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SPLINE METHODS FOR CONSERVATION EQUATIONS

C. Bottcher and M. R. Strayer

Center for Computationally Intensive Physics

Physics Division, Oak Ridge National Laboratory

Oak Ridge, TN 37831

Abstract

We consider the numerical solution of physical theories, in particular hydrody-

namics, which can be formulated as systems of conservation laws. To this end

we briefly describe the Basis Spline and Collocation methods, paying particu-

lar attention to representation theory, which provides discrete analogues of the

continuum conservation and dispersion relations, and hence a rigorous under-

standing of errors and instabilities. On this foundation we propose an algorithm

for hydrodynamic problems in which most linear and nonlinear instabilities are

brought under control. Numerical examples are presented from one-dimensional

relativistic hydrodynamics.



1. THE CONSERVATION LAWS OF THEORETICAL PHYSICS

It has long been recognised that the partial differential equations of theoretical

physics are advantageously cast in the form of conservations laws ^ . This is par-

ticularly true of hydrodynamics, as for more general transport problems, where the

equations express the conservation of energy, momentum, entropy and so forth. If

the conservation theorems can be preserved in a numerical solution, instabilities

and errors are thereby controlled to some degree. Most classic discussions of sta-

bility are based on conserving energy, which may be sufficient in simple problems.

In general, conservation is a necessary, but not sufficient condition, for stability,

particularly in nonlinear problems. A more complete set of criteria is presented

below.

Suppose a system is described by Nc conserved quantities {^A'CO}- Evolution

in time must be governed by equations of the form

= - V • F A ' M + S * , K = 1,...,NC. (1)

The integral-conserved quantities, such as the total mass, are given by

QK = j<Pr<t>K, (2)

and satisfy

*£/• (3)

If the source term SK is zero, QK is constant. We suppose that the equations

are solved in an infinite domain, in which the generalized currents FK vanish at



large distances faster than r~2. The equations (1) arc closed by making the FK

functions or functional, in general nonlinear, of the left hand 4>K-

All discretizations of (1) seek to replace the continuous functions {^-(r*)} by

vectors <pK, and the operators d/dxa by matrices Do , where a = 1,2,3 (x,y, z).

The resulting equations,

dt
(4)

o = l

retain a discrete form of, the conservation laws if it is possible to find a vector

such that

= 0 . (5)

The integral-conserved quantities are

QK = (6)

so that the elements of u> play the role of quadrature weights ^ .

Specific examples of equations which can be cast in the form (1) are nonrela-

tivistic hydrodynamics \ for which

p

pit

pu

where p is the density, u the local velocity, and II = / P(p)dpfp the Riemann

pressure. The generalization of (7) to special relativity is neither trivial nor unique,

but we shall use the form due to Landau ',



«0
, F=

4>
(8)

L 4>o + P J

where e is the energy density, u = (uo,u) the local four-velocity, and P(e) the

pressure. The energy density is derived from 4> by solving the nonlinear equation

= <j>0 — (9)

Nuclear matter at high excitations, such as might be produced in collisions of

heavy ions at relativistic energies, is believed to be described by equations of the

type (8). While pians to study matter under these conditions in large accelerators

are underway in the U.S.A. and Europe, theoretical progress has been slowed by

the numerical intractability of most theories. Thus it is not known whether specific

models predict shock waves, sideways flow or stopping. The present investigations

are directed towards finding robust algorithms for solving (8) for the case of nuclear

collisions. A detailed discussion of hydrodynamics as applied to relativistic nuclear

collisions, with a bibliography, has been given by Gatoff et al ^.

2. THE BASIS SPLINE AND COLLOCATION METHODS

Splines of order AT are functions S^{x) of a single real variable belonging to the

class G^~2 with continuous (Af — 2) th derivatives. Each spline is associated with

a set of points {x*}> called knots; we take the knots to be distinct and ordered,

Xk < Xk+\- Between each pair of knots, the spline is a polynomial of degree

Af — 1 (the order refers to the number of coefficients); at each knot, the function



and derivatives up to the (Af — 2)th are continuous. The (Af — 1)"' derivative is

bounded but discontinuous. We shall consider only even orders Af > 3.

Splines have long been used for curve fitting, but the introduction of basis splines

greatly enhanced the power of the technique by bringing to it the language of

functional analysis. Given a set of knots {x^}, the basis splines of order Af are a set

of functions B{f(x) such that any spline S^(x) is identically a linear superposition

= J2akBf(x). (10)
k

It is easy to see that Bjf(x) is uniquely defined by the condition that it is zero

outside the range of Af + 1 consecutive knots xk, ijt+i,. • •, Xk+/f- Such a function

of order Af = 3 is illustrated in Fig. 1. At either end of the range of knots, the

basis splines can be modified to incorporate boundary conditions. One can better

visualize how splines are used by considering an example, as in Fig. 2, of a set of

splines fitted together to represent functions satisfying some boundary conditions;

in this case,

^(*i) = 0, 0 ' ( x N ) - O , (11)

where the prime denotes differentiation. Several algorithms are described in the

literature to construct basis splines from the continuity conditions at the knots

and the boundary conditions at the endpoints 6J.2.8)

Given the basis splines, a function rl>(x) is approximated by the interpolant ^,

where

&*) = £****(*)» (12)



o.ooo

Fig. 1. Basis spline of order M = 3. The knots are denoted by open squares, and the
collocation points by filled circles.

Fig. 2. Set of basis splines of order Af = 3 satisfying the boundary conditions (11).



and the V'* are determined if V>(x) = 0(x) at a set of N data, or collocation, points

{$»}• We have only to solve

£iW* = 0a, (13)

where Bak = #*(£<*) an(^ &» = ^(&»); the order Af is omitted for simplicity. It is

necessary and sufficient that the matrix B be nonsingular: this will always be the

case if we limit our considerations to odd orders and choose the collocation points

halfway between the knots. Further, as is clearly seen in Fig. 1, the elements of

B are positive and largest on the diagonal, implying that the inversion of (13) is

very stable. It is convenient to have a notation for the inverse of B: we write the

elements as Bka so that

N
£ Bka^° = 0* . (14)

Formulae for derivatives and integrals are readily derived from (12)—(14) K

The collocation method for solution of an operator equation, formally written

as

LM = 0, (15)

is intimately related to the interpolation procedure of (12)—(14). We obtain N

equations for the unknowns {0*} by requiring that

L{J2*l>kBk] = 0 at x = £a. (16)

Though the method is perfectly applicable to nonlinear problems, we are mostly

concerned with linear operators Z), in which case (16) becomes



If we use (13) and (14) to eliminate the coefficients {ipk} in favour of the values of

the solution {^*} at the collocation points, (17) is replaced by

N

£ W » = o, (is)
a=l

where

As a simple example, consider a diffusion equation in one dimension,

where W is a local sink term. An agreeable feature of the method is that expres-

sions such as Wrl> are replaced by Waipa, where WQ = W(£a). In other words,

local operators come to be represented simply as diagonal matrices of their val-

ues at the collocation points. Nonlocal operators such as derivatives appear more

complicated at first sight. In summary, (20) is replaced by

^ = E(A O /J-W O M^, (20)

where

Ao, = XXVB*", B i = f ^ l • (21)
k=\ L ax \x=U

The analysis of (15)—(21) is readily extended to problems in two and three di-

mensions. Thus suppose (19) is written for three cartesian coordinates,



^ (22)

where Ax = d2/dx2 etc. The procedure of (12) is generalized by expanding the

solution in products

0(*,»,*) = ZrkB<(x)B>(y)Bk(z) . (23)

For simplicity of exposition we assume that the same set of splines is associated

with each coordinate. In collocation space we find that the representations of the

operators analogous to those of (20) are given by

y,7' • (24)

More detailed discussions of the basis-spline-collocation method, emphasizing

quantum mechanical problems, is contained in the proceedings of a summer school

held in Sewanee, Tennessee in 1989 "K

3. REPRESENTATION THEORY

In the most general sense, the title of this section includes all attempts to quan-

tify the degree to which the discrete lattice representations derived in Section 2

accurately represent important features of the original problem. We will address

the following features in particular: completeness, convergence, conservation laws

and dispersion relations.

Given a formal interpolation procedure, such as that implied by (11)- (13), the

issue of completeness refers to how well the interpolant 0(x) represents \}>(x) at



points other than the exactly fitted points {£„}• In other words, how does the

error

£(x) = |0(i) - V>(z)| (25)

behave globally? A simple estimate is obtained from the Dirichlet functions Bk(x),

which arise when t/> is expressed directly in terms of {V>a}- From ((11)—(13), we

find that

N N

J,(~\ — ̂ thRtx) B (x\ - Y* BkaPi.(x) (261

A typical Dirichlet function is shown in Fig. 3. It is evident that Bo(£/») = Sap by

construction, but at other points, Ba is nonzero and oscillating in sign. The values

of \Ba\ at successive turning points ^ fall off rapidly; in fact, approximately as

for knots with a uniform spacing A \ At the first minimum, however, Ba ~ —0.3.

Thus the maximum of the error function (25) is estimated to be

£ „ „ ~ 0.3 max |0O + , - 0O | . (27)

The largest error is encountered if $ has a discontinuity, as for a step function.

However, in virtue of the rapid rate of falling off of Ba{x) with \x — £„!, the

overshooting oscillations in the fit also die off rapidly with distance from the dis-

continuity. This contrasts with the notorious behaviour of Fourier or orthogonal

polynomial interpolation.
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Fig. 3. Dirichlct function for basis splines of order M = 3, as defined by (26).

Fig. 4. Errors in the lowest eigenvalue of a Morse potential us. the number of grid
points n for different discretization algorithms. Reading from the top down, the curves
refer to the three-point finite difference method, and the basis-spline-collocation method
with splines of orders 3,5 and 7 respectively. The model is described in more detail in
Ref. 2 ) .



When splines are used to fit smooth functions (of class CM where A/ > 1, say),

the solutions to operator problems usually converge uniformly as the number of

points is increased. A point of great practical significance is that the rate of

convergence improves as the order of the splines increases: usually € ~ A~^+ 1 .

This is illustrated by Fig. 5 which shows the errors in the lowest eigenvalue of

the Schrodinger equation for a Morse potential K Usually Af = 7 is adequate

for practical purposes. Though spline interpolation remains stable for any order,

a trend of diminishing returns is usually observed for Af > 9; for increasing Af

more splines may be needed to accommodate the boundary conditions instead of

representing the solution.

The concept of a faithful representation of a differential operator is taken over

from the mathematical literature "K For our purposes, it means that the repre-

sentation faithfully simulates the familiar intuitive properties of the differential

calculus. No approximation can reproduce all properties exactly, but we can base

our development on the following choice. Given the operator D = d/dx, we require

that its matrix representation D satisfies a subset of identities

= XM-X , (28)

analogous to those for differentiating the monomials

= ^ . (29)

Insofar as the basis splines belong to the class C , (28) holds identically for

M < AT — 2. In general, the identity is modified near the boundaries where the



polynomial representation is modified to represent the boundary conditions.

For the simplest case of periodic boundary conditions, the representation satisfies

an identity of the form (28),

D X o = 0 , (30)

where xoa = 1 Va. In general x IS t» e eigenvector of D corresponding to a zero

eigenvalue. The accompanying right hand eigenvector w0 defines a set of quadra-

ture weights in accordance with the prescription (5), providing u>0 is appropriately

normalized. The significance of (5) is seen by applying both sides to an arbitrary

vector xj>, which recovers the familiar formula for the integral of a derivative. This

in turn leads to an analogue of Green's lemma as an identity on the lattice, and

finally to exact conservation laws on the lattice ', as indicated in Section 1.

We use the term dispersion to refer to departures from the idealized propagation

of a wavepacket described by

due to errors in the discrete realization

g (32)

For uniformly spaced points and periodic boundary conditions on an interval — L <

x < L, the behaviour of (32) is readily analysed. The solution can be expanded

in eigenvectors of D, given by T>xn
 = wnXn- The eigenvectors have components

Xan = exp(— ikn£a), where the wavenumbers kn = nir/L. Then solutions of (32)

assume the form



V>« = £a»X««exp{i*.,[Z>(*n)< -{„}} , (33)
n

where dispersion is characterized by departures from unity of the function P(lfcn) =

w n / i n . Figure 5 shows T> as a function of q — kfkmtx for splines of order 3,5 and

9. For q > | , all representations fail, but for smaller values, higher orders are far

superior. In summary, splines of high order, say > 5, correctly describe dispersion

down to wavelengths corresponding to two or three mesh spacings.

4. APPLICATION TO HYDRODYNAMICS

As an example, we consider relativistic hydrodynamics described by the system

of equations (4), (7) and (8) in one space dimension. At the outset we have

to recognize that no complete theory is available for the numerical solution of

hydrodynamic problems. The difficulties peculiar to each case must be considered

on their merits. Relativistic problems have special difficulties due to the existence

of multiple scales and shocks. The desirable criteria which the solutions should

satisfy are:

• The conservation laws are recovered.

• Dispersion is minimized.

• Maximal theorems (see (39) below) are preserved.

• Nonlinear instabilities are controlled.

We propose an algorithm incorporating the following features, which will then be

discussed in more detail. A detailed description of of this algorithm, including
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proofs of results merely stated here, will be given in a forthcoming publication.

• The solution is discretized using high order splines.

• Propagation from one timestep to the next is performed by a nonlinear map-

ping, which is iteratively corrected.

• The mapping incorporates hopscotch averaging.

• An artificial viscosity is introduced.

By using high order splines, we take care of the conservation laws and dispersion

relations, as described in Section 3.

The time propagation is achieved by introducing a nonlinear mapping. If the

equations are written in shorthand as

the solutions at t, t + T are related by

<t>t+r -<f>t = T . F [ a v g ( & + T , 4>t)} + O(T3) , (35)

where the last term indicates the error. The average is defined in general by a

relation of the form (where m labels time and a space)

(1 - C ) C • (36)

"Hopscotch" averaging divides the lattice into odd and even points, and sets

0^ = 6(m + a,even) . (37)



In two or throe dimensions, a checkerboard pattern is used. This scheme damps

out instabilities in which the odd and even points propagate independently. Our

method hinges on iterating (35) until the residuals fall below a prescribed thresh-

old, usually 10~6. This is the primary control of nonlinear noise. It can be proved

that the iteration converges to the correct answer providing the timestep is small

enough (but finite),

7-max||.F|| <9< 1 . (38)

Under this condition, it can be shown further that the maximal theorems are

preserved from one step to the next. These are, for the system under consideration,

<*o>0, 4>\-P>Q, (39)

corresponding respectively to the positivity of the density -i.u causality.

Having taken all the precautions just described, solutions are still plagued by

high-frequency instabilities. Though their appearance can be postponed to late

in the time evolution, it seems to be inevitable. The source of these persistent

instabilities appears to be the amplification of random noise by nonlinear mode

coupling. The power spectrum

A{k) = \J°° dk<j>{x)exp{-ikx)
2

(40)

is a convenient diagnostic of this phenomenon. If we consider a model problem

with mode coupling
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Fig. 7. For case I (80 points, no viscosity), and times t = 0.26, 0.35, 0.39 and 0.43,
the left hand frames show <fo as a function of x, while the right hand frames show its
power spectrim as a function of k.



Fig. 8. As Fig. 7, for times t = 0.71 and 0.95.

it is possible to study the effect of random perturbations on u. The response

of <f> to a Gaussian input in u at a point in x, t is shown in Fig. 6. Not only

does the response propagate, but it differentiates the input, thus amplifying high-

frequency components of the input. If this perturbation is fed back into u through

its nonlinear dependence on <f>, the higher frequencies are further amplified. The

spurious amplitudes can be reduced by introducing an artificial viscosity p, as in

the last term on the righthand side of (40). If v(Amax/2)2<nuut ~ 5, the higher modes

are removed without quantitative changes in the solution, other than damping the

noise. It should be recalled that the higher frequencies are not propagated correctly

in any case.
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As a numerical illustration, we present solutions of the system (4), (7) and (8)

using 9 th order splines for a model of two colliding Gaussian drops. In its own rest

frame each drop is a Gaussian of unit width and maximum density <j>o = 0.6. The

left and right hand drops are boosted toward each other with Lorentz contractions

7 = 10, corresponding to 99.5% the speed of light. If length is measured in fermis,

and energy in GeV, this model roughly describes two light nuclei colliding at 200

GeV in the frame of one nucleus, an energy presently available at the SPS facility

in CERN, Geneva. We show the evolution of <f>o and its power spectrum

for two choices of numerical parameters:

I. No viscosity; 80 points on the interval —1 < x < 1. Figures 7 and 8 show <j>0



and A(<f>o\k) side by side.

II. Viscosity u = 10~3; 160 points on the interval - 1 < x < 1. Figures 9 and 10

show $o and A(<f>o\k) side by side.

In either case we see the formation of a shock in the middle of the collision, and

its subsequent separation into right- and left-moving shocks. In the first case we

see the noise appear in the last two time frames; in the power spectrum the higher

modes have reached 10% of the physical power. The second case has the same

quantitative behaviour, except that the shocks are sharper and the noise is absent.

An interesting feature of the power spectrum is the diffraction pattern from the

two shock edges!

We conclude that conservation equations can be directly integrated, with good

control of most instabilities, using a combination of techniques, notably high order

spline bases. Forthcoming papers will discuss the algorithms in greater detail, and

present applications to three-dimensional problems.
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