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Properties of a Symmetric RHIC Insertion*

S.Y. Lee*

Brookhaven National Laboratory

Abstract

This report evaluates the lattice functions of the symmetric insertion proposed by A.

G. Ruggiero for the RHIC insertion, the crossing geometry, Inner and Outer matching

sections, and chromatic properties axe studied in details. Some properties of the miss-

ing dipole dispersion correction scheme are also discussed. We found that the chromatic

properties of the symmetric insertion is not better than the antisymmetric insertion. The

problem is that the four family sextupole correction scheme seems not able to improve the

chromatic distortion. Analytic understanding of the failure of the four family sextupole

corrction scheme will be very useful.

t This work is performed under the auspieces of the U.S. Department of Energy.

* Permant Address: Department of Physics, Indiana University, Bloomington, IN 47405.



I, Introduction

Recently, Raggiero suggested a symmetric insertion for RHIC, where the qaadrupoles

of same polarity are placed symmetrically with respect to the crossing point. Fjg. 1 shows

a schematic layout of a RHIC insertion. There are 12 FODO cells in each arc. The insertion

starts with a missing dipole dispersion suppressor consisting of two cells. The insertion

matching section is composed of a FODO cell, a doublet and a triplet to achieve betatron

function matching at the crossing point. The lattice function has a reflection symmetry at

the interaction point (IP). Due to the intrinsic symmetry, the scheme is more attractive

with a vertical layout. However, the horizontal beam separation is relatively small in

comparison with the total circumference, a horizontal layout will still retain reasonable

symmetry. The study is based on the horizontal layout. Due to small symmetry breaking,

the result of the present study shall remain valid for the vertical layout.

The paper shall address the physics of the beam dynamics issues of the symmetric

insertion. In section 2,1 discuss the required proper RHIC crossing geometry, the simplifi-

cation of the matching section from that of Fig. 1. The chromatic properties of the lattice

shall be studied as well. The conclusion will be given in section 3.



II . Description of the Symmetric Insertion

2.1 The Crossing Geometry

The crossing geometry for RHIC requires collision of equal and unequal species. To

achieve the beam collision, two dipoles shown in the following configuration are needed.

Let us call these two dipoles as BCl and BC2 (see Fig.2).

The field strength of these two dipoles has to obey the following basic equation.

(1)

where

£01 = distance between the interaction point and EC1
£i = length of BCl

I12 = centerline distance between the BCl and BC2
£2 = centerline length of BC'2

a — the angle between the beam and the centerline line



9i2 — the angle of the beam and the centerline at the location between BC1 and BC2

83 = the angle of the beam and the centerline at the far end of the BC2

d2 — the distance between two beam at the far end of the BC2

Note here that Eq.(l) should be solved for 612 with given a and geometry constraints

^01,^1,^12,^2 and d2. The crossing angle between two beams of equal species is then 2a.

The Newton-Raphson's method can be used easily to solve Eq.(l). A program called

XPARA.FOR to solve Eq.(l) is resides in tb<* RHIC database in BNLDAG. Once 912 is

obtained, the bending angle of BC1 is given by 61 — Q\?—a. The radius of curvature for the

BCl is given by p\ = Iil{s\n9\2 — sin a). The path length of the particle is then given by

s-i = pi9\. The particle path length between BCl and BC2 is given by &\2 = I12I cosQi2-

Similarly, the path length and the bending radius of BC2 can be obtained. Such a procedure

is implanted in the RHIC lattice RHIC91. The procedure is also used in the symmetric

lattice study.

In the following study, we shall used the geometry as defined in Fig.2, where a BC3

is used to bend two beams from 90 cm separation to 37.5 cm separation. We arbitrarily

choose the distance 2̂3 between the far end of BC2 and the centribend point of BC3 to

be 20 meters, which can accomodate the triplet focusing quadrupole elements. Note that

when the distance I23 is short, say 20 m, the required dipole length of BC2 will also be

short. However the price one pays is that the BC3 aperture requirement will be the same

as that of the large aperture quadrupoles. On the other hand, when 2̂3 is long, the length

of BC2 becomes longer. The trade-off can be discussed in the technical point of view

without much impact on the beam dynamics. The lattice property shall be independent

of the loaction of BC3, as long as there is space available. Therefore we shall choose the

present configuration shown on Fig.2 for the study.

2.2 Dispersion Control in the crossing region

To obtain zero dispersion function, D = D' = 0, outside the crossing geometry region,

and D* — 0 at the interaction point(IP), one needs quadrupoles between BC2 and BC3

dipoles. In the appendix, a minimum configuration of first order achromat is discussed,

where the symmetric configuration can give dispersion correction outside the BC3.



In the present configuration, a quadrupole-triplet can be used to provide dispersion

correction as well as betatron function matching. We shall simplify the configuration

of Fig. 1 to a doublet and a triplet configuration as shown on Fig. 3. The simplified

configuration shall give identical flexibility of the originai lattice configuration (see Fig.

1). The quadrupole triplet, Ql, Q2, and Q3 and the quadrupole doublet Q4 and Q5 form

the beam matching section, which adjoins the dispersion suppressor from the arc.
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The dispersion suppressor is composed of missing dipole cells. Fig.4 shows the dis-

persion suppressor configuration, where the distances between the half dipoles and the

adjacent quadrupoles are adjusted according to the phase advance of the FODO cell in

the arc. Similar to RHIC91, there are 12 FODO cells in each arc. Each FODO cell has

about 90° phase advance. These distances depend weakly on the vertical betatron phase

advance per cell in the arc. They are given by

tM w 1.809 - 228.8(/i - 0.25); ld2 « 1.892 + 78.70(/a - 0.25)

Alternately, one can also adjust the gradient in achieving the dispersion correction. The

phase advance between the quadrupoles will be different from 90°. Using the space adjust-

ment, the operational window for the phase advance in the arc cell is 0.24 < •£- < 0.254.

This requirement arises from a minimum distance of 1 m between quadrupole and dipole.
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Once the distances £di,td2 are determined, the change of the machine betatron tunes

can be achieved by changing the phase advance per cell Hx,Hy- Thus the dispersion sup-

pressor will not be perfect. The effect of mismatch in the dispersion function is given by



Fig. 5, where the Dx, -yxDx + (3XD'X, and the V # with

are ploted as a function of the betatron phase advance per cell. Note that the invariant

function H remains small. The dispersion function in the mismatch situation is given by

2.3 The optimization of /?* = 6m lattice

The strength of quadrupoles Q1-Q5 and the spacing between these quadrupoles are

optimized to obtain a proper betatron amplitude functions at the crossing point (or the

interaction point IP).

A possible solution is shown in Fig.6, where the betatron amplitude functions are

optimized to /3* = /?* = 6m. Fig. 6 shows a half insertion. The full insertion is composed

of a nearly mirror symmetry with respect to the interaction point (IP). By properly using



the inner and outer arcs and inner and outer insertions, the RHIC lattice with y(3*=6m

can be studied. The tunes of the machine is at Qx = 33.7710 and Qy = 29.6132 with

natural chromaticity £r = —58 and £y = —48. Since the study of the bare ideal lattice is

insensitive to the betatron tune.

2.3a Betatron Tuning of the RHIC symmetric Lattice

A. Minimum Constraint Tuning

The minimum constraint tuning requires the following symmetric conditions and the

0" condition:

D'=ax=a*y = 0; 0l=0*y=0\ (2)

There axe five constraints needed in the 0* adjustment at the IP. Therefore five parameters

are needed. The phase advance will change during the the 0* tuning procedure. Table 1

shows the fitting procedure without cnstraint on the maximum betatron amplitude func-

tion.

Table 1. The maximum betatron amplitude functions vs 0*

0*{m)

0™*{m)

0™"(m)

2

492

1289

2.5

389

983

3

341

744

3.5

305

584

4

277

470

4.5

255

395

5

237

323

5.5

222

271

6

211

226

6.5

198

205

7

183

203

7.5

169

201

8

158

200

It is clear that the maximum betatron amplitude function in this fitting procedure

is not practical. The dynamical aperture will be too small to be acceptable. The final

maximum betatron function at Q3 location will be too large.

B. Maximum betatron function constraint

Alternately, one can try to control 0™ax by requesting an extra condition:

_ „ , , 1350

01
(3)

where the number 1350 in Eq.(3) is derived from the constraint on the quadrupole gradient

and the minimum distances between the interaction point and the quadrupole locations.

The resulting maximum betatron function is more respectable. However, such a constraint

will contradict the requirement of D* = 0 .



Unfortunately, there are more constraints than adjustable parameters. The resulting

D* is a nonzero small number of a few millimeters, which however create mismatch of

dispersion function at Q2 of the order of ±0.8 m at j3* = 2 m instead of the matched

±0.25 m. Fig.7 shows the resulting betatron amplitude function and the contribution of

natural chromaticity per insertion. Note that in such a fitting procedure, the quadrupole

strength for Q1-Q3 are nearly constant.

Fig. 8a shows the integrated quadrupole strength requirements in the betatron tuning.

During the j3* tuning, the phase advance across the insertion is also changing. Fig. 8b

shows the change of the phase advance in the above tuning procedure. To compensate the

phase advance change in the insertion, the phase advance per cell should also be changed

accordingly to maintain a constant betatron tunes.

2.3b Chromatic properties of the symmetric insertion lattice

Due to the ransition energy crossing and the intrabeam Coulomb scattering, the result-

ing momentum spread is ±0.005. The RHIC lattice requires excellent chromatic properties.

The variation of the betatron tunes and the betatron amplitude functions are shown in

Fig 9 for /?* = 2m with two family sextupole correction scheme. It worth point out that

four family sextupole scheme does not help to reduce the chromatic distortion.

2.4 Proper Machine Tuning

It is known that the dynamical aperture becomes more important during the mini-

beta squeeze. Therefore, the betatron functions should be properly matched for the low

beta insertion. When the machine is tuned for the higher-beta value for the injection, the

accelerator should be more tolerable because of smaller betatron amplitude function at the

high beta triplet.

To avoid the structure resonances in an accelerator with six fold symmetry, we have

to choose the betatron tunes away from integers, such as 27, 30, 33, 36. For the symmetric

insertion with 90° phase advance per cell in the arc(Section 2.2), the tunes occur naturally

at Qx = 34.827 and Qy = 28.723. It is possible to change the betatron tunes by 1 from

the previous discussions of the dispersion suppressor.

Indeed the symmetric insertion in the RHIC lattice posses systematic half integral
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stopbands at tune values of 27, 30, 33, 36 etc.. Our tunes are sufficiently far away from

these stopbands. The horizontal and vertical betatron tunes are therefor*: adjusted to

Qx = 34.827 and Qy = 28.823. The SYNCH input and output files for the symmetric

insertions are available in the BNL cluster vax: $2$DUA7:[RHIC.LEE]RHICSYM.OUT;2

RHICSYM.OUT;3 RHICSYM.DAT;2 RHICSYM.DAT;3. Another file RHICSYM.DAT;4

RHICSYM.OUT;4 are the lattice properties for Q* — 33.826 and Qy = 28.823. These files

for the /3* = 2m show however large chromatic variation, which is hard to be corrected

by four family sextupole scheme. The Q2 quadrupole gradient requirement for the file

versions 2 is about 69 Tesla/meter instead of the norminal 57 Tesla/meter. Similarly, the

/3* tuning are performed in the file $2$DUA7:[RHIC.LEE]RHICSYMTB.OUT.

3. Conclusions and Discussions

We have studied the beam dynamics properties, tunability, chromatic properties of the

symmetric insertion for RHIC. We found that the combination of the triplet Ql, Q2 and Q3

for the dispersion function matching and the optical matching gives larger nagative natural

chromaticity than the corresponding antisymmetric lattice. Five adjustable parameters axe

not enough degree of freedom to obtain excellent matching, yet the mismatch is indeed

small. The only problem is that two family sextupole correction scheme can not achieve

good chromatic correction, yet four-family scheme does not work at all. The reason that

four family does not work needs to be understood. It is an interesting problem of its own

right. The lattice tuning has been demonstrated in the files resides in the RHIC directory,

$2$DUA7:[RHIC.LEE]. Further works are needed if the lattice would be chosen as the

RHIC lattice. The magnet requirement in the symmetric lattice is the same as that of the

antisymmetric lattice except the BC3 dipole which should be a 130 mm coil i.d. similar

to that of large a,perture quadrupoles.

Appendix

A. First order achromat for the beam crossing

To achieve a first order achromat in the beam crossing geometry with dipoles Bl and

B3, which deflect beams onto collision course, it is usually desirable to demand dispersion

functions Dx = D'x = 0 outside the crossing region and Dx = 0 at the interaction point.
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The achromatic condition requires a focusing quadrupole to be located between Bl and B3.

Using a thin lense approximation for the dipole and quadrupoles, then the focal length,/,

of the quadrupole is given by

+ * _ >

where

£o = the distance between the IP and the thin dipole Bl

£2 = the distance between the thin dipole Bl and the thin quad

£$ = the distance between the thin quad and the thin dipole B3

<f>i — the bending angle of the thin dipole Bl

4>3 = the bending angle of the thin dipole B3

Since —1 < 4s-, a focusing quadrupole is needed in the achromatic condition. For a

parallel beam line with head on collision, we have fa = —<j>\. The corresponding focal

length becomes,

f £3{£o+£2)

The scheme requires symmetric insertion, i.e. the quadrupoles are of the same polarity on

both side of the interaction point.
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