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I. I N T R O D U C T I O N

Positron annihilation, especially the angular correlation of annihilation, radiation
(ACAR), is a powerful tool for investigating the electronic spectra of ordered as well as
defected materials. The tendency of positrons to trap at vacancy-type defects should
enable this technique to provide a signature of the local environment of such defects/f} /'"/./•)

d d of thTTh^jig^JTrttre-defect-bLiULLuitj dl phase-transitions is- relevant
JLn_~^ke£ojttodr-«f Llrffi~(!OiifereTreeT~In order to achieve this goal, however, we need

to develop a theoretical basis for calculating the two-photon annihilation momentum
density P2^{p)- With this motivation, we have recently formulated and implemented
a theory of P2*i[p) from vacancy-type defects in metals and alloys.[lj This article gives
an outline of our approach together with a few of our results. Within the constraints
of space, the discussion is mostly illustrative; the citation of literature is minimal.

An outline of this article is as follows. Section II summarizes the basic equations
for evaluating p2n{p). Our Green's function-based approach is non-perturbative and
.•:;:pkA •; a -"-'!:st:- ror.e-part::Ie) mvfTin-tii Ha.:niho:.;ar. for :-•'• ing electrons and
posi' -,n^\ we are therefor-- a'Vie to handle- ordered as well as unordered d-band sys-
tems. Section III presents and discusses p21[f>) results for a mono-vacancy in Cu.[l]
These are the first such results in a d-band metal; previous work has been limited
to Al.[2] For simplicity, we have neglected the effects of electron-positron correlations
and of lattice distortion around the vacancy in our implementation of the theory;
further work to delineate these effects is required. Section TV comments briefly on
the question of treating defects such as divacancies and metal-impurity complexes in
metals and alloys.[3j Finally, in Section V, we remark on the form of P2-,{p) for a
mono-vacancy in jellium.U]



. F O R M A L C O N S I D E R A T I O N S

The starting point for the Green's function formulation of P2-,(p) is the equation:

p^[p) = ̂  I dff df'exp[-ip-{r-f')\j dEf{E) J dE+f+{E+)

xImG{f,r'-E) ImQ^.[f\r'-E+), (l)

which expresses P2-/(p) in terms of the electron and positron Green's functions G[E)
and G+(E), and the associated Fermi-Dirac distribution functions f(E) and f+{E)
respectively. In the present application, it is useful to rewrite Eq. (l) in the form

P27(p) =.- Y,Mmn[p) e*^-^. (2)

Equation (2) decomposes P2^{p) into a summation over the set {Rm} of direct lattice
vectors with matrix elements Mmn(p).

A computationally tractable equation for the matrix elements Mmn(p) is obtained
by using the angular momentum expansion for the Greens' function within the KKR
scheme:[5]

ImG[ri,r2,E) = 2_jZl (ri - Rm,E) ImTLL, Z\,'{ri - Rn, E), (3)
LV

where r~i(f*2) lies in the Wigner Seitz ceil on the m(n) site, Z^J is the regular solution
of the Schrodinger equation in the itfl muffin-tin sphere, and

is the path operator matrix in the space of site indices n and the angular momenta
L. B is similarly a matrix which in a perfect crystal is the Fourier transform of the
KKR structure constants, and the atomic scattering matrix r is related to the phase
shuts of the individual scatterers. The use of expansion (3) for the electron and the
positron Green's function straightforwardly yields the expression:

= ±f dEf(E) fdE+f(E+)
J

where

) 2 ( % [ z i t i . (6 )

The superscript a{0) in Eqs. (5) and (6) indicates that the site m(n) is occupied by
atom of type Q(/5); the superscript e(p) refers to electron(positron) quantities. The
integration in Eq. (6) extends over the ith cell volume fi,.



The preceding formalism can, in principle, be used to calculate P21{p) f°r a gen-
eral assembly of non-overlapping muffin-tin scatterers; we return to the treatment of
specific defects below. It should be emphasized that the present real space approach
is particularly suitable for evaluating p-i-,{p) from a trapped positron, because the ex-
ponential decay of the positron wave-function from the trapping site will yield a rapid
convergence of the sum in Eq. (2); by contrast, P2-1{p) f°r a n extended Bloch-state
positron is more naturally calculated by formally transforming these summations into
reciprocal space.

III . M O N O - V A C A N C Y IN Cu

In any specific case, the main quantities which require further consideration are the
electron and positron path operators Te and Tp. For a mono-vacancy in an otherwise
perfect crystal, the path operators can be obtained by using the exact solutions of
the multiple scattering equations for the single impurity problem,[5] the impurity in
the present case being the vacant site. For example, the (00) electron path operator
is given by the equation:

= DV{E) T'<C<OO{E), (7)

where J1*^'00 is the perfect crystal path operator, and

DV(E) = [1 + (r-\E) - rrl(E)) r^(E)r\ (8)

Here, TV and rc refer to the electron muffin-tin potential for the vacant and the occupied
crystalline sites respectively.

We have studied P2T(P), and related physical quntities such as the electron and
positron charge densities for a mono-vacancy trapped positron in Cu in some detail.
Figure 1 shows illustrative results for P2-1[p). More specifically, partially summed

contributions p^yp) upto the 4th shell are shown; the superscript (j) indicates the
number of the most distant shell (surrounding the vacant site) upto which contribu-
tions to P2*i[p) in Eq. (2) are included. A comparison of the j = 1 through j = 4
curves ( the j = 3 and j = 4 curves are indistinguishable on the scale of the figure)
indicates that p2j(p) is converged to within 10% of p21(p). We note that, p^{p) pos-
sesses all the characteristic features of the fully converged momentum density curve.

Figure 1 shnv-v thru the j = 0 (vacancy site) cor.'.ribution to ,;;-.(p) is quite Hat
and featureless. The addition of the nearest neighbor (llO)-shcu(nn) contribution (the
j — 1 curve) causes a dramatic change in P2-?(P) in the low momentum region. In fact,
for p < 5 mrad, p2-j{p) is dominated by the nn-shell contribution. This may appear
surprising in view of the exponential decay of the trapped positron wave function
from the vacant site. We note however that P2-j[p) involves an overlap of the electron
and positron wave functions. In the vacant site, the positron amplitude is large, but
the electron density is quite small; on the other hand, in the nn-sites, a large electron
density annihilates with the tail of the positron wave function. Therefore, the central
site aad nn-shell contributions should both be generally important. The exponential
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FIGURE 1: Partially summed momentum density p$[p) along [001]
direction for various shells j for a mono-vacancy in Cu. After Ref. [l].

decay of the positron wave function makes contribution from more distant shells much
smaller. Our calculations suggest that the nn-shell contributions would dominate in
the lovv-p region more generally for mono-vacancies in metals and alloys.

IV. T R E A T M E N T OF O T H E R V A C A N C Y - T Y P E D E F E C T S

We have in mind here situations which can be modelled by considering a relatively
small (i. e. involving at most a few shells surrounding a central site) "defected region"
placed in an otherwise perfect ordered medium. We consider a divacancy in Cu to
illustrate our approach. If the system is modelled by placing two vacant sites in a
perfect Cu crystal, we need to solve the "two impurity" path operator. By using
matrix partitioning methods, the problem can be cast in terms of a (2 x 2) matrix
equation (in angular momentum space) involving perfpct Cu crystal path operators;
the latter path operators are needed of COUTSP also for treating thr :nono-\arancy in
Cu. 1\\-. genera!i:-\\ ''-n to an impurity r\\mtr of M-;::._•> :> quite str J - litforv.v.rd, t he-
solution is obtained then via an [M x M) matrix equation; see Ref. [3] for details of
evaluating P2-,{p)-

We comment finally on the treatment of vacancy type defects in disordered alloys.
Here we need to ensemble average both sides of Eq. (2); this step formally yields:

p2l{p) > = Mmn{P) > el
(9)

where < M > is seen from Eq. (5) to require the configuration average of the product
< ImT* ImTp > of electron and positron path operators; in Ref. 1 we propose to
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FIGURE 2: P2^{p) for a mono-vacancy in jellium for various values of
the radius R of the integration volume(see text). After Ref. [4].

decouple this average in terms of the electron and positron KKR-CPA medium path
operators. Tractable expressions for < P2-r(p) > a r e than straightforwardly obtained;
see Ref. [l] for details.

V. M O N O - V A C A N C Y IN J E L L I U M

A mono-vacancy in jellium is interesting because this mode! is amenable to an
exact analytic solution at least for certain idealized potentials. We have used this
model system to gain insights into the results obtained on the basis of the Green's
function-based approach. Figure 2 shows P2-j{P) for a vacancy in jellium using a square
well (square barrier) potential for positron (electrons).[4] The various parameters (
well depth, barrier height, and Fermi energy) are chosen to mimic a mono-vacancy
in Cu. The parameter R in the figure denotes the radius of the spherical volume
to wh;-h the electron-positron overlap integral is resected in calculating /'•:-. (;"'"! (i.e.

^ R in the- Integrations in Eq. v i j j ; the vahioi Rj correspond to\r'\

an integration sphere of volume enclosed by the first j shells in Cu. Some of the
characteristic features of Fig. 1 are seen to be reproduced by the model system. In
particular, the magnitude of the R\ curve is relatively small as is the case with the
central site contribution in Fig. 1. Also, the R^ curve shows the striking bell-shape
of the p2~j{p) curve of Fig. 1; in contrast, as is well-known, P2-J(P) for the Bloch-stato
positron in Cu possesses an approximately constant value of unity up to the Fermi
energy. It is clear that the jellium model can be useful in understanding the behavior
of P2*i[p), although the model does not properly incorporate the Fermi surface ant!
the d-bands in the electronic spectrum, in addition to neglecting the effects of nuclear



'repulsion of the positron from the host metal sites.
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