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BACKGROUND

o During Last Several Years, Ignition and Plasma Burn Have Been

Key Objectives Of US Conceptual Tokarnak Designs (FED, INTOR, TFCX)

— Early Designs Were More Ambitious, Larger (4 to 5 m), More

Expensive ( > 1 B$)

— Objectives Included: Ignition, Long Pulse (1QO to 500 s),

and Engineering Technology Development

o In 1985, Studies Of Very Compact Tokamaks (1.1 to 1.5 m) Were Begun;

~ Objectives Included: Ignition, Short Burn Pulse (3 to 5 s)

— Capital Cost Reduced ( < 500 M$)

— Studies Included:

Ignitor — European Design Team

LITE — MIT Design Team
ISP — PPPL Design Team

FEDC Ignitor — FEDC Design Team

o In mid—1985, An International Panel Concluded Compact Devices Of

This Class Appeared Feasible And Further Study Was Warranted

o In Early 1986, A National Design Team Was Formed; A Baseline Design Point

Was Established; A Conceptual Design Is In Process



MISSION AND PHYSICS OF CIT

o The Mission Of CIT Is To Realize, Study, And Optimize

Fully Ignited Plasma Discharges.

o The Physics Requirements Have Been Established To

Provide Reasonable Assurance That The Mission • Will Be Achieved

— Plasma Confinement Guidelines Consider All Present Scaling Laws;

Ohrnic, Auxiliary Heated L—Mode, Auxiliary Heated H —Mode

— Figure —of—Merit Established: X = aB / q ; This

Is Proportional To Ignition Margin;

X Must Be > 25

— Burn Pulse Duration Set At Ten Times Tau —E; An Additional Two

Times Tau —E Specified To Heat. To Ignition

— Capability To Operate Both In Lirniter And Divertor Mode



PHYSICS GUIDELINES AND OPERATIONAL LIMIT*
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Item

Confinement

Figure of Merit

Density Limit

Beta

Elongation

Aspect Ratio

Plasma Current

Burn Pulse

TF Flat-top

Auxiliary Heating

Impurity Control

Fueling

Guideline/Limit

Adequate Margin For Ignition

Confinement Degradation Assumed

For Auxiliary Heating And Alphas

X = aB2/q >25

Mura kami Lirnit

Try on Limit, <O,O3l/aBh %

b/a < 1 .8

R/a > 2.7

Li miter > 1 0 MA

Divertor > 9 MA

q —edge > 2.6

> 1O Ta u — E

> 12 Tau-E

12 MW, ICRF

Lj miter

Double N u 11 D i verto r

2eft" < 1 .5

Gas and Pellet



KEY PARAMETERS OF CIT

Parameter

Major Radius, m

Minor Plasma Radius, rn

Elongation

Plasma Current

Li miter, MA

Divertor, MA

Field on axis, T

Neutron Wall Loading

at 300 MVV Fusion Power, MW/m2

ICRH Power, MW

TF Flat Top Time, s

Plasma Burn Time, s

Plasma Current Ramp-up Time, s

Number of Pulses

Full Field

70 % Field

Va 1 u e

1 .22

0.45

1 .8

1O

9

10,4

6.3

12

3.7

3,1

3.3

3000

50000



CIT DISTINGUISHING FEATURES

o Major PF Coils Located External To TF CoNs

— Small TrimCoMs Located Internal To TF Coils

o TF Coil Inner Leg Preloaded By Hydraulic Press/External Frame

o Wed-gfng Of TF Coil Inner Legs; No Bucking TF/OH

o TF and OH Conductors Use Explosively Bonded Laminated Inconel— Copper

o An Average Stress Criterion Is Used; Average Stress Is Allowed

To Approach O.85 Of Yield Of Laminate

o TF Outer Legs Use Coil Cases; Provide Support For Out—of—plane Loads



HYDRAULIC ASSEMBLY
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PML10AU SIKUCTUHt
(FRONT VIEW)

SUPPORT PLATE '

COMPRESSION BLOCK

COMPRESSION STRUCTURE

Figure 1.6-2

ELEVATION VIEW OF CIT

COMPRESSION STRUCTURE

— COMPRESSION BLOCK

SUPPORT PLATE



THERMAL
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HORIZONTAL
ACCESS PORT

VERTICAL
ACCESS PORTS NITROGEN

EXHAUST VENT

PF .SUPPORT
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COAX FEED

ICRH SYSTEM

Figure 4.1-4

DEVICE CORE ELEVATION VIEW
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TF COIL SINGLE TURN OF CONDUCTOR
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TF COIL
COIL CASE

INTERCOIL
STRUCTURE

Figure 1.7-5
TF COIL AND CASE ASSEMBLY
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GAS INLET DUCT

V - SMALL RADIAL
I PORT
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Figure 4 .5 -1
VACUUM VESSEL ASSEMBLY
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Figure 4.4-1

FIRST WALL CONFIGURATION
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Figure 4.4-2
FIRST WALL TILE ARRANGEMENT
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Figure 4.13-4
CIT ICRH ANTENNA HECHANICAL DESIGN



MAINTENANCE PHILOSOPHY

o Provide As Much "Hands — on" Access and Maintenance Capability

As Possible Within The Test Cell.

o Prior To D—T Operation — All "Hands—on" Capability Exists Outside

Vessel. In—vessel Operations May Require Remote Capability Because Of

Port Size Limitations

o After D—T Operations Commence — All In—vessel Operations Require

Remote Capability;

Within Test Cell, External To Device, Close —in Shielding Will

Permit Personnel Access One Day After Shutdown

o Planned Maintenance Includes Components Inside Vessel And

External To Device (Auxiliary Equipment); No Planned Maintenance

For Lifetime Designed Components (Vessel, Coils)
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Figure 1.6-4
CIT IN-VESSEL ARTICULATED ARM
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Figure 1.6-5
C1T AIR-LOCK STORAGE FOR IN-VESSEL ARTICULATED ARM
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SCHEDULE

o FY 1987 — Cc ipiete Conceptual Design

o FY 1988 — Initiate Detailed Design And Component Fabrication

o FY 1992 — Complete Device Installation

o FY 1993 — First Plasma Early In Year


