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CALCULATIONS OF PAIR PRODUCTION

BY MONTE CARLO METHODS

C. Bottcher and M. R. Strayer

Center for Computationally Intensive Physics

Physics Division, Oak Ridge National Laboratory

Oak Ridge, TN S78S1

ABSTRACT

We describe some of the technical design issues associated with the production of

partide-antipartide pairs in very large accelerators. To answer these questions

requires extensive calculation of Feynman diagrams, in effect multi-dimensional

integrals, which we evaluate by Monte Carlo methods on a variety of supercom-

puters. We present some portable algorithms for generating random numbers on

vector and parallel architecture machines.



1. I N T R O D U C T I O N

One of the most visible, if esoteric, fields of science at the present day is the

attempt to probe the structure of matter at very short distances by accelerating

particles to great energies. The energies must be considerable in order to overcome

the repulsive forces which operate at small distances. Another way of translating

the distance scale is to estimate the time when the early universe developed fluctu-

ations of that size. The projected Superconducting Supercollider (SSC) to be built

in Texas will reach energies of 20 TeV, corresponding to distances of 10~21cm or a

time when the universe was a millisecond old *h The SSC is designed to accelerate

protons, but two other types of accelerator are proposed. The Relativistic Heavy

Ion Collider (RHIC) at Brookhaven National Laboratory is similar in concept to

the SSC, but it will accelerate heavier nuclei, up to uranium, at lower energies

of 100 GeV per nucleon *). Yet other proposals are concerned with accelerating

bunches of electrons in linear colliders, at energies of up to a TeV; if built, this

would be the Tevatron Linear Collider (TLC). Our current interest is chiefly in

problems connected with the RHIC machine, though similar considerations apply

to the others •*). We find that large-scale numerical calculations are required, of a

type well suited to supercomputers, including those with parallel architectures.

The plan of this paper is to outline the physics of relativistic heavy-ion collisions

and colliders in Section 2, to describe the Feynman-Monte Carlo technique with

some examples in Section 3, and finally in Section 4 to discuss the generation of

random numbers on vector and parallel architecture computers.



2. RELATIVISTIC HEAVY-ION COLLISIONS

A highly schematic view of a collider, such as RHIC, is presented in Fig. 1. The

essential components are two rings, one above the other, capable of accelerating

and storing particles by combinations of electromagnetic fields. They may be

several miles in diameter. The rings are successively injected with counter-rotating

beams of ions which can intersect in crossing regions, of which four are included

in the figure ^ .

During the collision of heavy ions at relativistic velocities, large transient electro-

magnetic fields are formed in a space-time region near the collision. According to

the theories of Dirac, Feynman and Schwinger, amply confirmed by experiments,

these fields are sufficiently intense to produce large numbers of particle-antiparticle

pairs from the vacuum. The particles might be electron, muon, or tauon pairs, or

other more exotic particles, including, in principle, the unconfirmed Higgs boson ^ .

In a collider geometry each ion has a Lorentz contraction 7 given by

7 = -jJLp ~ {ElA) GeV. (1)

The equivalent fixed target energy is 7 F J = 272 — 1, or 2 x 10* for RHIC. It is this

large number which determines the tranverse field in the frame of one nucleus, and

hence the rate of pair production. Figure 1 illustrates schematically the production

of a pair from the electromagetic fields of colliding ions,

(2)

The electric field peaks at the distance of closest approach b where it is pre-



dominantly transverse. The figure also indicates the possibility that the negative

member of the pair may be captured onto one of the nuclei. If the fields act coher-

ently, the rate of pair production scales as Z4/m7
) where Z is the nuclear charge

and m the mass of the emitted particles. This predicts that the cross sections for

electron-positron production are larger than any other electromagnetic or nuclear

process.

The design of accelerators is a mature area of great fascination, combining elec-

tromagnetism and classical mechanics ^ . Only recently have design issues arisen

which require quantum mechanical calculations of processes on a microscopic scale.

We shall discuss two such processes.

• Free electron pairs produced by electromagnetic fields create large back-

grounds in detectors searching for other phenomena. Detailed calculations

are needed for design studies to minimize the backgrounds.

• If the electron in an electron-positron pair is captured by one of the ions,

that ion will be lost from the beam. This is the leading beam destruction

mechanism in heavy-ion colliders, and a reliable estimate is needed to ensure

that the beams will live for several hours without expensive refilling.

Both phenomena come to be important in a curious way. Heavy-ion colliders are

constructed to explore nuclear matter at great temperatures and pressures. Yet

because heavy ions are highly charged, the inevitable competing electromagnetic

processes may be larger than the nuclear, especially if the coherence factor Z* is
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Fig. 1. A Relativistic Heavy-Ion Collider: the upper and lower rings (RU and RL) are
injected from another ring I. The beams intersect in crossing regions X1-X4.

Fig. 2. Pair production in a relativistic heavy-ion collision, including the possibility of
capture: the region of intense electromagnetic fields is indicated by cross-hatching.



operative. This suggests that if the electromagnetic processes are so large, they

might be turned to advantage as a way of looking for fundamental phenomena,

such as the production of the Higgs boson. We shall examine this possibility as a

third example of our techniques, to be described in the following section.

To provide a frame of reference, Table 1 lists 7 and 7FT in round numbers for

present and forseeable heavy-ion colliders. Some fixed-target machines (AGS and

SPS) are listed as though they were colliders. No plans exist at the time of writing

to inject heavy ions into the largest machines, the SSC and ELOISATRON.

Table 1

Energies of Heavy-Ion Colliders.

Facility

AGS

SPS

RHIC

LHC

SSC

ELOISATRON

Location

Brookhaven

CERN, Ceneva

Brookhaven

CERN, Geneva

Texas

European, proposed

7

3

10

100

2000

8000

4x 104

TFT

17

200

2x10*

8 x l 0 6

U x 107

3x 109

Some explanation of terminology and units may be helpful. The cross section for

any process is defined as the number of occurrences per second divided by the flux

in the incident beam per second per unit area. The usual unit in nuclear physics

is the "barn" (b) = KT2" cm2; the "nanobarn" (nb) = 10"33 cm2. In colliders,

these numbers are converted back into occurrences (or "events") when multiplied



by the "luminosity" of a particular accelerator measured in cm"2 sec"1. Typical

collider luminosities lie between I026 and KF'cm"2 sec"1.

3. THE FEYNMAN MONTE CARLO METHOD

3.1 Formalism

We shall now sketch the theoretical background of pair production calculations.

Textbooks may be consulted for more details "K We use standard covariant nota-

tion, i " = (ctyr) and the metric x2 = x • x = (ct)2 — f*. It should be understood

that the electromagnetic fields are treated classically. They are derived from the

heavy-ion current J"(x) through Maxwell's equations for the four-potential /f(a?),

DA" - J" . (3)

The Lagrangian describing their interaction with the quantal fields of particles and

antiparticles xfr, tp is written,

£*(*) = e : $(xyf*(x) : A^x), (4)

whence the S-matrix is given by the formal expression

S = Texp[iJdtx£iM]. (5)

The ordered exponential in (5) is an instruction to expand what follows in a series

of terms described by Feynman diagrams. We are mostly concerned with the

leading (second order) term in pair production, leading to the cross section for

producing a pair with four-momenta (fci,^)



(6)

In this formula the impact parameter b is the transverse distance between the

trajectories shown in Fig. 2, and |O) denotes the vacuum state.

time

Fig. 3. Feynman diagram for pair production in "exploded" form.

Fig. 4. Feynman diagram for pair production in standard form.



The term S^ occurring in (6) is described by the Feynman diagram, shown in

"exploded" form in Fig. 3. The diagram is a time history of the production of a

pair: at times 1 and 3 the nuclei emit photons, and at times 2 and 4 the photons

create pairs. The more conventional view is given in Fig. 4.

To evaluate «S*2\ each vertex and line in the diagram in Fig. 4 is associated with

a factor according to prescribed rules. In particular, the vertex associated with

the classical field of nucleus 'a' gives a factor which is, within some normalization,

the Fourier transform of'the four-vector,

(7)

The photon four-momentum is denoted by q\ the charge, speed and four-velocity

of the ion are Zm, /? and U£ respectively. A crucial role is played by the form

factor F(—q2), which is essentially the Fourier transform of the nuclear density,

normalized so that F(0) = 1. At momenta greater than R^c, where .ft™,, is the

nuclear radius, the form factor falls off rapidly. Most of our applications lie in this

regime.

The cross section (6) is then given by an eight-dimensional integral,

[ 2/? J J (2ir)62£,2£2 (2TT)2 [ -q{ -gg J

(8)

In this expression the slashed quantities are 4 x 4 matrices constructed from the

components of four-vectors, while u and v are four-component spinors. The photon

momenta 9»,9b,9.i = qbx a n d the intermediate lepton momenta p,p' can all be



expressed in terms of kuk2. From the perspective of numerical calculation, the

salient feature of (8) is that it may be cast as a finite sum (though of several

hundred terms)

K

where the AK are constants from the spinor algebra, and the BK are simple alge-

braic functions of the integration variables. This is a form well suited to evaluation

on vector machines.

3.2 Applications

The integrand in (8) is positive everywhere so that the integral is suited to

evaluation by Monte Carlo methods "*. By appropriately mapping the variables,

we can write (8) in the form

a= I dyi'-f dysfiyt^.^ye). (10)
Jo Jo

where / is a reasonably smooth function. The Monte Carlo estimate of a derived

from a sample of N uniformly distributed random points is thus

with an estimated error A given by

2 ^E^-- -^8 J ) ) -^ | 2 - (12)

For a typical problem (the calculation of Fig. 6, below), Fig. 5 shows the decrease

in error with the number of points, which closely follows an N~1^2 law. The points
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Fig. 5. Variation of residual Monte Carlo error with the number of points. The letters
indicate the point reached after three minutes on several machines: V, Vax 785: R,

IBM Rise 6000; C, Cray 2; I, Intel 860 hypercube.
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Fig. 6. Total cross section for electron-positron production in a variety of
approximations. The scale cross section is a0 = 165b, a natural unit for many

electromagnetic processes. .



reached after three minutes of computation on a range of computers are indicated

on the curve.

As a test of the method, we show in Fig. 6 the variation of the two-photon

cross section for electron-positron production by unit point charges calculated in

various approximations "• ' ) . The Monte Carlo and Racah results are practically

identical and may be regarded as exact. This result scales rigorously with mass and

charge as Z4 /m2 for point charges and provides an upper bound for any calculation

including a form factor.' Subsequent examples involve complicated form factors

and constraints on the region of integration which rule out analytic treatments.
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-2

10""
10 100

Fig. 7. Capture cross sections for collisions between symmetric ion pairs as a function
of energy.

We now turn to consider some applied problems °\ The capture cross section

may be calculated using an extension of (8). The results are shown in Fig. 7 for

collisions of a range of symmetric ion pairs. The number calculated for gold in
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Fig. 8. Geometry of detectors in a collider experiment, distinguishing between the
acceptance angle 8 for a single particle, and the angle 6 subtended by the two

members of a pair.
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Fig. 9. Differentia] cross sections as a function of the pair angle 6 for a variety of cuts
on the acceptance angle of singles $.

RHIC (100 GeV/nucleon) implies a beam lifetime of 10 hours which is highly satis-

factory ^ . As we mentioned above, electron-positron pairs may be an unwelcome

background for many nuclear experiments, so that detector designers seek out pe-

culiarities, or "signatures" which can be used to distinguish genuine from spurious



signals. One such signature is the angle 0 between two members of a pair when

it is known that one member has been produced at an angle 9. A typical detector

geometry is illustrated in Fig. 8: the detector is a cylinder around the crossing

region of the beams, so that a single particle is only detected if 0 is greater than

about 40 degrees. Figure 8 shows the distribution of 0 for different selections, or

"cuts," on 0, again for Au in RHIC (100 GeV/nucleon) 10>.

As a final example, we take a very fundamental process, the electromagnetic

production of the Higgs' boson — the crucial, yet unobserved, building block of

the standard model of particle physics ">")_ The question to answer is whether

the electromagnetic process for heavy ions is competitive with nuclear processes for

proton collisions, in virtue of the coherence factor of Z* to which we have referred

several times. The process in question is described by the Feynman "triangle"

diagram Fig. 10, in which two pairs merge to produce the scalar Higgs. Since

a

Ho

Fig. 10. Feynman diagram for Higgs production.
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Fig. 11. Cross sections for production of the Higgs boson as a function of the Higgs
mass.

the Higgs mass is unknown, the calculations must be performed for a range of

possibilities. Figure 11 shows the cross section for uranium collisions as a function

of mass at collider energies of 3,8 and 20 TeV/nucleon. For an optimistic guess

that the mass is 250 GeV/c2, and the 8 TeV energy, corresponding to the Large

Hadron Collider (LHC) at CERN (see Table 1), these calculations predict that

25 particles would be produced a year. This number is actually large enough to

make the experiment worth thinking about further. In practice, numerous factors

reduce the detection rate, but not drastically *^.

4. PORTABLE RANDOM NUMBER GENERATORS

In the course of performing the calculations described in Section 3.2, we encoun-

tered some difficulty in reproducing results from one machine to the other, due to



the lack of documented reliable random number generators (RNGs). The simple

algorithms described in many textbooks were found to be inadequate for research

purposes. We also felt the lack of methods suited to supercomputer architectures,

which could generate statistically independent streams of random numbers by vec-

tor or parallel algorithms. To help others with similar problems, we shall outline

the results of our investigations and experience. A more complete account will

appear elsewhere ^K We must also acknowledge a debt to the work of Percus and

Kalos °\ who are among the very few people to have considered the problem of

parallel RNG's.

All random numbers at the present day are produced by linear congruences,

which paradoxically are completely predictable! These are usually written as a

recurrence relation

xn+i = axn + c mod m , (13)

where all quantities are integers, and m is as large as possible. It follows from

elementary number theory that the maximum period of the congruence is m, and

a large literature exists *") o n the conditions that this period is achieved if m = pq

for p a prime, usually p = 2. Many books suggest "homemade" generators based

on these conditions, such that a and c are obtained by truncating multiples of ir or

square roots. These generators have a distressing tendency to fail (by producing

highly correlated numbers) for a simple reason. Unless a and c are examined

closely, they may have a small factor in common with the result that all generated

numbers have the same factor. This can be avoided by taking c from a large table



of prime numbers. We have also adopted the practice of taking the "seeds" x0 from

the same table. This prescription is sufficient to generate numerous independent

parallel streams from given a and m ^K A table of 104 or so primes is easily

generated each time a large calculation is started.

The choice of m is dictated by the integer word length available. If complete

portability of FORTRAN programs is required, m < 215. A longer period < m2 is

obtained by going to a two-term recurrence relation

i n + 2 = axn+i + bxn + c mod m . (14)

A good choice of a, 6 is best arrived at by an empirical search, in which standard

tests are applied to a series of generators until a satisfactory one is identified. We

shall now describe some tests, and the resulting generators, which we have found

to be reliable in extensive applications.

The "chi-squared" test is one of the simplest and quite instructive *'h A rect-

angular domain in one or more dimensions is divided into N boxes of equal size,

as illustrated in Fig. 12 for 9 boxes in 2D. If the fraction in each box is fj, the

departure from a uniform distribution is measured by

N f 1 \ 2 N

which is translated into a percentile on the standard distribution using the function

P(N\x2) described in statistics textbooks. Some results are shown in Table 2 for

three examples:



Table 2

Results of the chi-squared test for some random number generators.

RNG (defined in text)

I

II

HI

I

II

III

N

103

103

103

104

IO<

10<

Percentile

19±6

44 ±4

49 ± 3

13 ± 3

35 ±9

49 ±5

I A primitive homemade generator, with a = 106, t = 1283, m = 6075 in the

notation of (13).

II The Vax intrinsic function RAN.

Ill One of our recommended portable generators, with a = 25819, b = 22263, c =

991, m = 32749 in the notation of (14).

In all cases we used 53 boxes in 3D and made six trial runs. A good generator lies

in the range 40-60%. Notice that this is not a perfectly uniform distribution but

a random deviation from one. The range 10-30% is adequate and < 10% should

be shunned. It is instructive that the quality of I and II declines as the number of

points increases. This is a matter of concern when we require 109 points in 8D, as

in Section 3.2.
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Fig. 12. Distribution of random points over bins for the chi-squared test.

Fig. 13. Random points forming planes in 3D oriented according to q.

The spectral test is regarded at the time of writing as the final word on the anal-

ysis of congruential random-number generators K However, it is more difficult

to implement and understand than the chi-squared test. The underlying princi-

ple is the observation that points in several dimensions generated by successive



terms of a congruence such as (13) must lie in hyperplanes defined by diophantine

equations of the form,

t

X)?,a""1 =0 modm, (16)
5 = 1

where t is the dimensionality. Equation (16) is appropriate for the form (13);

the generalization to (14) requires some more writing, but involves no conceptual

extensions * '\ Figure 13 illustrates schematically how such planes appear in 3D,

and the geometric interpretation of the vector q. The amount of space between

the planes is measured by the inverse of the frequency

t 1»/2

„ , — . . , V ? satisfying (16) , (17)
* L*=i J

Such a minimum may be found with a modest amount of computation using the-

orems on quadratic forms due to Hermite. The larger i/t, the better the generator,

in the sense that large gaps in the filling of space are absent. It is customary to

run the test for several dimensionalities, converting the results into figures of merit

Ht which scale out purely geometrical effects,

The number of terms in the congruence is denoted by T. Our portable generators

have T = 2, corresponding to (14).

Results for three portable generators are shown in Table 3. The fourth entry

supplies, for contrast, the analysis of the notorious URAND generator, widely used

in the 1960's. It is generally considered that a generator is: excellent, satisfactory

or inadequate according to whether (it > 1> (*t > 0.1 or fit < 0.1 for a series of



Table 3

Results of the spectral test for some random number generators. The constants 0,6, m

are as defined in (14) and N = 215 (N-19 is prime).

a

25755

25739

25819

2N +

Parameters of

b

22263

22263

22263

3 0

RNG

m

J V - 1

JV - 19

N2/2

2

3.14

3.14

3.14

3.14

Dimensionality

3

2.07

2.40

1.80

0.00

4

4.40

1.07

1.50

0.00

5

4.36

0.47

1.27

0.00

6

4.30

0.81

1.25

0.02

tests in dimensions 2 < t < 6. Clearly the first and third generators in Table 3

win excellent ratings.

Finally, we have investigated the possibility of vectorized algorithms. Suppose

we wish to generate a series of streams by vector instructions,

i n + i ( a ) = axn(ot) + c m o d m a = 1 , . . . , / L . (19)

Obviously the theorems on recursively generated streams do not apply to the se-

quence {xn(a)}, for n fixed. The best we can do is to take the seeds xo(a) at

random from a table initially generated sequentially, referred to as a "scramble

table". It is usually stated that this procedure has no theoretical warranty, al-

though it is observed to work very well. We have attempted to develop a theory

of ensembles of RNGs, such as (19). This requires that we perform a series of

spectral tests, with (16) replaced by



]jT q,aPt{a) = 0 mod m , (20)

where {p,(a)} is a set of locations in the scramble table, each defining one stream

a . We thereby obtain histograms, such as that in Fig. 14, showing the distribution

1

0.8

0.6

0.4

0.2

0
1 1

• Distribution

0 GauMian Fil

|l
0.2 0.4 0.6 0.8

v /v(max)

Fig. 14. Distribution of vt for an ensemble of RNGs, with a Gaussian fit for
comparison. The abscissa is the ratio of ut to its theoretical maximum value (/((max).

of vt values. These results were calculated from an ensemble of 5000 points in 5D,

with the first generator of Table 3. The mean value of vt is close to that for the

sequential generator p, = 3 — 1, while the Gaussian distribution appears to be

universal for a given dimension, with a width scaling as t~ll2. We do not have

a rigorous theory of these results, but they appear to justify the use of scramble

tables, by showing that large gaps do not appear among the hyperplanes with

a significant probability. The position is strengthened by a further result of our

calculations that the vectors <fmin defining the closest planes are randomly oriented,

so that no spaces are unfilled when all streams are superimposed.
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