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Abstract

Several authors have suggested a novel shape for
the toroidal field (TF) coils of a eokamak fusion reac-
tor. Collectively, these magnet shapes have become re-
ferred to as the "Princeton D-coll." This coil shape
can be derived by assuming that for a thin conductor to
be in a state of "pur* tension," its radius of curva-
ture must be proportional to the toroidal radius. A
principal disadvantage of this derivation is that out-
of-plane support, a necessary feature in the design of
a tokamak fusion reactor, is neglected.

In this paper, a derivation of a bending free
toroidal shell for a tokamak fusion reactor is pre-
sented. The out-of-plane structure is considered to be
an integral part of the fusion reactor and therefore
its shape is optimized to produce a bending free stress
distribution. This shape, which is nearly circular for
aspect ratios greater than 2.5, Is derived by solving
the equilibrium, constitutive, and kinematic relation-
ships for a uniform toroidal membrane. This membrane
is subjected to a magnetic pressure which is inversely
proportional to tha square of the toroidal radius. A
comparison between this bending free shape and the D-
shape is presented.

Introduction

There have been numerous proposals for the shape
of the TF coils for a tokamak fusion reactor.1'2 Sev-
eral of these shapes are described as being in a state
of pure tension or bending free.3"5 Toroidal field
coils of this type have been collectively referred'to
as the Princeton D-shape, a name based upon the simi-
larity of the coil, shape to the capital letter D.
These coil shapes are derived by considering the equi-
librium between the Lorents forces and the mechanical
forces within the coil cross section. The simplest ap-
proach to this shape derivation assumes the magnetic
field which ..generates the Lorentz forces to be that of
a continuously wound toroidal shell. The magnetic field
is then inversely proportional to toroidal radius.

Subsequently, detailed stress analyses which were
performed upon this shape reported significant bending
stresses.7>° These bending stresses were attributed to
the difference between the simplified magnetic field
variation and that calculated for a discrete coil
system.

Modification of the D-shape to account for dis-
crete coils, e.g., realistic magnetic field distribu-
tions, has been presented by several authors.9"n In
their reports they cite stress analyses of their modi-
fied D-shape coils showing reduced (but not eliminated)
bending stresses.

In general, little consideration has been given to
the effect on coil shapes of loadings other than in the
plane of the winding. Further, only limited attention
has been directed toward the effect of coil support on
coil shape out of the plane of the windings.12 One re-
port13 has indicated from a cost (as well as an out-of-
plane support) standpoint that a shell-type structure
would be an acceptable alternative to some farm of
torque frame.

The following sections of this report present a
derivation of the meridian shape for a toroidal bending
free shell. The resulting shell structure is proposed
for consideration as an in-plane as well as an out-of-
plane support structure for TF coils. A comparison is
presented between the meridian shapes calculated for
various aspect ratios, as well as meridians calculated
for D-shaped coils.

Solution for the Meridian of a Toroidal
Bending Free Shell of Revolution Subjected

to a Pressure Which Varies Inversely
with Toroidal Radius

In this section, we present a derivation for the
slope of the meridian of a toroidal shell of revolution
which is in a bending free (membrane) state of stress.
This shell is in equilibrium with a magnetic pressure
distribution which varies inversely with the toroidal
radius. Three equations are derived which govern the
equilibrium and compatibility of the shell. These
equations contain three undetermined coefficients we
solve for by applying three physical boundary conditions.

The resulting meridian is nearly circular for
toroids with aspect ratios greater than 2.5 and gradu-
ally transforms into an oval shape as the aspect ratio
decreases.

Equations of Equilibrium for a Shell of Revolution
Under Agisymmetric Loading

The equations of equilibrium for an aadsymmetric
shell of revolution in a state of membrane stress are11*

cos Pvpr - 0

N.r + N.p sin • + P,or

tt)

(2)

where Pv and P_ are the surface components, 9
are the stress resultants, p is the meridianal radius of
curvature, r is the radius of the hoop circle, and $ is
the tangent angle of the meridian.

From Fig. 1 we may obtain the relationship
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Substituting Eq. (3} into Eqs. CD and (2) produces the
working fora of the equilibrium equations,

By substituting Eqs. (7) and (8) into Eqs. (93 and
(10), we obtain the relationships between the stress re-
sultancs and the displacements

and

sin *) -PYr(tan •) -?

(4)

(5)

Compatibility Equations for an
AaJsymmetric Shell of Revolution

Eh

,(11)

- a 2 )

Solving Eq. (11) and (12) for v and w, substituting into
Eq. (6), and simplifying yields the compatibility con-
dition15

The equilibrium equations oust be augmented by the
compatibility equations, which represent the requirement
for zero bending stresses, i.e., vanishing changes in
curvature. For small strains of tha middle surface, the
changes in curvature of the meridian, x*., and the curva-

ture in a plane perpendicular to the meridian,'ya, are

1 3 , / v dw\
p* 3* \P 0d*;

* V h £ * V s " •' •
Electromechanical Force on a Toroidal Shell of
Revolution

For the purpose of thi3 analysis, we assume that
the toroidal shell is uniformly wound and contains N
turns, each of which carries a current, I., in Ch« me-

ridlanal direction. From elementary electromagnetic
considerations, the magnetic field may be expressed as

where / and w are the displacement components of the
middle surface (see Fig. 2 ) . 1 5 The displacement, v, is
in a direction tangent to the surface of the shell and
the displacement, w, is in a direction perpendicular to
the surface of the shell. It is evident that \. and x
vanish if, and only if, 9

(14)

The magnetic pressure exerted by the cross produce of
the current and the magnetic field may be calculated
from

i
2u_

(IS)

He must relate the displacements to the stress re-
sultants in order to use Eq. (6). First, the strains of
the middle surface in the direction of the meridian, c.,
and a plane perpendicular to the meridian, e., may be
expressed in terms of displacements as

where

constant (16)

E<ti * 7 v w

and

(7) and In the mks system, F has the units of newtons.

Further Simplification of the Equations for the Linear
Membrane Theory of Shells of Revolution

• —(v cos $ - v sin (8)

The strain components e, and e. can be expressed in

terms of the stress resultants, M and H., by applica-

tion of a constitutive relationship (Hooke's law). This
gives

Equations (4), (5), and (13) arc the fundamental
equations of the linear membrane theory of shells of
revolution under axisymmetric loading. In order to ob-
tain a solution for the meridian, the relationship be-
tween h and r must be known In advance. We will only
consider solutions for constant thickness. Further, for
the present solution, only the P_ load component will be
considered.

Stated mathematically, these assumptions are

O) d7

and - 0

" "V • (10) and

where E " Young's modulus, v - Poisson's rat io , and h
the shel l thickness.
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Substituting into Eqs. (4), (5), and (13) yields the
following reduced set of compatibility and equilibrium
equations:

(17)

(18)

sin •> " ~ P Z r " 7 and

v - ° •
In order to normalize Che radial coordinate, the

following variable transformations are made:

sin $ »
R(-£n R +

D2R2 + D
(19)

1 From the expression for sin <j> we obtain the equation
for the slope of the oeridian,

R » r/rin

and

Z - z/rin *

The normalized compatibility and equilibrium equations
become

V

sin

Integration of these three equations yields

- • - * - « - (20)

R(£n R +

+ D3 - R-£n R - RDi) (D2R2 + D 3 + R £n R

Solution for the Shape of the Meridian

In this section, we demonstrate how to determine
the three constants, Dj, D 2, and O3. Equation (20) may

be characterized further by realizing that in order to
have a smooth curve for the shape of the meridian, the
following statements about the slope of the meridian
must be true.

At r equal to both r. and r (R • 1.0 and R -
m out

rout/rin
R ) , then the slope of the meridian must

be infinity. At r equal to r , which represents the

radial distance to the crown of the shell, the slope of
the meridian must be equal to zero, see Fig. 3. Stated
mathematically these boundary conditions are as follows.
At R - 1.0 and R - r Jr. - R ,out In out'

S.R sin
rin

R + Ci , 2k
dR (21)

rcr/rin'

N6 * I
dZ
dR

0 . (22)

By substituting Using condition (22),

rin

and

rin

(23)

and

D 2 •

using

Rout*

condition

:&. Rcr - i

(21),

out
:Rin '

.) + R ln(

R2 )out

^ R i n >

rin

and

for the arbitrary constants, we can express the equa-
tions as



D3

-R lnRout f(Rinfe Rcr '

- Rout>

Rin " Rin Rout

presented in this report gradually transforms from
being nearly circular for high aspect ratio into an ec-
centric elliptical shape, for low aspect ratio. For this
figure the inner toroidal radius was held constant;
also, the dashed curves represent circles for the vari-
ous aspect ratios.

Substituting R. " 1.0 into Che equations for D2 and
gives n

Rcr - *° Rout) *

-° - Rout>
(24)

and

-Rout
R - £nR
cr out

* Rout>
(25)

Given r. and r , we are left with the task of
in out

determining r . If we choose the plane z • 0 to pass

through the meridian at R - 1.0 and R » R. , Chenbut'

Z - ^~J dR - 0 . (26)

Physically, this stipulates chat the shell must dose
upon itself. Mathematically stated in a. different way,

fRcr /dZ

1 0
%) dR (27)

Determination of the R. which satisfies Eq. (27)

yields a solution to the shape of the meridian for a
bending free shell of revolution. Equations (23)-(27)
were solved numerically.

table 1 presents the results of the numerical solu-
tions to these equations. It lists for values of R Q U £

from 1.2 to S.O the aspect ratio, radius to crown,
height to crown, radial eccentricity ratio, height ec-
centricity ratio, and che three solution coefficients.
The aspect ratio, A, is defined by

A - (R.
out

The radial, X , and height, X , eccentricity ratios are
defined by r z

" 2Rcr/(*out

Table 1. The results of the numerical solution for the
meridian of toroidal bending free shells for tokamafc

fusion reactors

out
1.2
1.*
1.6
l.S
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.*
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0

A

11.00 1.
6.00 1.
4.33
3. SO
3.00
2.67
2.43
2.25
2.11
2.00
1.91
1.S3 2.
1.77 2.
1.71 2,
1.67 2.
1.63 2.
1.59 2.
1.56 2.
1.S3 2.
1.S0 2.

R

2.

cr
1000
1393
2934
3985
4368
S313
6308
7S61
asoi
3726
0636
1S28
2401
32S4
408S
4892
5673
6425
7147
7835

cr_
0.1001
0.2020
0.3065
0.4143
0.S2S7
0.6412
0.7503
0.88S3
1.0145
1.1430
1.2890
1.43S0
1.5873
1.74SS
1.3134

z. ciass
2.2725
2.4664
2.67tS
2.8883

1.0000 1
0.3339 1
0.3336 1
0.3989 1
0.9979 1
0.3964 1
0.9346 1
0.3923 1
0.9895 1
0.3863 1
0.3826 1
0.9785 1
0.9740 1
0.9689 1
0.9634 1
0.3574 1
0.9S08 1
0.3438 1
0.3361 1
0.3278 1

X
_ z
.0015
.0100
.0217
.0357
.0S14
.0686
.0870
.1066
.1272
.1430
.1718
.1958
.2210
.2476
.2756
.3053
3367
3702
4060
4444

-a.Q9S3!J
-a.13220
-0.26132
-0.33538
-0.40335
-0.46645
-0.52513
-0.58002
-0.63131
-0.67936
-0.72443
-0.76676
-0.80653
-0.84390
-0.87S01
-0.91136
-0.94285
-0.37174
-0.33868
-1.02371

D 2

0.02074
0.03S1S
0.04552
O.OSJIO
0.05875
0.05301
0.06627
0.06879
0.07075
0.07230
0.07354
0.074S4
0.07536
0.07606
0.07668
0.07723
0.07775
0.07829
0.07831
0.07937

D 3

0.07456
0.14703
0.21640
0.28228
0.34460
0.40343
0.45392
0.51123
0.56055
0.60706
0.65090
0.63223
0.73117
0.767*4
0.30233
0.83473
0.86509
0.83346
0.31987
0.34434

Figure S presents the same type of comparison, ex-
cept che bore diameter was held constant and the inner
and outer toroidal radii were varied to obtain the de-
sired aspect ratio. The distinguishing symbol for each
aspect ratio is plotted at the crown of the shell to
emphasize the eccentricity of the ellipsoidal shape.

For the shells in Fig. S, Che stress resultants S
and N. were tabulated and are presented graphically in*

o
Figs. 6 and 7, respectively. These figures show that
for toroidal shells with high aspect ratio, the stress
resultant variation with toroidal radius is small com-
pared to toroidal shells with low aspect ratio. This
should be expected because of the direct relationship
of the stress resultants and the magnetic field, i.e.,
there is little magnetic field variation with toroidal
radius in the region of Che solution for high aspect
ratios.

Comparison Between the Meridian Shanes of a Toroidal
Bending Free Shell and the Princeton D-Shape

Figures 8 and 9 compare che meridian shape of n
toroidal bending free shell and the Princeton D-shape
for the same four aspect ratios plotted in Fig. 2. On
each figure, a dashed curve has been plotted which rep-
resents a circle. The curve which has the straight
vertical leg at the inner radius is the Princeton D-
shape. These graphs show chat there is a potential for
a significant size, as well as superconductor cost,
savings if a practical fusion reactor design can be
worked out using the toroidal bending free shell con-
cept.

and

2 Zcr / ( Rout + 1' 0 )-

Tabular values for the eccentricity ratios close to 1.0
indicate a close approximation of the meridian to a
circular shape. This table shows that for aspect ra-
tios greater than 2.S, the meridian of a bending free
toroidal shell is essentially circular.

A comparison of meridian 3hapes for four toroidal
bending free shells >f different aspect ratio is pre-
sented in Fig. 4. Ti is figure shows how the solution

Conclusion and Further Work

In this paper we have derived and solved che equa-
tions for the meridian shape of a toroidal bending free
shell. Comparisons have been graphically shown between
meridians calculated for various a&pect ratios as will
as between this shape and the Princeton D-shape. The
calculated shapes for Che meridian of a toroidal bending
free shell have been shown Co be eccentric ellipses f?r
low aspect ratio, becoming more nearly circular with in-
creasing aspect ratio. For aspect ratios greater than
2.3, the meridians are essentially circular.

It is argued that this new shape has a significant
advantage over the Princeton D-shape. The nev shape



concept, if it can be made into a viable fusion reactor
design, has the advantage of using less superconductor
(and therefore less money) than the D-shape. Admitted-
ly, there are several design details which oust be
solved for a shell structure to work for fusion reac-
tors, yet Ref. 13 has shown that shell structures ara
feasible.

We are presently investigating four areas of
practical interest associated with this solution:

1. How good is the solution presented in this
report compared to a shell of finite thickness?

2. What effect does a more realistic approxima-
tion to the radial variation of magnetic field have
upon the meridian shape?

3. How far away from reality is this solution
coopered to a finite element analysis where a thin
shell supports lumpy thick coils of the derived shape?

4. How bad are the bending stresses in circular
coils supported by toroidal shells.?
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Fig. 1. Differential element of a shell of
revolution under axisymmetric loading.
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