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Abstract

The structure of stage 2 potassium intercalatefl graphite, KC24, is discussed
in both the ordered and disordered phases. A one-dimensional model is used
to i l lustrate the qualitative features of the KC24 diffraction patterns.

1. Introduction

The existence of graphite intercalation compounds has been known for almost
f i f t y years. These systems have been of recent interst because of the high
basal-plane conductivity and the highly two-dimensional nature of the elec-
tronic structure in some of these compounds [1 ] . Early x-ray structural
studies on the stage 2 alkali metal compounds [2] MC^ (M =K,Rb, Cs) have
shown the existence of an order-disorder transit ion. Following these
studies a-axis resist iv i ty measurements [3] showed not one, but two anoma-
l ies. The structural nature of these two anomalies has since been revealed
by x-ray studies [4] for stage 2 potassium. Figure 1 shows a schematic
phase diagram for KC^, where above approximately 125K the ootassium lat t ice
is "disordered", between 125K and about 95K there is an ordered compound and
at 95K there is a structural transit ion which involves the stacking of the
potassium layers.
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The temperature evolution of the ordered phase at T • 125K was studied
with x-ray scattering [4,5] and the order-disorder transition appeared con-
tinuous. Of particular interest was the observation of c-axis stacking
faults in this intermediate phase [4] with ABC stacking (FCC l i ke ) . BAK and
DOMANY [7] studied the order-disorder transition in the presence of these
stacking faults and found i t to be a smeared f i r s t order transit ion which is
consistent with the data [4 ,5] .
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The lower transition was shown to be structural In nature where the stack-
Ing went from ABCABC... to ABAB... [4,6] (an FCC to HCP l ike stacking). Thus,
below this transition the c-axis stacking of the potassium no longer follows
the graphite matrix and there Is no evidence for stacking faults In the low
temperature phase. Recent c-ax1s res i t i v i t y measurements [ 3 ] , which should
be sensitive only to the loss of a scattering mechanism at the lower t ransi-
t ion, Indeed show only one anomaly at the lower temperature.

The only remaining questions then are the in plane structure of the inter-
mediate and low temperature phases. In the following sections these ques-

f M k w i l l be addressed albeit in a qualitative fashion and without any de-
r i v e conclusions. Clearly detailed crystal!ographic studies are needed

bw give the structural parameters of these interesting compounds.

2. X-ray scattering results and discussion

2.1 Experimental details

All the experimental data is on stage 2 potassium graphite. The sample is
highly oriented pyrolytic graphite (HOPG) and intercalated by the standard
two bulb method. The sample dimensions are typically 10 x 5 x 0.1 mm3 and
the c-axis is always in the scattering plane. After inercalation the sample
was transferred to a beryllium can from i t s glass container in an inert atmos-
phere. The beryllium can reduces the background significantly. The can is
attached to the cold finger of a closed cycle refrigerator that allows the
temperature to be varied continuously from room temperature to about 10K with a
stabi l i ty of typ 0.05K.

The i .le axis x-ray spectrometer uses * 'kW sealed Cu x-ray tube as a
source. The beam is monochromated with a pyrolytic graphite monochromator,
(00 2) reflection, set to ref lect the CuKa radiation giving an incident
wavevector of 4.075A"*. An 00 2 graphite analyzing crystal is used on the
third axis and in combination with the (002) monochromator gives a wavevector
resolution, &Q, of typically .02A"1 at Q's of the order of 2A"1.

2.2 Disordered phase results

Scattering measurements have been made, referring to Fig. 1, in both the
high temperature, disorderd phase, above 125K discussed below and the inter-
mediate phase 95K < T < 125K discussed in the following section. As stated
earlier the sample was intercalated from an HOPG sample and oriented with
the c-axis in the scattering plane. Therefore scans perpendicular to
the c-axis, Q * (h,0), are powder scans with h = IhT + kj j and thus the o r i -
entational dependence of the in plane scattered intensity of the potassium
with respect to tha graphite is lost.

A typical data set at T - 130K is shown in Fig. 2. Plotted is the inten-
sity as a function of h for Q s(h,0). As noted previously [5] there is no
variation of intensity with I for fixed h = h0, that is for Q = (h o , i ) .
What is seen immediately is a fa i r ly sharp feature at Q - (1.2,0) and a broad
feature at Q - (2.40,0) typical of " l iqu id" l ike scattering. The sharp feature
around Q - (2.93,0) is the t a i l of the graphite (101) peak [ 4 ] . Between the
features at Q - (1.2,0) and (2.4,0) is another sharp feature at Q - (1.7,0).
These results are in contrast to the study of CsC^ [9] which shows a " l iqu id"
l ike scattering and is well understood in terms of a close-packed 2 dimensional
Cs l iqu id .



o
a>

o
o

en

450

400

350

300

250

200

!50

100

50

n

- KC24

T=I3O K
" Ikj| =4.075 A"1

Q =(h,0)
•

ft- ft
* ••

i i

i

• •

i i

•

-

• —

—

—

i i

0.5 1.0 115 2.0

' 1 )

2.5 3.0 3.5

Fig.2 Scan along Q = (h,0) at 130K in the disordered phase. The sol id l i n e
i s a f i t of two Lorentzians.

In order to understand the differences between Cst^ and KC2i» the two
sharp features at Q - (1 .2 ,0 ) and Q - ( 1 . 7 , 0 ) have been f i t with two
Lorentzians.

1(0)
I01 I02

l+r2(Q-Q2)2
(1)

The peak postions, intensit ies , and a single width were free parameters. The
solid line in Fig. 2 is a f i t and a summary of parameters as a function of
temperature i s given in Fig. 3. As the order-disorder transition 1s ap-
proached from above the in plane correlations grow as can be seen In the in-
crease of r. The potassium-potassium distance decreases with decreasing
temperature as well, noted by the variation of, |(Ji|. However, the decrease
"* 'QJ i s always matched by an increase of | Q J such that the sum iQl 1+10^1

to the graphite (100) wavevecindependent of temperature and equal to

Thus unlike the Cs system where the disordered alkali metal i s constrained
to l i e between the graphite layers but i s otherwise independent of the matrix
the K system Is already "affected" by the in plane graphite structure far
above i t s ordering temperature.
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As the temperature is lowered through the order-disorder transition into the
intermediate phase the peaks sharpen and davelop three dimensional character
in the direction perpendicular to the layyrs [4,5]. An earlier study [4] has
discussed the presence of stacking faults in both the graphite matrix and the
intercalant lattice in this phase. A typical scan along the I = 0 layer, Q =
(h,0) at 105K is shown in Fig. 4. In contrast to the broad features above
125K the peaks are resolution limited in the plane. The solid lines in the
figure are merely guides to the eye. The relatively sharp feature at h - 1.7
remains and in fact has grown relatively in intensity. The positions of the
features of this scattering pattern seem to be well understood and will be
addressed in the following discussion.

2.4 Discussion

The understanding of diffraction data involves both position and intensity.
First is to understand the positions of the maxima. The peak positions shown
in Fig. 4 as well as other experiments on KC ^ [4-6] can be understood geo-
metrically as coming from two lattices, the graphite matrix and the inter-
calant as well as sums and differences of the wavevectors of these two lat-
tices. This is eveidence for a modulated structure and following OVERHAUSER
[10] directly both the positions and relative intensities can be calculated.
The interaction betwe n the intercalant and the graphite will cause displace-
ments of the atomic positions

U(L) =A sin (q.L +
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Fig.4 Scan along Q - (h,0) at 105K in the intermediate phase. The solid
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where U is the displacement, I is the vector to the zth atom, q is a wave
vector describing the modulation, J is the modulation amplitude and $ a phase
factor. Assuming that one of the two lat t ices is undistorted then the
density of the distorted la t t i ce can be written as

p'(r) =z p(C) 6 (r - L - A sin (q . L))
L

neglecting the phase. The elastic scattering amplitude is just the Fourier
transform of the scattering density

F(Q) --Jp'(F) e i(J ' ? d ?

which is , substituting from above

F(0) •£ f (Q)
L L

S1*n

where fr£Q) is the atomic scattering factor for the i t h atom. Assuming
that f[Tq) = f(Q) independent of I and using the Jacobi-Anger generating
function for Bessel functions gives



F(Q) --f(Q) L.Jn (Q«A)
i(Q + nq) • L

F(Q) is only non-zero when Q + nq_ s G so the djffraction maxima of the
modulated lattice occur when Q - G ± nq where 6 is a reciprocal lattice
vector of the "modulated" lattice, and q is the wavevector of the
modulation. For n =0 the peaks are the Bragg peaks of the modulated
lattice, for G =0 there are peaks of the undistorted lattice and n * 0, G *
0 are the sums and differences of the two lattices.

The relative intensities of the main Bragg peaks of the modulated lattice
(n =0) and the first order satellites (n =± I) can be calculated.
Neglecting thermal motion and phase fluctuations

I a F2(Q).

For n = 0, Q -~G and F a J0(Q.A) and f o r n - ± 1 , Q ! G ± q and F a J^Q.A) .
Generally, the amplitude of the modulation i s small so that ths Sessel
functions are in the l i m i t of small arguments, X, where

J n (x) - X2n .

However, the magnitude of the modulation peak, the feature at Q r (1.7,0) in
Fig. 4, indicates that the modulation is not small. Referring to Fig. 5
where J0

2(X) and Jx2(X) are plotted versus their arguments, one can see that
in fact around x = 2.2 there is a zero in Jo (X) so that some primary Bragg
p-aks could have very small intensities.

Fig.5 The square of the zeroth
and first order Bessel functions
versus their arguments

Using this formulation for the intensities, one can look qualitatively at
the intermediate phase intensities in some simple limits, assuming the
modulation is purely longitudinal, either rigid graphite with modulated
potassium or the reverse. Roughly, then, for rigid graphite the ratio of the
potassium (110) to the first order satellite, Ic/17, at 0 * (1.71,0) gives
|A|| = 1.35 ± 0.2 A for U(L) =AL sinfq . I + 4J with"q equal to the
graphite (100) wavevector. Using this value of \\\ predicts a ratio of
1(100) to IsAT- of 2:3 and measured is roughly 1:2 but the existence of the
faulted structure makes it difficult to estimate the integrated intensity of
the (100) potassium peak.

With the assumption of rigid potassium and modulated graphite and q the
potassium (100) wavevector the ratio of the graphite (110) intensity to the



satellite gives [AL| -0.18 ± .05. Using this value however and comparing
the graphite (104) to the satellite predicts a ratio of 9.6 compared with the
measured value of 3.6. Furthermore, with a rigid potassium lattice the fall
off in intensity of the potassium peaks I(100)/I(110) - 4.5 cannot be
explained. However, with the modulation of the potassium lattice and
referring to Fig. 5, with |Ai I r1-35, the (110) potassium peak falls near
a zero in J0

2(X) while the (100) peak does not.

Finally, with this argument in hand it is interesting to ask, could the
potassium ions sit "over" the centers of grephite hexagons, be registered,
and still give a diffraction pattern that appears incommensurate with the
graphite matrix. There are several observations that support this argument.
First, in the early work of PARRY and co-workers [1], in order to explain the
intensity ratios of the graphite peaks in the disordered phase a contribution
of 1/6 of a potassium atom over each carbon hexagon (2 carbon atoms per hexa-
gon and 12 potassium atoms per layer) was required. Second, the extended
x-ray absorption fine structure measurements of CASWELL et. al. [11] are con-
sistent with the potassium ions centered over the carbon hexagons. Lastly,
the value of jAj_j for the modulated potassium calculated roughly above is
just the difference between the average near neighbor distance in stage 2 and
stage 1. The stage 1 compound KC8 is a commensurate 2 x 2 structure and thus
the stage 2 compound may be made up of "islands" of stage 1, perhaps as small
as two or three atoms.

These ideas can be addressed for a simple one-dimensional model to see the
qualitative features of the diffraction pattern from registered, disordered
lattices. The model [12] consists of an infinite chain with atoms placed at
two snacings na and (n + l)a, where 'a' is the near neighbor spacing along
the c" ain. The atoms are then 'placed' on the chain by the flip of one of
two coins. After choosing the first spacing, do by the flip of a coin, if
d0 = (n + D a then one uses a 'coin' with the probability of dx being
(n+l)a equal to p1 and na being q1 -1 -p1. For d0

 r na a second 'coin' is
used with probability, p, for dx

 s (n + l)a and q * 1 - p for d^ s na. With
these rules then, by varying p and p1 one can go from a completely random
lattice, p = p1 * .5 to complete order, spacing n, n + 1, n, n + 1..., with
p1 =0, p =1. GRIMM, AXE, and KROHNKE [12] derived an analytic form for the
structure factor, S(Q), and for n -2, and several values of p and p1 S(Q) is
plotted as a function of Q in Fig. 6. X is just the average spacing, (n + (n
+ l))/2. If the system were completely ordered there would be sharp, Bragg
peaks at Q r0.2, 0.4, 0.6, 0.8 and so on, however even in the random system,
there remain two sharp features one at Q roughly (1/X) and one at (1 - 1/X).
These peaks could be interpreted easily as an "incommensurate" peak and a
modulation satellite and are reminiscent of the features seen in the disor-
dered phase of KC2U, Fig. 2. As the system orders p*l, p'+o these features
become sharp but still slightly in-commensurate, as can be seen in the pro-
gression from (a) to (d) in Fig. 6. This, too, is similiar to the behavior
of KC24 in the intermediate phase.

The features of a two dimensional system using the observed 'average' lat-
tice for the potassium and then forcing the potassium atoms to sit over the
centers of the nearest graphite hexagons has been calculated [13] by computer
and yields the ovserved peak positions for K ^ in the intermediate phase.
This can be considered as an extreme of a modulation.
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3. Summary

The phase diagram of i^ i * is now reasonably understood but only a qualitative
picture is available for the in-plane structure. This system may be an exam-
ple of a registered disordered system or i t could be simply incommensurate.
Some of these issues could be addressed by calculation and others by detailed
line shape measurement in the intermediate phase or a complete structure
analysis of a single crystal. In any case there are s t i l l things to be done.
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