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INTRODUCTION

In these lectures we shall attempt to address the question of u- and
T-pair production from the motional Coulomb fields available at the new
relativistic heavy-ion accelerators. It is well known that electrons and
positrons are produced from such collisions in sizeable multiplicities,1

and Gould2 has suggested that heavy lepton pair creation may be possible at
RHIC.

We shall divide our discussion of these phenomena into two parts. In
the first part, a semiclassical field theory is developed which is appro-
priate for families of leptons which are coupled electromagnetically. The
field equations are mapped on to a lattice of collocation points using basis
spline methods, and techniques for solving the resulting lattice equations
are outlined.

In the second part, we shall examine the properties of the transverse
electromagnetic field near the heavy-ion beam and present physical arguments
as to the feasibility of pair creation under a variety of circumstances.
Using the Dirac-Hartree equations developed in part one, we shall dynami-
cally evolve the vacuum, using the appropriate fields, and compute y-pair
and x-pair production cross sections.

SEMICLASSICAL FIELD THEORY

In a pedagogical sense, our treatment of pair production in the
presence of strong fields is similar to the early version of the adiabatic
basis method developed by Greiner and co-workers.3 However, there are
important differences which we shall note in the following discussion. A
more complete account of the method is given in Ref. A. The Dirac-Hartree
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field equations can be obtained from three principal assumptions: i) exis-
tence of a semiclassical action and an effective Lay;rangian, ii ', iden r \: i':a-
tion of the Initial state and the vacuum state, and iii) unitary time-
evolution of these states.

(i) Assuming a minimal electromagnetic coupling of electrons, muons,
and tauons through a classical electromagnetic field, the effective
Lagrangian density case can be written as^

(1)- 1/4

where, in Eq. (1), Jy is a conserved classical external current, A^ and
are respectively the four-vector and field tensor of the classical electro-
magnetic field, and where the terms !£% are given by

We note that this Lagrangian separately conserves electron, rauon, and tauon
numbers, as illustrated by the diagram in Fig. 1. Thus, the different terms
in Eq. (1) are only coupled through Ay, and we shall assume, for simplicity,
that this coupling can be ignored. Thus, for each species of lepton we
take6

/ (x): (3)

where | *(t)> denotes the many-lepton state at a time t which evolves from
the initial state, and where the normal ordering is with respect to a
reference state which must be specified. This form of the action has been
extensively used in nuclear physics to obtain Hartree-Fock-Bogoliubov
equations. In Eq. (3) the dynamical coordinates which are varied to make
the action stationary are A^ and the parameters labeling the wavefunction
are *(t), not the lepton field operators. Thus, in what follows, it will
be convenient to work in the Schrodinger picture.

(ii) The initial state is assumed to be a single Slater determinant
so that

e +

Y

Fig. 1



1 Ht)> 5 >. (4)

We shall assume, for initial times, that there is a well-defined Dirac
Hamiltonian with a spectrum as shown schematically in Fig. 2. All of the
states with energies less than the label 0 are occupied in the vacuum state
I 0>, which we shall identify as the reference s tate . The single-particle

states with labels between 0 and f will comprise the init ial state *0>.
By construction, the single-particle states in Fig. 2 are complete and
orthonortnal

<+>I I ! x<+>><*<
+>

and <x
(s) (s

With the choice of reference state as given above, we can identify

and as single-particle and single anti-particle wavefunctions. In

the second quantized representation, we have particle and anti-particle
annihilation operators a\ and b\ respectively so that

0> 0> = 0

and (6)

+ N

+ m

f

o

- M

Fig. 2



All wciMMiucachn comb Lnactons of Che operators A and h not given in Eq.
' ••} 1 i r e r t t ; 1 " . ) , u u : I ' v : : i i t i a I i t a r e ^ s

0 0<\<t

(ill) We assume chat the dynamics governing the time evolution of the
wavefunction in Eq. (4) is unitary; that is

I *(t)> = S(t) * >, (8)
1 o

where S S = SS = 1 . There are several important consequences of this
assumption. Equations (7) and (8) together guarantee that the s ta te v ( t )
i s at a l l times a single Slater determinant. This may be seen from the
following equation

| «t(t)> = SdOaja^.-.aJ | 0> (9)

By inserting S(t) S(t) between adjacent operators in the above, we can re-
write *(t) as

| a|(t)a2"(t)...aj(t) | 0(t)> (10)

where the ope ra to r s a (c ) and the s t a t e 0 ( t ) are given by

a[(t) = S ( t ) a t
x S t ( t ) , X > 0, (11)

and

| 0 ( t ) > = S ( t ) | 0>. (12)

Equat ion (10) i s a t ime-dependent S l a t e r d e t e r m i n a n t , where 0 ( t ) , as given
i n Eq. ( 12 ) , i s the vacuum for the o p e r a t o r s a ^ ( t ) . I t i s easy to show thai:
0 ( t ) i s a l so the vacuum for o p e r a t o r s Bx(t)> def ined as

stct) = s( t ) b V ( t ) , x < o, (13)
A A

and thus we can ident i fy a complete and oithonormal set of one-par t ic le
s t a t e s at any time t by

I 4^+ )( t )> = a*( t ) I 0(t)> X > 0,
A A

I (-) t ( I 4 )

I v x
 ; ( t ) > = s x ( t ) I o ( t ) > x < o .

These states, and the determinant in Eq. (10), contain dynamical excitations
of the vacuum through the term 0(t). We should like to emphasize that the
one-particle states in Eq. (14) cannot be interpreted as physical-particle
or anti-particle states, because of these vacuum excitations. Physical
lepton or anti-lepton states can only be identified in terms of the projec-
tions of these states onto the initial states which define the particle and
anti-particle spectrum.

The Dirac-Hartree equations of motion are obtained from the stationary
principle for -.he action in Eq. (3). As previously stated, we shall work in
the Schrodinger picture. Because of the normal ordering inherent in the
matrix element defining the semiclassical action, we need to expand the
field operators in terms of the states in Eqs. (5) and (6)

n)a + +J")(x)b!. (15)



In this representation, Eq. (3) is written as

dt • ; L i . -i.

k o

l b :

b.a, :
j k

S(t)

SCc) | *o>
(16)

S(t)

where

L(x) 13 - h(x), h(x) Sm (17)

This representation of the action is almost normal ordered; only the last
term need be changed. In order to evaluate Eq. (16), we need to calculate
matrix elements of operators which have a form S(t) aja, S(t)• This is

t
carried out as follows. We expand the operators ctj(t) and Sl(t) as

Vc) -
(18)

where all of the time dependence is contained in the expansion coefficients
U(,t) and V(t). Equation (18) represents the most general expansion which
satisfies the anticommutation relations, Eq. (6), and the constraints of
unitarity. The properties of the transformation (18) are more evident in
the finite representation obtained by truncating the positive and negative
continuum, as illustrated in Fig. 2. Thus for the operators, cij and 3j are
limited to 0 < j < N for ctj , and -m < j < 0 for 3j. In this truncated
Hilbert space, Eq. (18) becomes an M+N dimensional unitary transformation
of the vector comprised of the set of operators otj and 8!,

(19)

where the elements of the transformation matrix are the expansion coef-
ficients in Eq. (18). It is straightforward to invert Eq. (19) and obtain
the matrix elements needed to evaluate the action. In matrix form these are

v\
(20)

The norm of the vector in Eqs. (19) and (20) is invariant under the finite
rank transformation (19)

(21)



and thus i s a c o n s t a n t of the mot ion . Equa t ion (19) d i f f e r s from the lepcon
number on ly by a t i m e - i n d e p e n d e n t VMibt . int , inrt h e n c e J i v e s Leptnn :iumbe -

conservat ion.

In th i s t r ea tment , the matrix of coe f f i c i en t s U(t) and V(t) are unknown
variat ional parameters which are determined by f inding s t a t iona ry values of
the act ion

5S/6U = 6S/6V = 0. (22)

These yield equat ions of motion

' q t ' q '

for

I (+ ) * , * (+) * ,• N ( ~ K s <: / -> - ,N
\ji ( t ) > = U ( t ) x > + V v. t ) Xi s q v r \L--J)

and

where h Is given by Eq. (17). Classical field equations are obtained in a

similar way

5S/5AV = 0, (2A)

and result in the usual Maxwell's equations

> (25)

where the current matrix element is evaluated using the methods outlined
above. Equations (23) and (25) comprise Dirac-Hartree equations for a set
of orbitals, which may be solved without explicit reference to the U and V
matrices.

BASIS SPLINE EXPANSION

In this section we shall address a method of solving Eqs. (23) using
the basis spline collocation method. Full details of this technique are
given in Ref. 4. For simplicity, we shall consider the one-dimensional
Dirac equation as given below,

h i|>(x,t) = 13 i|>(x,t) (26)

where the Hamiltonian i s spin-degenerate, so that i t suff ices to specify h
in a two-component spinor representation as

a [-19 -A ) + Bm + A
X X X O

A -hn -13 -A
O X X

- 1 9 - A A -m
X X O

( 2 7 )

Me shal l assume that the f ie ld equations, Eq. (25 ) , are Integrable and
develop numerical methods of: solving Eq. (26) which emphasize accuracy,
s t a b i l i t y , and ease of programming. Our method requires the expansion of
the spinor in Eq. (26) on a basis of spline functions 8 of order N,



M
I,...,n, (28)

where we shall use the convention that repeated indices are summed. Splines
of order N are piecewise (N-l) c h differentiable polynomials, for which the
index k is associated with some space interval. Examples of these functions
are shown in Fig. 3. Since the number of B-splines in Eq. (28) is finite,
they cover a finite interval. In a completely different context, calcula-
tions using B-splines have been given by Dreizler.9 The set of space points
X, , associated with the spline functions, U^, do not provide an adequate
representation for operators of the form Eq. (27). There are three problems
which must be addressed: i) finding a local representation that sidesteps
the issue of constructing matrix elements of h by numerical integration;
ii) representing the derivatives on the spinors so that the boundary con-
ditions on the upper and the lower components are correct; and iii) satis-
fying current conservation conditions on the space lattice that are im-
plicitly contained in the Dirac Hamiltonian. The latter point is, of
course, essential to guarantee lepton number conservation in numerical cal-
culations .

There are a set of space points associated with each spline function
which minimizes the error in the expansion, Eq. (28). These points, 5 a

a « l,...,n, called collocation points, provide an optimal representation
of a function on a finite interval. The set of collocations may be evalu-
ated using several different methods;8*10 however, for equally spaced points
x,, k = l,...n, we may take

" 'Xcri-W
 + Xo+u+l [N/2].

These points are shown as the open circles in Fig. 3.
¥ evaluated at 5a are given by the transformation

(29)

Thus, the functions

with (30)

i + N 0
\

• N » N Q y

i + N

F i g . 3



IT'1 £,
k a

For B-splinas of f in i t e order, the matrix B is banded with a bandwidth of N.
Also, the inverse transformation is well behaved, thus giving the coef-
f ic ient of ^ in terms of i|;a,

* k = Bk a

,ka , - l l ^ a
(31)

Representations of differential operators can be easily obtained as matrices
in collocation space; for example, 3 = A becomes

B
ka

B;
ka

32 U?(x)x k

(32)

x = E,

where the matrix B plays the role of a metric in collocation space.
Equation (32) yields a highly accurate representation of the second deriva-
tive operator on a la t t ice , as illustrated in Fig. 4, where we give the
result of the matrix A acting on the vector f(q)

F2(q) = Af(q)

f(q)
cos(qCa) ( 33 )

In Fig. 4 £a = 0, so that F2 should take on a constant value, one. We com-
pare the results of the ordinary finite-difference method, dashed curve,
with the two B-spline results of order 3 and 11, as a function of q. The
B-spline results are clearly superior, and, in general, for B-splines of
order N, and for n collocation points, the error in the representation Eq.
(32) is

error
-N+l

n ( 34 )

ORNL-DWG 86-10622

0.2 0.4 0.6 0.8 1.0

Fig. 4



This form of che second der ivat ive operator has a unique decomposition into
ir>oer wd lou^r "..( in^ulir form us inn the Cholesky decomposition,1 1

• 9

A = D D , (35)

where in Eq. (35) D~ is a lower and D"1" is an upper t r iangular mat r ix , and
where we have imposed the condition

au aa
(36)

in order to achieve uniqueness. In this decomposition, we identify two
types of first derivatives in which boundary conditions at £i are contained
in D+ and boundary conditions at E,n are contained in D". This decomposition
has two important consequences for the Hamiltonian. Eq. (27). It resolves
the problem of fermion doubling on the lattice,12**3 and it maintains an
exact current conservation on the lattice. Thus, the representation of Eq.
(27) on a collocation lattice is

A +m -iD+ - A
o x

-1D - A A -m
o

where the potentials are local functions of space

(A ) S = 6 A (C ).

Thus, Eq. (26) on the collocation lattice becomes

(37)

(38)

h a
6 +g(t) = i3t +a(t). • (39)

A more extensive discussion of this method is given in Ref. 4; here we shall
employ these techniques to study y- and T-pair production from the vacuum.

TRANSVERSE FIELD MODEL FOR PAIR PRODUCTION

In the collisions of two relativistic nuclei, the transverse, near-
zone, electromagnetic field becomes very large. For two beams of uranium
each at an energy per nucleon of 100 GeV, Gould2 estimates u~pair and T-pair
cross sections, respectively

o + ~ 1 mb
u U

O T + T _ - 1 Mb.

These estimates are based on a perturbative treatment of the production,
which is equivalent to the production out of the field of a time-like vir-
tual photon that subsequently pair decays. However, these considerations
suggest that the QED vacuum must undergo large rearrangements near such
heavy ions. In the case of real photons coupled to static fields,14 the
dimensionless parameter which sets the scale for pair production, K, is

) (40)

where u> is the frequency of the photon field, ra is the mass of the lepton,
E is electric field strength, and E o is the critical field,

E = m2/e.
o



10

For u and x leptons, pair production becomes large whenever ID = m, and E -
2 , is ;^iven ^low

E (MV/fm) uT1 (fm/c)
o

u 60

x 15 x 103

1.85

0. 1

Thus, if the transverse fields near the heavy ions have strengths and fre-
quency components similar to these, we expect to observe sizeable amounts
of pair production.

If we consider hadronic mechanisms for producing lepton pairs, we can
get an idea as to the cross section scales. At these relativistic veloci-
ties, the Drell-Yan^ mechanism sets the scale for the production, as shown
in Fig. 5. Here the hard scattering of quark, anti-quark pairs annihilate
to give a time-like photon which pair decays. The total cross section for
U-pair production is approximately16

1.3
+ -
U V 4 M

which for uranium collisions at 100 GeV per nucleon, gives

o + _ ~ 1 mb
U u

and about

1 yb.

u

u

Y

Fig. 5
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These cross sections are comparable to those of Gould for the vacuum pro-
duction of such pairs . The number of electron pairs produced in the heavy-
ion collision is approximately 10* b; these pairs can convert to u-pairs via
the process shown in Fig. 1, which result in a production cross section of

a + _+ + _ ~ 102 nb.

Thus from these considerations, we conclude that excitations out of the QED
vacuum near such heavy-ion beams are at least as large as other processes.
For a heavy-ion collision as shown in Fig. 6, the near zone, transverse
field a distance b from the beam axis is

E, =
Zeyb

this field is shown schematically in Fig. 6. Note that the maximum field
strength is simply Zey/b2 and that, due to causality, it has an approximate
width

At ~ b/TB.

These parameters are given below for two combinations of heavy-ion beams,
and for b = 10 fm.

17

10

E± (MV/fm)

25

30 x i o 3

At (fm/c)

0.6

5 x \o~k

At

P

time

Fig. 6
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The case of i - 17 corresponds to the type of beams that wi l l be available
at che Brook.ha\/en AGS sho r t l y , and the case Y = 20 < 10' corresponds to Che
proposed fixed target equivalent eni-r,;y in RHEC. Ac ACS energies the :"ie!J
strength is 40% of the c r i t i c a l field for y-pai-- production, and at <H1C
energies i t is 500 times the c r i t i c a l f i e ld . Hence, both of these -nachines
should produce sizeable numbers of u -pa i r s . At RHIC energ ies , we see that
the field s t rength is twice the c r i t i c a l f ie ld for T-pair production.

The exc i ta t ion of such pairs out of the vacuum can be studied with a
one-dimensional model as follows. Consider a box of length L in one-
dimension, and a time-Jcpendent e l ec t r i c f ie ld which is uniform throughout
the box,

E ( x , t ) = E e~l / A L " (41)
o

The size of the box., the values of Eo, and the time history of the field are
fixed to reproduce the values of the transverse field as previously dis-
cussed, so the E o and At are functions of (Y.b). We shall only consider
vacuum states and ignore binding effects so that the states in the box rep-
resent equivalent positive and negative energy continuum states. We shall
use 74 positive energy and 74 negative energy continuum states and calculate
the evolution of the vacuum, Eq. (23), using Eq, (41). Note that (41) is
gauge equivalent to the interaction,

A — n

(42)
A = xE(t),
o

which are used in the actual calculations. From Eq. (23), the vacuum evo-
lution is obtained by time evolving all of the states i|A~) with -M < q < 0.

The truncation of the states in the vacuum to q > -v is under our control
and permits us to construct the density of states in the vacuum, evolve it
in time, and examine its convergence properties. For example, the lowest
energy state in the box has an energy E_M ~ -250 me

2, whereas the density
of states is usually cut off at about Ev ~ -5 me

2. With the wavefunction
given by

there are three quantities of interest which can be constructed from the
projections,

P
s

-v<q<0
(43)

These are the inclusive spectra of emitted particles, dp/dE^, the density
of states in the vacuum p("£\<J> a°d the total probability density of produc-
ing a pair, w(T,b), given respectively as

( 4 4 )

«<Y.b) = I P<+),
k k

where
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and
AE,

"k+1

A typical example of the vacuum evolution is shown in Figs. 7-10 for the
case of T-pair production 15 fm from colliding beams of 50 GeV per nucleon
uranium. In natural units, - n = c = m = e = l, this would correspond to
field strengths of 0.2 and a time width of 1.0. In these calculations, the
lepton number is conserved to better than l:1010. Figure 7 shows the pair
production probability as a function of time.
ComDton time of the tau, approximately

Here the time scale tn is the

o sec.

Note that the final pair multiplicity is about 10~2, which is moderately
large, and the sharp rise and subsequent fall of the probability in time,
indicating rearrangement of the vacuum. Associated with this production
probability is the inclusive T~ spectra shown in Fig. 8. Here the differen-
tial probability, in units of the T mass, is shown as a function of the
kinetic energy of the T~, also in units of the T mass. The dashed curves
denote the contribution tc the spectra from the individual states comprising
the vacuum. In this example, we are propagating 12 states, and most of the
yield occurs at kinetic energies less than the T-mass. It is instructive
to examine the density of states in the vacuum during the initial phase of
the evolution, Fig. 9, and at the end of the time evolution, Fig. 10. Note
that the ordinate scales for these figures are logarithmic, and hence the
initial density of states is approximately l/AEk for energies less than

P(t)

10

o.o LL

Fig. 7



Taunri Pair Spectrum t/U - 3.985

14

E-07

0.0

Fig. 8

Time Evolved Vacuum t/tc - 0.625

E+02

Q.

0.0 1.0

£+01

E+00

E-01

E-02

E-03

E-04

V = U»€ -O l

r = tOOC*OO

^ v :

-

* ' ' ' , ! ' ' ' * ' '
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-
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2.0 3.0

E,/mc"
4.0 5.0

Fig. 9



Time Evolved Vacuum t./t. - 3.!?8z

15

E-04

0.0

Fig. 10

about 2 me 2, and zero for energies greater than 2 me 2, while at the end of
the evolution, there is considerable rearrangement of this function with an
exponential falloff up to about 4 me2.

We can approximately reconstruct production cross sections from the
observed probability density. In the above example, P ~ 3.6 * 10~3 yields,
tc = 4 x lO"^ fin"* over a region of space of approximately 15 fm. Using a
simple geometrical argument, the emission probability transversed to the
heavy-ion beam times the transverse area would result in

a ~ bh w 2

where b is the impact parameter. Thus for 50 GeV per nucleon uranium
beams,

cj . j . _ ~ b m b .

Similar calculations for y-pairs result in

(45)

E/A (GeV)

21

(fin"1

10~3

o (mb)

.08
12

In summary, we conclude that the near-zone electromagnetic f i e ld In
re la t iv i s t i c heavy-ion col l i s ions produces large changes in the QED vacuum
which have chara^Lerlstically large Fourier frequency components. This is
reflected in the sizeable emission of heavy leptons in a direct"! >n trans-
verse to the heavy-ion beam.
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