

91. Gary D, h:erbel Lawrence Livermore National Laboratory Mail Stop L-561 7000 East

.: Avenue Livermore, CA 94550

i 92. Tom l(itchens, ER-7, Applied Mathematical Sciences, Scientific Cornputing Staff, Office

of Energy Research, Office G-437 Germantown, Washington, DC 20585

" 93. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251

Mercer Street, New York, NY 10012

, i, ,,i H i

- 22 -

94, James E, Leiss, Zt. 2, Box 142C, Broadway, VA 22815

95, Eieh Loft, National Center for Atmospheric l%eseareh, P. O. Box 3000, Boulder, CO 80307 *

96. Michael C MacCracken, Lawrence biverrnore National Laboratory, L-262, P. O, Box 808,

Livermore, CA 94550

97. Robert Malone, Los Alamos National Laboratory, C-3, Mail Stop B265, Los Alamos, NM

: 87545 (

i 98. ben Margolin, Los Alamos National Laboratory, Los Alamos, NM 87545

99, Frank McCabe, Departnmnt of Computing, Imperial College of Science and Technology,
180 Queens Gate, London SW7 2BZ, ENGLAND

100. Jttmes McGraw, Lawrence Livermore National Laboratory, L-306, P. O. Box 808, Liver-

more_ CA 94550

101. Pttul C. lVlessina, Mail Code 158-79, California Institute of Technology, 1201 E. California
Blvd. Pasadena, CA 91125

102. Neville Moray, Department of Mechanical and Industrial Engineering, University of Illi-

nois, 1206 West Green Sl,feet,, Urbana, IL 61801

103. V. E. Ober_wACer, Department of Physics, Vanderbilt University, Box 1807, Station B,

Nashville, TN 37235

104. Joseph Oliger, Computer Scieace Department, Stanford University, Stanford, CA 94305

105. Robert O'Malley, Department of IVlathematical Sciences, Rensselaer Polytechnic Illstitute,
Troy, NY 12180-3590

106. James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of

Virginia, Charlottesville, VA 22901

107. Ron Peierls, Applied Mathematical Department, Brookhaven National Laboratory, Up-

ton, NY '_1973

t108. R.ich_-trd Pelz, Dept. of Mechanical and Aerospace Lngineering, lhltgers University, Pis-

cataway, NJ 08855-0909

109. Paul Pierce, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton, OR.
97006

110. I_obert J. Plemmons, Departments of Mathematics and Computer Science, North Car-

olina State University, Raleigh, NC 27650

lll. Jesse Poore, Computer Science Department, University of Tennessee, Knoxville, TN
37996-1300

112, Andrew Priestlcy, Institute for Computational Fluid Dynamics, Reading University, Read-

ing RG6 2AX, ENGLAND

113. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL 61801

i

- 23-

114. I,ee Riedinger, Director, Tile Science Alliance Program, University of Tennessee, Knoxville,

,. TN 37996

115. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Labora-

- tory, Livermore, CA 94550

116. Ahmed Sameh, Center for Supercomputing R & D, 1384 W. Springfield Avenue, Univer-

sity of Illinois, Urbana, IL 61801

117. Dave Schneider University of Illinois at Urbana-Champaign, Center for Supercomputing

Research and Development, 319E Talbot - 104 S. Wright Street Urbana, IL 61801

118. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaverton,
OR 97006

119. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field, CA
94035

120. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

121. Richard Smith, Los Alamos National Laboratory, Group T-3, Mail Stop B2316, Los

Alamos, NM 87545

122. Peter Smolarkiewicz, National Center for Atrnospheric Research, MMM Group, P. O. Box
3000, Boulder, CO 80307

123. Jurgen Steppeler, DWD, Frankfurterstr 135, 6050 Offenbach, WEST GERMANY

124. Rick Stevens, Mathematics and Computer Science Division, Argonne National Labora-

. tory, 9700 South Cass Avenue, Argonne, IL 60439

125. Paul N. Swarztrauber, National Center for Atmospheric Research, P. O. Box 3000, Boul-

der, CO 80307

126. Wei Pal Tang, Department of Computer Science, University of Waterloo, Waterloo, On-

tario, Canada N2L 3G1

127. Harold Trease, Los Alamos National Laboratory, Mail Stop B257, Los Alamos, NM 87545

128. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

129. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. O. Box 1892,
Itouston, TX 77251

130. Andrew B. White, Los Alamos National Laboratory, P. O. Box 1663, MS-265, Los Alamos,
NM 87545

131. David L. Williamson, National Center for Atmospheric Research, P. O. Box 3000, Boulder,
CO 80307

132. Samuel Yee, Air Force Geophysics Lab, Department LYP, Hancom AFB, Bedford, MA
° 01731

- 24 -

133. Office of Assistant Manager for Energy Research and Development, U.S. Department of

Energy, Oak Ridge Operations Office, P. O. Box 2001, Oak Ridge, TN 37831-8600 -1

134-143. Office of Scientific & Technical Infornaation, P. O, Box 62, Oak Ridge, TN 37831
lk

.....,....... ,,,,,q,,,,,lr " N" ;T_!_'_'II,_'_ "' '"":' '"l....... r, ',,,,,=,,_r,,,_,1,11iq,',,,,,,T,F..... i,,'.... _,"riPlI'.........r,......,=,,I,'"iIIilr'_',,_v,_I',,,.... r,,i'_lir"Ir",rlpTIl1,,rlqp,rlI"'ri_r,i......

4

t

