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by 
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ABSTRACT 

Ceramic windows will be used as material barriers 
for radio frequency plasma heating in fusion reactors. 
This report examines the theory behind R. F. heating 
phenomena. Heating calculations are presented for 
various window materials, thicknesses, wavelengths, and 
power densities. The most pertinent material properties 
are loss tangent, thermal conductivity, dielectric 
constant, strength, and radiation resistance. It is 
not known how these properties will be affected by the 
operating environment of neutrons and gamma rays, but 
there is some indication that it will be adverse. 
Calculations indicate that among eandidcite materials, 
beryllium oxide offers the most promise because of its 
large thermal conductivity and relatively low loss 
tangent and dielectric constant. On the other hand, 
beryl 1ia is susceptible to neutron damage, and this may 
adversely affect its electrical properties. Another 
promising candidate is sapphire, particularly at lower 
temperatures where the thermal conductivity is high. 
Fused silica suffers from low thermal conductivity and 
large positive temperature coefficient for loss tangent, 
but it may be useful under some conditions. In summary, 
calculations of heating can lead to elimination of some 
candidate materials and selection of others for further 
study. 

I. INTRODUCTION 

Heating of ceramics by penetrating electromagnetic radiation has been a 

topic of experimental study for at least 20 years. In one early study, various 
2 2 

ceramic and glass windows were exposed to power densities of 300 MW/ra (30 kW/cm ) 

at frequencies of between 7 and 10 GHz. Some but not all of the windox.-s failed 

due to thermal stress. 



These early studies were undertaken to develop klystron tubes for radar 

applications. More recently, national and international commitments to develop 

a working fusion power reactor have led to a revival of interest in this area. 

This article addresses a calculational aspect of heating of ceramics due to 

losses from R. F. fields. 

Because of their low loss characteristics, mechanical strength, and relative 

ability to contain tritium, ceramic windows are prime candidates for radio fre-
2 

quency (R. F.) windows in fusion devices. 

Neutral beam injection and R. F. heating are two methods being considered 

for heating the plasma in a magnetic fusion device. The latter has the advantage 

of requiring smaller physical penetrations into the vessel wall. In addition, 

there exists a well-developed radar technology, much of which can be drawn upon 

for microwave heating sources. Table I lists the relevant characteristics of 

the heating modes and power densities to be expected in a typical fusion reactor 
. . 4,5 
design. 

One crucial difference between past studies of ceramic windows and current 

requirements occurs in the operating environment. Windows in fusion reactors, 

even if shielded, will experience at least moderate exposure to high and ncdium 

energy neutrons and gamma rays. The effect of this environment on losses and 

heating of windows is unknown. Failure of a window in an operating fusion reactor 

would be a catastrophic event. For these reasons, losses in windows under near-

operating conditions shouxa be assessed experimentally. 

The next section contains the theory which provides the basis for later 

calculations. The theory comes mostly from textbook references. 

II. THEORY 

A. Fundamentals 

Electromagnetic waves propagating through solids become attenuated by loss 

of a portion of the field energy to the material. In metals this attenuation is 

drastic. Attenuation through a copper sheet 10 m thick can be greater than 
ft R 1 *̂  

10 at 10 Hz. This is due to the ability of free electrons near the surface 

""General information about losses in insulators can be found in Kingery et al.6 

and von Hippel.7 For interactions between fields and dielectrics, Stratton,8 

von Hippel,^ and Collin1" are useful references. Solutions to the heat flow 
equation were obtained from Carslaw and Jaeger. The finite differencing 
scheme for heat flow comes from Dusinberre. 



TABLE I 

R. F. RESONANCE HEATING MODES UNDER CONSIDERATION FOR FUSION REACTORS 
4,5 

Mode 

Ion Cyclotron 

Lower Hybrid 

Electron Cyclotron 

Frequency 

50-100 MHz 

2 GHz 

80-140 GHz 

Power 

55 MW 

55 MW 

1 MW 

Duration 

2 min 

•i-100 s 

b s 

Function 

Bulk heating 

Bulk heating 

Startup 

to move about in response to the field forces. Insulators, on the other hand, 

typically allow large field penetration with small losses. The amount of loss is 

controlled by such material characteristics as impurities, traps, and vibrational 

modes, and by the frequency and intensity of the field. 

The standard way to measure power losses in insulators involves coating two 

parallel faces of the material with conducting electrodes. Then a voltage in 

applied across them in series with a current-measuring device. Knowing the volt¬ 

age and the current, one can determine the loss in the insulator. (In reality, 

there are three electrodes, as shown in Fig. 1. The purpose of the concentrir 

Fig. 1. 
Connection of sample for measurment 
of D. C. conductivity. Center elec¬ 
trode, connected to current meter, 
is guarded by outer circular guard 
electrode. 



guard electrode is to prevent surface currents, which may be a large fraction of 

the total current in an insulator, from passing through the current meter.) 

The insulator with its electrodes forms a parallel plate capacitor. In such 

a device the voltage across the terminals is proportional to the electrostatic 

charge stored, q, Eq. (1). The constant ol proportionality is the capacitance, 

C. 

q = CV. (1) 

The capacitance depends on the area of one of the plates, A, the separation, d, 

and the relative dielectric constant of the material, K'. The formula is 

K'E A/d = K'C , 
o o 

(2) 

where e is the permittivity of free space [(36n) x 10 farad/m] and C is 

the capacitance of the electrodes in vacuum. Furthermore, K1 equals c'/t < where 

e' is the permittivity of the material. 

For an alternating voltage of frequency f, we have from Eq. (1) the follow¬ 

ing: 

CV sin (o-t), 
o 

(3) 

where V is the amplitude of the voltage and OJ = 2irf is the angular frequency. 

In this case, the charge on the capacitor oscillates in phase with the applied 

voltage. 

To derive an expression for the current entering or leaving a capacitor, use 

is made of the relation 

I = dq/dt - wCV cos (cot), 
o 

Comparing this with Eq. (3) it can be seen that the current and voltage both 

oscillate with the same frequency but [remembering that sin(x) = cos(x-90)], they 

are 90 out of phase. The mathematical multiplier j •» /^l corresponds to a 

rotation of 90 in the complex plane, so Eq. (4) can be rewritten as 



I = uCjV or V = I(l/juC) = I(-j/u)C). (5) 

The term ir. parentheses is called tlie capacitive reactance, and it is also the 

impedance, Z, of this circuit. 

It should bo noted that there is no loss in a "pure" capacitor since the 

power Joss equals the integral over a complete cycle of the voltage times the 

current. Thus 

P = 1/2* !2Zy sin (ut)CV cos (oit)dr = 
0 o o 

WCV2/4TT ^ s i n (2wt)dt = CV2/8TI COS (2wt) I
2" = 0. 

o ' 0 o ' o 

Real capacitors, however, always have :;onc losses. One way to simulate this is 

to consider a real capacitor to be composed of a "pure" capacitor connected in 

parallel v»ith a resistive loss path (FiK- 2). 

This circuit behaves as a capacitor with the dielectric constant replaced 

by a complex constant, 

If = KT - jir . (6) 

This jan be seen by calculating the impedance for this parallel circuit: 

Z = RXf/(R+X ) = (-jK/uC)/(R-j/u)C) = -j/GX-j/R). (7) 

The impedance for the :'pure" capacitor with complex dielectric constant is 

Zc = -j/wC = -J/COC O(K'-JK"). (8) 

Equations (7) and (8) are identical if 

uC K" = 1/R. (9) 

Remembering that 



0 = d/AR, (10) 

and using Eq. (2), Eq. (9) may be converted to 

o = we . (11) 

Thus the conductivity is related to the imaginary coefficient of the dielectric 

constant. 

Another useful quantity can be defined by considering the relation between 

the voltage and the current. From Ohm's Law and Eq. (8), 

I = V/Z = VcoC (K" + J K ' ) . 
C O 

(12) 

The current has two components: one which is in phase with che applied voltage, 

known as the loss current, and another which leads the voltage by 90 , the charg¬ 

ing current (Fig. 3). The angle delta is defined as the angle by which the 

resultant current differs from 90 with respect to the applied voltage and is a 

I e = JU)VCOK' 

IL=CUVCoK" V 

Fig. 2. 
Circuit diagram of a real capacitor, 
consisting of a pure capacitance con¬ 
nected in parallel with a resistive 
loss element. 

Fig. 3. 
Voltage-current diagram showing com¬ 
posite current vector and loss angle. 



measure of the relative loss current. Delta is known as the loss angle and is 

related to the components of the dielectric permittivity by 

tan 6 = c"/c' = K"/K'. (13) 

Using Eq. (8), 

o = o)C tan <5. 

This is the fundamental engineering equation that relates material proper¬ 

ties (permittivity and loss angle) to electrical measurements (frequency and 

conductivity). It should be noted that for direct currents (that is, as as -+ 0 ) , 

insulators will still exhibit some finite conductivity or loss current. This 

implies [(Eq. (11) and (14)] that as oi -»• 0, tan 6 -> <*>. 

The quantity K' tan 6 is known as the relative loss factor. Figure 4 shows 

the frequency dependence of conductivity for various values of *r' tan 6. 

B. R. F. Fluids 

1. Attenuation Coefficient. Interactions between electromagnetic waves 

and matter are described by Maxwell's equations: 

V x. E = 3B/3t, (15a) 

V x H = 3D/3C + J, (15b) 

V • D = p, and (15c) 

V • B = 0. (15d) 

The relationship between the electric flux density D and the field strength I 

is given by 

D = e'E. (16) 

At this point it is convenient to describe the time variation of the fields 

by the complex exponential e . (This can be done with no loss of generality 



Frequency (Hz) 
Fig. 4. 

Dependence of electrical conductivity on frequency and relative loss factor 
(K1 tan 5). 



since any other time variation can be decomposed into a Fourier series of this 

type.) Then any partial derivative with respect to time becomes 

3F/.)t = juF, (17) 

where F* is any field vector. 

It can be seen from Eq. (15b) and Eq. (16) that 

V x II - ..' JK/ 31 + J. (S8) 

For materials which obey Ohm's Law, the current density may be replaced by 

J = oE = coc"E (19) 

using Eq. (11). So Eq. (18) becomes 

V x II = c'3t/3t + we"E. (20) 

Using Eq. (17) on the last term of the above equation gives 

V x H = (t'-jc")3E/3t = e"3E/3t. (21) 

Equation (15a) may be put into a form symmetrical to Eq. (21) by introduction of 

the complex permeability \i = p'-jy", giving 

V x E = -i/aH/at. (22) 

The next step is to separate the field vectors by taking the curl of Eq. 

(21) and Eq. (22), i.e., 

V x V x E = -u*3(V x H)3t = -u*E*32E/3t2, (23) 

->• -> 2-> 

and similarly for H. But, by the vector identity V x V x A = V(V-A)-V A and 

using Eq. (15c) with zero charge density and Eq. (15d), the result is that 

2-> A * 2-v 2 
V E = e y 3 E/3t (24) 

9 



and 

2-t. * * 2->, 2 
V H = e u 3 H/3t . (25) 

Notice that in separating the field equations [for example, Eq.(2i)], it w;«s 

assumed that y and e are constant in space and ti~iL'. 

Equations (24) and (25) are examples of the wave equation .ind, rewritten ii. 

one space dimension, x, have solutions of the form 

E = Eo e
j w t Y X (26) 

and 

H = H eJU"- ' . (27; 
o 

These represent waves moving in the x-direction with a propagation faction ,, 

which may be determined by substitution into Eq. (24) or Eq. (25) t<; be 

Y = o)yf u = a + jB, (28) 

wnere a and 6 are factors to be determined. Substitution for y into Eq. (26) 

and Eq. (27) gives 

t=t e-«V
j ( u t- e x ) (29) 

o 

and 

2- H e-oVKut-Bx^ 
o 

—otx 
The real term e represents a decaying exponential in space, where a is the 

attenuation factor. The term with B represents a phase shift. 

The waves have a spatial period given by 

10 



A = 2TT/8, (31) 

where A is the wavelength in the material. 

In general, a and 8 will be functions of frequency, permittivity, and 

permeability. For the determination of losses in K. .". windows, wo may consider 

on!y nonmagnetic materials, so that u' = u , tin- !)«.-ni<-.ili j 1 i t v ui ! r w space, 

and u" = 0. Then from Eq. (28), 

a = Real part of (j(i)[u { e '-jc" }]1/2) (32) 

and 

= Imaginary part of (jw[y (E'-JE"}] *"). (33) 

Solving these gives 

a = 2n/A [<72{/tan2 6 + 1 - ]}J1/2 (34) 
o 

and 

B = 2TT/A [ < ' / 2 { / t a n 2 6 + 1 + 1}1 ^ 2 . ( 3 5 ) 
o 

Use was made of the fact that the free-spate Viivel enr.f'i is j;iven by 

A = 27r/(o(e w ) 1 / 2 . (36) 
o o o 

This can be seen from Eq. (28) and Eq. (31) with a = 0. 

We shall be primarily interested in the attenuation coefficient, a. . For 

small values of the loss angle, it is possible to approximate Eq. (34) by using 

/tan 6 + 1 = 1 + h tan2<5 (37) 

if tan6 is small, so that 

11 



a - u/A v̂ T* tan S. 
o 

(38) 

2. Relation between E and H. To determine the relationship between the 

wave vectors t and it in the solutions, Eq. (26) and Eq. (27), it is necessary to 

return to Maxwell's Eq. (21) and Eq. (22). Since E and H depend only on time 

and the spatial dimension x, 

3E/3y = 3E/3z = 3H/3y = 3H/3z = 0. (39) 

Using this and writing out the components of Eq. (21) g.ives 

V x H -
i j k 

3/3x 3/3y 3/3 
H I! H 
x y z 
(i3E /3t + j3E /3t 

X V 

+ k3Hy/3x = 

k3E (40) 

where l, j, and k ara unit vector? in the x, y, and z directions, respectively. 

In like manner, from Eq. (22), 

-j"3E /3x + lc3E /3x = -\i' (i3H /3t + j3H /3t + k3H 
z y x y z 

(41) 

Equating components, 

-3H /3x = c 3E /3t 
= y 

3H /3x = E 3E /3t 
y z 

0 = E 3E /3t 
x 

3E /3x = u 3H /3t 
z y 

-3E /3x = v 3H /3t 
y z 

0 = v 3H /3t. (42) 

From the last two equations and from Eq. (15c) and Eq. (15d), it can be seen that 

the x-components of it and it are constant in space and time and might as well 

be set to zero. The x- anj y-components are coupled, as can be seen by sub¬ 

stitution cf Eq. (26) and Eq. (27) into the above, for example, 

12 



3H /3x = -yH = e 3E /3t = e juE . (43) 
y y z z 

The ratio 

* 
: = Z 

is the intrinsic impedance of the material. This may be rewritten in several 

forms by the use of Eq. (26): 

* * * 
i /e = JU;J /y. (44b) 

The intrinsic impedance of free space is 

Z = u //y E = c p = 377 ohms, (4 5) 
o o o o o 

where the speed of light is 

c = l//y c . (46) 
o o 

3. Conditions at Interfaces. When a wave encounters an abrupt change in 

the impedance of the propagating medium, part of the wave may be transmitted 

across the interface ' part reflected back. The precise amounts of transmitted 

and reflected waves are determined by requiring that the tangential components 

of E and H be continuous across the interface. 

We shall consider here only plane waves propagating perpendicularly to 

plane interfaces. In this case, for a single interface (Fig. 5), there are 

three pairs of E and H fields to consider: incident (i), transmitted (t), and 

reflected (r). The components of these fields may be written by use of Eq. (26), 

(27), and (44a) as: 

13 



E. = 
l 

H i = 
(47a) 

] , and (47b) 

\ -
(We; 

Subscripts 1 and 2 refer to medium 1 and 2, respectively. The parameters E] and 

E are to be determined in terms of the incident wave amplitude F.( . This is 

done by equating components of ?. and H across the interface: 

E + E, = E 
o 1 ^ 

and 

- El = 

Fig. 5. 
The semi-infinite slab with incident (i), 
reflected (r), and transmitted (t) fields. 

14 



These are readily solved to give 

E2 = teZj/CZj+Z.j)] EQ (49a) 

and 

El " C(Z2-Z1 ) / ( Z1+ Z2 ) ] V ( / < % ) 

The time-averaged energy flow of the v;aves described by Eq. (47) is given 

by the real part of the Poynting vector: 

Re (?) = Re (E x H) = \ Re (E x iT), (50) 

where the asterisk denotes complex conjugation. Viv define the reflection ;md 

transmission coefficients as 

2 1 

and 

T = li'j/lsj = |(E2/Eo)
2 ZL/Z2| = JAZ1Z2/(Z] + Z2>

2|, (52) 

where the bars denote time averages. Thus the reflected and transmitted waves 

are completely described in terms of the impedance of the two media and the 

incident amplitude. 

The conditions for a slab (two interfaces) are formally similar to those 

for a single interface, but the complex algebra involved is quite a bit more 

complicated. A computer program (Sec. IV) has been written to solve for the 

amplitudes and Poynting's vectors in slab geometry. 

In place of the three sets of fields shown in Fig. 5, the problem now has 

four field pairs (Fig. 6). These are written as 

E. = Eoe
jlot-YlX, H. = E./Z^ (53a) 

15 



C53b) 

E = (E 
m / 

H = 1/Z, (E 

+ E;eY2x)ejut, 

V - E:e
Y2X)eJut, and (Vh) 

\ - h^'^' Ht = Et/Z3" 

As in Eq. (^8), a set of algebraic equations in the amplitudes <"ind romplc 

impedances and propagation constants can be written by requiring continuity of 

the fields at interfaces: 

o 1 2 2 

E o - E, - (E 2- E 2). 

Fig. 6. 
The two-sided slab with incident (i), 
reflected (r), transmitted (t), and 
interior (m) fields. 

16 



E+e'V + E'eV = E ^ ' V , and (54c) 

E~e 2 - E«e 2 = E^e 3 L IZ , 

where d is the slab thickness. 

The algebraic solution of Eq. (54) for the ratios of field intensities 

and for reflection and transmission coefficients and Poyrting's vector in the 

slab is difficult due tc the complex nature of the quantities. Solutions can 

easily be programmed for a computer which has complex number routines. The slab 

problem will be discussed in conjunction with such a program in Sec. IV. 

C. Heat Conduction 

The next point for consideration is the flow of heat energy deposited by 

the R. F. fields discussed above and the resulting temperature distributions 

in the material. A material with a large loss tangent may still bo superior 

to one with small losses if its thermal and strength properties are better. 

It is a combination of loss, thermal conductivity, heat capacity, and strength 

which determines whether a window will hold or fail. 

1. The Heat Flow Equation. The conduction of heat in solids is described 

by solutions to a partial differential equation which is of first order in the 

time derivative and nonlinear and of• second order in space: 

pc3T/3t = 3/3x(K3T/3x) + 3/3y(k3T/3y) + 3/3x(k3T/3z) + A (55) 

where T=temperature, p=density, c=heat capacity, K=thermal conductivity, and 

A=source of heat. In general these are all functions of space and time, and the 

last four may depend on the temperature as well. 

There are few known analytical solutions to Eq. (55). Usually solutions 

must be found by numerical, as opposed to analytical, methods; however, if the 

thermal properties can be regarded as constant in space and time, Eq. (55) 

simplifies to 

V T - 1/K 3T/3t = -A/K, (56) 

17 



where tc=K/pc is the thermal diffusivity. This equation has several known useful 

solutions related to heat flow in windows. 

(The limitation on thermal properties, i.e., constancy in space and tijpe, 

is a particularly severe restriction on the thermal conductivity, which usually 

decreases as temperature increases. This can lead to a self-reinforcing or even 

unstable situation, especially if the loss tangent increases with temperature.) 

We shall now consider solutions in one space dimension only: variations 

through the thickness of an infinite slab. This can be a useful approximation 

for R. F. windows if 

(1) the window is thin with respect to its diameter, and 

(2) cooling occurs through the faces and not through the edges. 

Solutions exist for radial heat flow in cylindrical slabs, but they involve 

series of Bessel functions and their zeroes and solutions to transcendental 

equations. These must be determined numerically. A C3se can be made for solving 

the entire problem numerically from the outset. 

2. Boundary Conditions. Solutions to Eq. (56) depend on the boundary 

conditions appropriate to the problem. There are three appropriate boundary 

conditions for problems considered here. Combinations of these conditions might 

also apply. 

a. Constant Temperature. In this condition, the temperatures on 

bounding surfaces are specified as 

T=constant. (57) 

This condition simulates surfaces with high-capacity cooling. An example would 

be a fluid-cooled window, where the fluid maintains a constant surface temperature 

on the window. 

b. No Heat Flow. No heat is allowed to flow across the surface: 

dT/dx| = 0. (58) 
s 

This condition simulates a thermally insulated window. 

c. Radiative Heat Transfer. Heat flows between a body at temperature 

T and its surroundings at T by blackbody radiation: 

18 



dT/dx = 'JE(T4 - T 4), (59) 
o 

where E is the surface emissivity (0 «- E < 1) and o is the Stefan-

Bo It zmann constant. Because of the small magnitude of o (a = 1.37 x 10 call 
2 U 

cm sec K ), temperatures must be large or other modes of heat conduction must 

be very small before this method of heat transfer becomes the major one. 

However, for sufficiently high temperature (because of the T dependence), 

radiative transfer is the dominant form of h«at transfer. 

There are very few known analytical solutions with this boundary condition. 

Numerical methods must be used in most cases. 

3. Analytical Solutions. For certain boundary conditions there exist 

analytical solutions for the heat-flow equation. Some of these will be listed 

and discussed below. They are useful as approximate solutions in some cases 

for the study of hoating in windows. In addition, they were used to verify the 

accuracy of the finite difference model. 

a. Constant Initial apd Surface Temperatures; Constant Heat 

Production A.- L < x - L. This corresponds to boundary condition (A) on both 

surfaces. The solution is 

T = T + A L2/2K [l - (x/L)" - 32/TT3 
o o 

nI0(-l)
n/(2n + I) 3 cos (2n + l)i,x/2L 

This solution is typical of other solutions to the heat-flow equation in that the 

time dependence is expressed as an infinite series of decaying exponentials. 

In this instance, the steady-state portion is 

T = T + A L2/2K [l - (x/L)2]. (61) 
ss o o 

This is parabolic in x and reduces to the boundary condition T = T at x = ± L. 
o 

The peak temperature is in the center (x = 0) and depends on the square of the 

thickness (thin windows run cooler!) and on the inverse of the thermal 

conductivity. 

19 



The time required to reach steady state depends on the decaying exponential 

terms, which are functions of time, thermal diffusivity, and thickness. The 

bigger the thermal diffusivity and the thinner the window, the sooner it will 

reach equilibrium. 

Because of the spatial symmetry of this problem, Eq. (60) is also the 

solution to the slab 0 < x < L with no heat flow across the surface x = 0, i.e., 

boundary condition (B). In this case, however, for a slab of the same thickness 

as ' efore, the value of L must be doubled. Since this is squared in the solu¬ 

tion, Eq. (60), it is apparent that this window gets four times as hot as before. 

b. Initial Temperature T , Surface Temperature T ; Heat Production 

at Constant Rate' A . 0 ̂  x ~ L. A solution is 

T = T, + A x(L-x) /2K - 4A L 2 /KTT 3 

1 o o 

2 2 2 
°? r - ( 2 n - l ) n K t / L . ,_ . . ,, , , o . , 3 - . 
| Le s i n t2n - l ) i r x /L / ( 2 n - l ) J 

2 2 2 
( 2 n 1 } " " t / L -4 (T, - T )h 1. [e"(2n"1} " " t / L sin (2n - l)ix/L / (2n - !)]. <62) 

1 o n=l 

c. Rite of Heat Production n Function of T̂ inie. The solution for typt 

(A) boundary conditions is 

T = T + 4/irpc Zn ( -1) / ( 2 n + 1) cos (2n + l)-nx/2L 

/ _ A(T) e dx. (63) 

There is no separate steady-state term here. This is to be expected as 

long as the heat source varies with time. 

d. Rate of Heat Production a Function of Space. The solution for 

type (A) boundary conditions is 

o i 2 2 / / , 2 

T = T + 4L/TT K E, l /n [1 - e J cos niix/2L 
o n=l 

: ' ) cos nirx'/2L dx ' . (64) 

20 



This does have a steady-state solution since the time-dependent terms 

eventually vanish. 

Solutions (63) and (64) are useful if the loss to the window varies in time 

or space in a known manner. 

A. Ku-nerical Solut ions. Often the problem at hand has no known analytical 

solution, or the nearest conditions for which an analytical solution exists do 

not offer a good approximation to the real situation. Under these conditions, 

numerical (finite difference) methods may give more accurate results. 

Most of the heat-flow calculations presented in Sec. IV were made using 

a program written in BASIC and run on a Hewlett-Packard HP9845B microcomputer. 

The numerical method divides the material inLo a number of homogeneous 

cells or zones. The heat flow between a cell and its neighbors, plus any 

additional heat generated in the cell, is balanced with the temporal change of 

heac in the cell. Thus for cell (a), 

Z K (Tn - T ) + 0 = C AT /At, (65) 
n na a a a a 

where the sum is over all neighbors. This is done over all cells; then the 

time step At is incremented, and another cycle is calculated. 

The handling of boundaries and criteria for the time step length are 
12 

discussed elsewhere. 

The accuracy of the finite difference method was assessed by comparing 

results with solutions to Eq. (60). Figures 7-10 show results for three, six, 

nine, and twelve zones at short, medium, and long times. These calculations 

were for a two-wavelength-thick Al-0_ window at a frequency of 30 GHz. Heat 

capacity and thermal conductivity were constants. The loss tangent was 0.001 
2 

at an input power of 5 kW/cm . The boundary conditions were type (A) on one 

face and type (B) on the other. 

The numbers plotted in Figs. 7-10 are centered on the zones and specify 

the number of zones in tha calculation. The solid lines are the corresponding 

analytical solutions. 

*Kna is the thermal conductivity between cell (n) and cell (a), Ca is the heat 
capacity of cell (a), and Qa is the heat source or sink (if any) for cell (a). 
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It can be seen that even with three zones, the finite difference method 

adequately predicts the exact solution. The worst relative errors occur at 

small times in all the comparisons. 

Based on these comparisons, it was decided to use six zones in the numerical 

calculations which appear in Sec. IV. The use of fewer than six zones would 

not define the curves well, and more zones would increase computer run time 

without increasing the accuracy of the results. 

III. DISCUSSION 

A. Window Configurations 

Sizes, shapes, and precise locations of B. F. windows in fusion reactor 

designs have not been completely determined, but it is expected that dimensions 

will be on the order of millimeters to cer_imeters in thickness and centimeters 

to tens of centimeters in diameter. Most windows which have been tested in 

microwave power systems fall in these ranges. ' ' 

Window locations will be close enough to the plasma that significant 

ionizing and neutron irradiation will take place. Pressure gradients will be 

at least one atmosphere. 

At the higher frequencies, the windows almost surely will be face cooled. 

A fluorocarbon, such as FC75, may be used. The loss in the coolant will 

undoubtedly be much greater than the loss in the window, requiring large coolant 

velocities and hence pressures, increasing the pressure gradient on the window. 

B_. Losses 

Loss tangents of candidate ceramics and glasses have bee., found to be 
-4 7,16-18 

around 10 near room temperature for frequencies up to several GHz. 
19 

Recent results near 100 GHz also indicate that loss tangents are in this range. 

No data exist for losses in irradiated materials in the frequency range of 
20 21 

interest, but data at 1 MHz and below indicate that neutron ' or concurrent 
22 

ionizing irradiation can increase loss tangents and conductive losses by a 

factor of 10 or more. If this occurs in the microwave range, it will cause 

considerable design problems. It is possible that minor impurities, especially 

those with large cross sections for neutrons, may be of crucial importance in 

a radiation environment. 
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IV. CALCULATIONS 

The principal factors affecting heat deposition from R. F. fields are loss 

tangent, dielectric constant, and wavelength. The resulting temperature changes 

are determined by thermal conductivity, heat capacity, and mode of cooling. 

A. Losses Due to Currents 

For an insulator being heated by charge carriers (electrons, ions) moving 

under the influence of a potential V across the thickness d, Eqs. (JO) and 

give the loss per unit area as 

P/A = K2u)E'(tan 6)/d. 

B. Losses Due to Fields 

1. In an Infinite Medium. For an electromagnetic wave propagating tnrough 

an insulating material, losses can be calculated from the fields, F<js. (29) and 

(30) in the material. These depend on the attenuation coefficient a and the 

propagation constant 8. The attenuation coefficient is sensitive to small values 

of loss tangent, but S is not. Typical values of a and B are graphed in Fig. 11. 

The loss per unit area can be found using Eq. (50). The result is 

P/AP = 1 - e"2ax. (67) 
o 

A graph of this function appears in Fig. 12. It can be seen that for small 

values of the abscissa, the function is almost linear. In this region, the 

approximation Eq. (38) can be used to give 

P/AP = (2TT/X ) / ^ tan 6 x. (68) 

o o 

2. Across an Interface. When an electromagnetic wave propagates across an 

interface, there is an immediate loss of field strength due to the change in 

impedance at the interface. Part of the energy is reflected back, leaving less 

to propagate across the boundary. The amounts reflected and transmitted can be 

found from Eqs. (51) and (52) and are primarily dependent on the value of the 
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dielectric constant on each side of the interface. Figure 13 gives the reflec¬ 

tion and transmission across a single interface from free space to material of 

dielectric constant K'. 

3. In a Slab. For a slab, reflection can occur also at the rear interface, 

causing part of the waves to propagate back through the slab. This interfering 

wave can cancel or reinforce a portion of the original wave. The result is 

standing waves in the slab. The reflection, transmission, and loss coefficient!-: 

for a slab of A1?O are shown in Fig. 14. Noce that the loss coefficient is 

multiplied by a factor of 10. It is apparent that at integral multiples of a 

halt wavelength in the slab, the reflection goes to zero and transmission reaches 

a maximum. These are the desirable conditions for transmitting R. F. power 

through a window: that the thickness be a multiple of a half wavelength in the 

material. 

Figures 15 and 16 show transmission, reflection, and loss multiplied by 10 

for beryllium oxide and fused silica under the same conditions. It can be seen 

that the maxima of reflection and minima of loss are less extreme with lower 

dielectric constant. 

10 

10 

p 
10 

10-' 

300 GHz 

f - 30 GHz 

f - 3 GHz 

f » 300 MHz 

I0-4 103 .3 10 
fan 6 

10-' 

(a ) (b ) 
Fig. 11. 

(a) Attenuation coefficient a vs tan 6 for various wavelengths. Note strong 
dependence on tan <S. (b) Propagation constant B. Note lack of strong dependence 
on tan 6. tc1 = 9.3 (alumina). 
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ax 

Fig. 12. 
Plot of relative power loss per unit area as a function of normalized depth in 
an infinite dielectric medium. 

Fig. 13. 
Reflection and transmission coefficient 
for wave crossing from free space into 
medium of dielectric constant K 1. 
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Fig. 
Reflection, transmission, and loss x 10 for AlpOj sl.ib showing thick¬ 
ness dependence on wavelength in nwteri.il. K ' - 9.3. 

0 

Fig. 15. 
Same as Fig. 14 but for BeO (K' = 6.3). 
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Fig. 16. 
Same as Fig. 14 but for SiO (K1 = 3.8). 

The wavelength in the material is given by Eq. (31). Just as for the phase 

factor g, Fig. lib, the wavelength depends strongly on K1 and only weakly on 

tan 6. Relative wavelength is platted as a function of relative dielectric 

constant in Fig. 17. 

C. Calculation of Initial Rate of Temperature Rise 

Given a slab at initial uniform temperature and heat input A(x), the 

initial rate of increase in temperature can be calculated using Eq. (56) with 

no thermal gradients and thus no heat flow. In this case, Eq. (56) becomes 

dT/dt = A(x)/pc. (69) 

The heat inputs can be calculated from knowledge of the fields in the slab, 

Eq. (53c), using the Poynting vector, Eq. (50). A computer program was written 

to perform the necessary complex arithmetic. The output of this program is the 

heat introduced into the slab per unit area per unit length as a function of 

distance into the slab. 

Results of calculations based on this program and using Eq. (69) are shown 

in Fig. 18 for alumina. The results for beryllia are almost the same, whereas 
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Fig. 17. 
Wavelength in the material vs dielectric constant. 

1000 

100 -

1/P dTVdt 

(K/s/kW/cm ) 

-4 -3 -2 
10 10 10 

Tan 6 
Fig. 18. 

Relative rate of initial temperature rise per unit power input for a dielectric 
slab as a function of loss tangent for various frequencies. 
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for fused silica the lines would fall about 30% below these. The initial rate 
2 

of temperature rise per kW/cm input is averaged throughout the slab in this fig¬ 

ure. For slabs which are only a few integral multiples of a half wavelength 

thick (or less), the initial rate of temperature rise is not strongly dependent 

on distance into the slab. In these calculations, the slab thicknesses were set 

to two times the wavelength in the material. 

As can be seen from this figure, initial heating is a strong function of 

loss tangent and frequency. As these two parameters increase, the initial rate 

of temperature rise increases also. This dependence on frequency implies that 

windows used at electron cyclotron resonance frequencies (Table I) will get much 

hotter than windows for ion cyclotron use, all other variables being equal. 

D. Calculated Temperature Profiles 

Time-dependent temperature profiles in windows can be calculated by linking 

the R. F. loss computer program with the program which calculates heat flow by 

finite differences. 

First a "reference case" will be presented, followed by results for selected 

single-parameter departures. Values for the reference case are presented in 

Table II. 

Window thicknesses, also shown in Table II, were selected to make them sirai-

lar to each other. Thermal conductivities for Al_0. (sapphire) and BeO were ana-
23 

lytically modeled in temperature dependence from experimental data. The ther¬ 

mal conductivity of fused silica is not strongly temperature dependent near room 
23 

temperature, so a constant value was used in the calculations. 
Figures 19-21 show the results for the reference case at selected times. 

TABLE II 

PARAMETER VALUES FOR REFERENCE CALCULATIONS 

2 

Input power: 1 kW/cm . Frequency: 30 GHz. Number of zones: 6. Loss tan¬ 

gent: 0.001. Cooling mode: One face at 300 K, no heat flow across other face. 

Materials M2°3 Be° Si°2 

density (g/cm3) 3.97 3.01 2.60 

dielectric constant 9.3 6.3 3.8 

thickness (mm) 6.558 (2 A) 7.968 (2 X) 5.130 (A) 

heat capacity (cal/g K) .26 .24 .26 
23 -3 

thermal conductivity temperature temperature 3.34 x 10 
(cal/cm s K) dependent dependent 
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Fig. 19. 
Calculated temperature distributions at selecfed times in a slab of Al 0. for 
reference conditions (Table I I ) . Base temperature is 300 K. 
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Fig. 20. 
Calculated temperature rise above 300 K for a slab of BeO at selected times for 
reference conditions (Table II). 
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Fig. 21. 
Calculated temperature rise above 300 K for a slab of .3iO at selected times for 
reference conditions (Table II). Thickness is one wavelength. 

The wide range of final temperatures is due mostly to the large differences in 

thermal conductivities among the three materials. Beryllia has by far the larg¬ 

est thermal conductivity and fused silica the lowest. 

Figure 22 shows time dependence of the uncooled faces for the three materi¬ 

als. Because of its smaller dielectric constant, fused silica starts to heat 

somewhat slower but at later times passes the other two materials. After 6 s, 

which is the interval for startup heating (Table I), the temperature rise in 

SiO. is about 40 K for 1 kW/cm incident power. 

1. Effects of Varying Thermal Conductivity. Using the initial temperature 

as a parameter departure from the reference case allows one to see the effects 

of the variable thermal conductivities of Al^i ant* B e0- Over the range investi¬ 

gated, thermal conductivities for these two materials increase substantially as 

temperature decreases. This implies that the temperature gradient across a cryo-

<>enically cooled window would be smaller than for the reference case. Calcula¬ 

tions bear this out. Figure 23 shows the final (steady-state) temperature dif¬ 

ference across slabs of Al_0 and BeO as a function of initial temperature. All 

parameters except initial temperature can be found in Table II. It is apparent 
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Fig. 22. 
Temperature increases above 300 K for the rear (uncooled) faces of three materials 
as a function of time. Differences are due mainly to thermal conductivities. 
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Fig. 23. 
Final (steady-state) temperature gradient as a function of initial temperature 
for slabs of Al^O and BeO. 
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that a cooled window can work a factor of ten better (i. e. can handle 10 times 

the power input) than a room-temperature window. This does not hold true, how¬ 

ever, for SiO because its thermal conductivity increases slightly with temper¬ 

ature. Thermal conductivity and its dependence on temperature is a very import¬ 

ant consideration in selecting materials for R. F. windows. 

2. Effects of Varying Loss Tangent. For sufficiently small values of the 

loss tangent, the attenuation factor is nearly proportional to it, as tan be 

seen from Eq. (38). The attenuation factor enters into the fields, Eqs. (29) and 

(30), as a negative exponential which, for small values of the argument, also 

scales proportionally. Thus it is expected that steady-state temperatures in a 

window will be almost directly proportional to loss tangent-

Calculated final temperature rises for a window of Al_0 are plotted as a 

function of loss tangent in Fig. 24. Other parameters are as for the refer¬ 

ence case (Table II). The line represents linear scaling from the lowest point. 

It is evident that over most of the range plotted, the expected proportiona!it> 

occurs. Departures from this at the high end are due mostly to the det-r 

thermal conductivity of the material at high temperatures. 

Fig. 24. 
Final temperature rises for a window of Alo^ a s a futlcti°n °f loss tangent. 
The line is a linear scaling from the lowest point. Points are calculated. 
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3. Thickness Dependence. Using the same logic as in the previous section, 

but applying it to the distance into the material, rather than the loss tangent, 

it would appear that the heat deposited per unit volume is independent of thick¬ 

ness for sufficiently thin specimens. Once the heat is deposited, the flow is 

described approximately by Eq. (61), where the material extends from zero to L. 

According to this equation, the final temperature distribution should be propor¬ 

tional to the square of the thickness, which is a parabolic distribution. 

Calculations for an A1.0 window with thickness var>ing from 0.5 wavelength 

to five wavelengths were undertaken to verify the quadratic nature of the temper¬ 

ature dependence. A one wavelength thickness was 3.279 nun. Results are shown in 

Fig. 25. The plotted points are the final temperatures on the uncooled face, and 

the line is a quadratic scaling from the lowest point. It can be seen that, ex¬ 

cept at the highest temperatures, the proportionality to the square is a good 

approximation. The depart- res at higher temperatures can be attributed to the 

decrease in thermal conductivity of Al_0, with rising temperature. 

As the thickness increases, the time required to reach equilibrium .ilso Rott, 

up. This can be seen from Eq. (60), where the terms inside the summation repre¬ 

sent the time dependence. As the thickness increases, it takes a longar time for 

100 -

.5 1 1.5 2 3 4 5 
Thickness in wavelengths 

Fig. 25. 
Final temperature increases for Al_0 as a function of thickness. The line is a 
quadratic extrapolation from the lowest point. 
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the terms in the exponents to reach a given value. This dependence, as before, 

is on the square of the thickness, so the time should vary similarly. There is 

another factor which can change, however, and this is the thermal diffusivity 

K = K/pc. As the thermal conductivity decreases wich heating, the diffusivity 

will also decrease, requiring slightly longer times than otherwise. 

Times to reach 90 per cent of final temperature on the uncooled face are 

presented in Fig. 26 as a function of thickness. The line is a quadratic exten¬ 

sion from the lowest point. It appears that this is a fair approximation to the 

calculated data. 

4. Dependence on Input Power. Power levels in windows for fusion reactors 

may be much greater than the 1 kW/cm used in the reference calculation. To test 

the effect on final temperature of other power levels, a series of calculations 
2 

was run with power inputs between 0.1 and 10 kW/cm . It would be expected that 

the variation of final temperature would be proportional to the variation of 

power input, except for the already-noted effect of decreasing thermal conduc¬ 

tivity at high temperatures. This effect would make temperatures somewhat higher 

than otherwise expected. 

.5 1 1.5 2 3 4 5 
Thickness in wavelengths 

Fig. 26. 
Time to reach 90 per cent of final temperature on the uncooled face for Al 0 . 
Points are calculated and line is quadratic scaling from lowest point. 
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Figure 27 shows a plot of final temperature increase versus input power. 

The line is a linear dependence extrapolated from the lowest point. This appears 

to be a good approximation. At sufficiently high power levels, the final temper¬ 

ature is greater than would be expected from linearity. 

5. Effects of Frequency. As the frequency increases (wavelength decreases), 

one would expect from Eq. (34) that the attenuation factor and hence the loss 

would Increase, with attendant temperature rise in the material. This means that 

windows which might operate at a given frequency rould fail .it higher frequen¬ 

cies, or, conversely, a material which would be unsuitable at 30 CUz would act 

acceptably at M) MHz, which is in the ion cyclotron heating range (Table 1). 

For example, SiO_, which gets quite hot at 30 GHz (Fig. 21), would heat by only 

C.007 K und;r the same conditions at 50 MHz. 

6. Future Calculations. It would be useful to extend the hear flow calcu¬ 

lations to two dimensions so as to be able to calculate edge cooling effects in 

windows. To be able to simulate conditions in a waveguide with the electromag¬ 

netic equations would be useful also, as would be the provision for spatially and 

P(kW/cm2) 
Fig. 27. 

Temperature rise on the uncooled face of Al_0 versus power input. Points are 
calculated; line is linear extrapolation from lowest point. 
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temporally varying the loss tangent. This might require approximating solutions 

to the electromagnetic equations. Finally, since window failure occurs by crack¬ 

ing or fracture, these results would benefit by being coupled to a fracture anal¬ 

ysis program. 

V. SUMMARY 

Operating environments for R. F. windows in fusion reactors will be severe. 

Materials which pass all tests in the laboratory may act differently when placed 

in service, if actual operating conditions are not simulated during the testing 

and selection phase. Although it is impossible currently to test window candi¬ 

date materials in the expected operating environment, every attempt should be made 

to simulate conditions as realistically as possible. 

Calculations provide useful information which can offer guidance in struc¬ 

turing the framework of an experimental program and can amplify and extrapolate 

results into -ireas which cannot presently be simulated adequately. 

On the basis of calculations presented here, the following conclusion*; arc 

reached. 

1. The best impedance matches are obtained with windows which ere multiples 

of a half wavelength thick. 

2. There are large variations in final temperature distributions among can¬ 

didate materials due to variations in thermal conductivity. 

3. Temperatures scale approximately proportionally with loss tangent and 

power input. 

h. Heating rates are affected somewhat by changes in dielectric constant. 

5. Temperatures and times to reach equilibrium scale approximately with the 

square of the thickness for face-cooled windows. 

6. Temperatures scale approximately inversely with wavelength. Some mater¬ 

ials which are unacceptable at high frequencies may find use at sufficiently low 

frequencies. 

7. Calculations are relatively inexpensive and, it is hoped, can provide 

useful information to R. F. window designers. 
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